Math 4600/6600

1. How to Conduct a Bayesian Trial

Suppose you have a list of coin flips, and you know that they were generated by either a fair or a biased coin with a 51% chance of heads. How do you determine which? Suppose that you start with no opinion about which coin you have. Then we have two hypotheses: A (the coin is fair) and A^{c} (the coin is biased). Let B be the result of a single flip. Bayes' Theorem says

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}
$$

On the right hand side of the equation, we use our current estimates of $P(A)$ and $P\left(A^{c}\right)$. On the left, we are computing our updated estimate of $P(A)$, given the flip we just observed. We can then repeat this process as we observe successive flips; over time, we develop a high degree of confidence in one option or the other.

The course webpage contains data on 50,000 flips of a coin, in the file CoinFlipData.csv which was either unbiased or biased. Compute the probability that the coin was unbiased.

