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Lanczos' Generalized Derivative 

C. W. Groetsch 

1. INTRODUCTION. Is it possible to differentiate by integrating? A curious 
approximate differentiation rule of Cornelius Lanczos seems to adopt this oxy- 
moronic approach. More orthodox finite difference rules for approximate differen- 
tiation arise naturally from the definition of the derivative. For example, replacing 
the limiting value in the definition of the derivative by the difference quotient at a 
small "finite difference" h gives the forward difference approximation: 

(X) - f(x + h) - f(x) 
J~~XJ ~ h 

and many other finite difference approximations can be developed by using higher 
order differences [1]. In this note we investigate a little-known, and at first sight 
ironical, approximation of the derivative that Lanczos called the "differentiation 
by integration" method [4, p. 324]. 

The method consists of computing the expression 

Dhf(X) = 
h 

tf(x + t) dt (1) 2h _-h 

for a given small value of the parameter h, as an approximation of f'(x); since 
D-hf(X) = Dhf(X), we may, and shall, take h to be positive. An application of 
Simpson's rule provides a connection between Lanczos' approximation and the 
more familiar symmetric difference approximation of the derivative. In fact, if 
f E C4[x - h, x + h], then Simpson's rule [1, p. 257] gives 

h ~~~h 
f_tf(t + x) dt = -[-hf(x - h) + Of(x) + hf(x + h)] + 0(h5) 

h_ 3 

and hence 

f(x + h) -f(x-h) 
Dh f(X) =h+0(h2) 

On the other hand [1, P. 317], 

f(x + h) -f(x - h) -f'(X) + 0(h2) 
2h 

and therefore 

Dhf(x) =f'(x) + 0(h2). 

This result can be obtained more directly from the Taylor approximation under the 
relaxed condition that f E C3[x - H, x + H] for some H > 0: 

f(x + t) = f(x) + f'(X)t + f"(X)t2/2 +f"'( ot)t3/6 
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and hence 

Dhf(x) 3 
h 

tf(x + t)dt 2h3 h 

=f'(x) + 2h3| f O(t) - dt (2) 

=f'(x) + O(h 2). (3) 

In the next section we investigate the convergence of the Lanczos approxima- 
tion under assumptions on f that are weaker than differentiability, thereby 
establishing that the Lanczos method defines a true generalized derivative. Fur- 
thermore, we show that the convergence behavior of the method is in a sense quite 
analogous to the convergence of Fourier series. Section 3 treats the effects of 
errors in the function values and gives a best possible uniform rate of convergence 
with respect to the error level in the function values. 

2. A GENERALIZED DERIVATIVE. Suppose f is an integrable function on some 
interval [a, b]. Lanczos remarks that 

lim Dhf(X) (4) 
h--0 

may exist even at points x E (a, b) "where a derivative in the ordinary sense does 
not exist." In the next proposition we show that (4) does indeed provide a 
generalized derivative. In fact, we show that the Lanczos method bears the same 
relationship to the first derivative that the Fourier partial sums bear to the zeroth 
derivative of a function [2, p. 75]. Namely, Dhf(x) converges to the average value 
of the left and right hand derivatives at x, provided these one-sided derivatives 
exist. We use the following notation for the right and left derivatives, respectively: 

f(x) =lim f(x+t) -f(x) f f(x + t) -f(x) t -* +t t- -t 

Proposition 1. If fR(x) and fL(x) exist, then 

lim Dhf(X) = (fL( X) + fR(x)). 
h-0 2 

Proof: According to the definition of the one-sided derivatives, for a given E > 0, 
there is s 6 > 0 such that 

f(x + t) -f(x) - fR(X)tI < Et if O < t < 8 

and 

If(x + t) -f(x) -fL(x)tI < EItl if -5 < t < 0. 

Therefore, for h > 0, 

tf(x + t) dt = fht(f(x + t) -f(x) -fR(x)t) + t(f(x) +fR(x)t) dt 

h h2 
= f t(f(x + t) -f(x) -Rf(x)t) dt + -f(x) + -f (x) 
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and similarly, 

fh tf(x + t)dt fht(f(x + t) -f(x) -fL(x)t)dt - y f(x) + fL'(x). 

We then have 

3 'h 
D,if(x) = Ih tf(x + t) dt 

3 o 
=2h3 f0t(f(x + t) -f(x) -fL(x)t) dt + -fL(x) 

3 h 
+ 2h3 fht(f(x + t) -f(x) -f,(x)t) dt + -f (x), 

so, if 0 <h <8, then 

Dhf(x) - 2(fL(X) +fR (X)) 

-2 htlf(x + t) -f(x) -fL(x)tldt 

+ |tl f(x + t) -f(x) -fR (x)t |dt) 

3 h t2 

<h3 Eft2 dt =E - 2h3 _ -h 

Since Dh f(X) = D -h f(X), we therefore have 

lim Dhf(x) = (X) + fR(x)). 

In particular, we see that if f is differentiable at x, then 

lim Dhft(X ) =ff ( x) 

However, the limit may exist even at points where f is not differentiable. For 
example, if f(x) = lxi, then 

lim Dhf (0) = 0 
h-0O 

by Proposition 1, while f'(0) does not exist. 
Lanczos suggests that formula (4) may be useful in cases where one desires an 

approximate derivative of a function contaminated by noise, since "noise is a 
typically nonanalytic phenomenon which destroys the analytical nature of the true 
f(x)." In the next section we show that formula (4) has no particular advantage 
when handling noisy functions, although it can give satisfactory results if used 
properly, and we provide an analysis of the behavior of Lanczos' approximate 
derivative when the function is corrupted by error. 

3. ERROR EFFECTS. Before proceeding with the analysis, it is useful to get some 
feel for the process by performing some modest experiments. Fortunately, modern 
software, such as MATLABTM, makes this an easy job. As a simple test case we 
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use the function f(x) = ex2 for -1 < x < 1. The integral we wish to compute is 
3 h (X+t,2 3 (x+h 2 

3 te(xt)dt =-f ue(xh)du. (5) 
-h h 2h -1 

In a simple MATLAB program this quantity was computed for h = .001 at 101 
equally spaced values x E [-1, 1] by using an eight point Gauss-Legendre quadra- 
ture rule to approximate the integrals. The resulting Lanczos approximate deriva- 
tive and the true derivative are plotted on the same axes in Figure 1. 

4- 

2- 

0 - 2 - 

-4 ~ ~ ~ ~ ~ w 

- 6 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Figure 1 

Don't be surprised if you see only one graph-the Lanczos approximation is so 
good that the approximate derivative virtually overlies the true derivative. 

Now we blend a little noise into the simulation by perturbing the function values 
with uniform random errors of magnitude < .01 (about one percent) before 
applying the approximation formula. The results appear in Figure 2. 

-20 

- 1 -0Q.8 - 0.6 - 0,4 - 0.2 0 0.2 0.4 0.6 0.8 1 

Figure 2 
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The difference is certainly eye catching, but not particularly surprising. The 
small errors in the function values are filtered through the integral in (5) and 
magnified by the factor 3/2h, leading to large errors in the approximate deriva- 
tive. This is not a deficiency in the method, but rather a manifestation of the 
inherent instability of the differentiation process itself [3]. To paraphrase Cassius, 
the fault, dear reader, is not in the method, but in ourselves-or more precisely, in 
our application of the method. A simple analysis suggests that a more intelligent 
application of the method can lead to more satisfactory results. 

To get some idea of the effect of data errors, suppose f is bounded and has 
three bounded derivatives on some interval I containing the point x. Suppose 
further, that fe is some bounded integrable perturbation of f satisfying 

If(t) 

f(t)1 

< 
E 

(6) 
for all t E I, where E is a known error bound. Then by (2) 

| Dhf (x) -f '(x)l| <l|Dh f (x) - f'(x) I + I DhNeX) - Dh,f (x)| 

< ? 0h I t I edt 
10 -h7 
M 3 E 

=- h2 + _ _ 
10 2 h 

where M is a bound for the magnitude of the third derivative. 
This type of bound is the Scylla and Charybdis of numerical analysis for 

unstable problems. The first term (the truncation error) goes to zero as h -> 0, 
while the second term (the stability error) blows up as h -> 0. Clearly, some 
compromise is needed and the computational Odysseus would do well to steer a 
midcourse between these two numerical hazards by balancing the two terms with a 
parameter choice of the form h = constant X E 1/3. Such a parameter choice gives 

ID _E(x) -f '(x) - O(E2/3). (7) 
In particular, if the example is rerun using the parameter h = E1/3, instead of the 
unreasonably small parameter that produced Figure 2, we get the much more 
satisfactory result shown in Figure 3. 

6 

4 - 

2- 

0 

-2- 

-4 
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Figure 3 
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This brings up a final question. Is the rate of convergence 0(E2/3) given in (7) 
best possible? To be more precise, is it possible to squeeze out a better rate of the 
form o( E2/3)? Our next proposition shows that this is possible only in trivial 
special cases, namely when f is a quadratic polynomial. We consider the polynomi- 
als of degree at most two to be a trivial case because Dh produces the exact 
derivative when applied to such polynomials. 

Proposition 2. Suppose f is bounded and has three continuous bounded derivatives on 
some open interval I, and that h(e) 0 as e 0. If for each bounded integrable 
function f E satisfying (6) we have 

lDh(E)fE(x) -f'(x) I =( (E2/3) 

for all x E I, then f is a polynomial of degree at most two on I. 

Proof: Suppose f"'(x) > 0 for some x E I. Then there is a 8 > 0 and an H > 0 
such that 

f"'(s) 2 8 > 0 if x - H < s <x +H. 

Suppose 0 < h(e) < H and let 7}(t) = e for t > x, and 7(t) = 0, otherwise. Then 

3E h 3 E 
h_ 

h 
dt = 

-. Dh() = 
Th__4 

h() 2h3 lo 4h 

Now let fE(t) = f(t) + rq(t). Then (6) is satisfied. 
By Taylor's Theorem, we have 

i2x+ t s) (+t-S)2 
f(x + t) =f(x) ++f'(x)t + f"(x)2 + 

X 
f1(S) ds 

and therefore 

3 h 
Dhf(x) -f'(x) = h tf(x + t)dt -f'(x) 2h3 _h 

3jh tx?tf ( S) 
( sX + ) ds dt. 

2h3 h 2 

But, for 0 <h <H, 

h3 X?t (X +ts)2 38 h x+t (x + t S)2 d 
f3tf f "'(s) 2 ds dt ?fh7tf dsdt 

and 

3 lo f 
I (x+t-) dsdt 

2h3 -h '2 

38 5 (x?t-_s) 8 
? 3 (-t)f dsdt = -h2. 

2h h X?t 2 20 
Therefore, 

8 3 e 
Dhfe(x) -f'(x) = Dhf(X) - f'(x) + Dhn(x) > -h2 + 4h 

10 4 h 
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Since 

|Dh(e,)f '(x) - f'(x) | = ( 62/ 

we then have 

lo h2( E) + - 
3 

o( 62/3 
10 4 h(E) 

and therefore 

5 h( JE) 
2 3 E1/3 

13 + I 
10 1 / 4k h(e) / 0 

as e -> 0, which is clearly impossible. A similar argument shows that for no x E I 
is f"'(x) < 0. Therefore, f"'(x) = 0 for all x e I, so f is a quadratic polynomial 
on I. E 
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