
8.1/8.2 Differential Forms.

We now understand how to differentiate and integrate in multivariable calculus.

We want to connect the two operations by proving the fundamental theorem of calculus. In one variable, this is

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

whenever $f(x)=F^{\prime}(x)$. Now

So we can observe: (in our new langrage)
$[a, b]$ is a region Ω
$[a, b]$ is the closure of (a, b) $\{a, b\}=b d y(\Omega)=\partial \Omega$ is the set of frontier or boundary points of Ω.
So the theorem has the structure

$$
\int_{\Omega} d F(x) d x=\int_{\{b\}} F(x) d x-\int_{\{a\}} F(x) d x
$$

if we realize that "O-dimensional integration" is just evaluation at the point.

To extend this to higher dimensional regions, we'll need to keep track of several things:

F something that can be integrated over (n-1)-dimensional manifolds
dF something that can be integrated over n-dimensional manifold
and our goal will be to prove Stokes's Theorem:

$$
\int_{\Omega} d F=\int_{\partial \Omega} F
$$

So what are F and $d F$?
They are a special Kind of vector-valued function called a differential form.

Defining differential forms will take a few classes.

Definition. The vectorspace of linear $\operatorname{maps} \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called the dual space $\left(\mathbb{R}^{n}\right)^{*}$.

The dual space is an n-dimensional vector space. If \mathbb{R}^{n} has the standard basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ then $\left(\mathbb{R}^{n}\right)$ has a standard dual basis $d x_{1}, \ldots, d x_{n}$ defined by

$$
d x_{j}\left(\vec{e}_{j}\right)=\delta_{i j}
$$

so

$$
\vec{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \Rightarrow d x_{i}(\vec{v})=v_{i}
$$

Homework: Prove that $\left\{d x_{i}\right\}$ is a basis for $\left(\mathbb{R}^{n}\right)^{*}$.

Now we can extend this idea:
Definition. The vector space of alternating multilinear functions $\underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{k \text { times }} \rightarrow \mathbb{R}$ is denoted $\Lambda^{k}\left(\mathbb{R}^{n}\right)$.
We define $\Lambda^{o}\left(\mathbb{R}^{n}\right)=\mathbb{R}$.
T functions with no
We know that inputs are constant

$$
\Lambda^{n}\left(\mathbb{R}^{n}\right) \text { is one-dim. (ddt) }
$$

We call this space "alt $-n-k$ " or "Lambola-n-K".
and

$$
\Lambda^{\wedge}\left(\mathbb{R}^{n}\right)=\left(\mathbb{R}^{n}\right)^{*}=n \text {-dimensional }
$$

Now we want to build a basis for the "middle guys" $\Lambda^{k}\left(\mathbb{R}^{n}\right)$.

Definition. A K-index I in \mathbb{R}^{n} is an ordered $\left(i_{1}, \ldots, i_{k}\right)$ with each $i_{j} \in\{1, \ldots, n\}$.
Note: When we say "ordered", we mean that the order of the i_{j} matters: $(7,3,7)$ and $(3,7,7)$ are different 3 indices in \mathbb{R}. There's also no requirement that the indices i_{j} are all different.

Given a K-index I in \mathbb{R}^{n}, we define

$$
\begin{aligned}
& d x_{I}\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)=\operatorname{det} V_{I} \\
= & \operatorname{det}\left[\begin{array}{ccc}
d x_{i_{1}}\left(\vec{v}_{1}\right) & \cdots & d x_{i_{1}}\left(\vec{v}_{k}\right) \\
\vdots & \ddots & \vdots \\
d x_{i_{k}}\left(\vec{v}_{1}\right) & \cdots & d x_{i_{k}}\left(\vec{v}_{k}\right)
\end{array}\right]
\end{aligned}
$$

where V is the $n \times k$ matrix $V=\left[\begin{array}{cc}\hat{V}_{1} & \hat{V}_{1} \\ v_{1} & v_{k}\end{array}\right]$ and V_{I} is the sobmatrix formed by taking rows $i_{1, \ldots} i_{k}$.

Example. $n=3, k=2$.

$$
\vec{V}_{1}=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right] \text { and } \vec{v}_{2}=\left[\begin{array}{r}
-1 \\
0 \\
3
\end{array}\right] .
$$

Then if $I=(1,3)$,

$$
V_{I}=\left[\begin{array}{cc}
2 & -1 \\
5 & 3
\end{array}\right] \quad d x_{I}\left(\vec{v}_{1}, \vec{v}_{2}\right)=11
$$

and if $I=(2,2)$

$$
V_{I}=\left[\begin{array}{ll}
4 & 0 \\
4 & 0
\end{array}\right] \quad d X_{I}\left(\vec{V}_{1}, \vec{v}_{2}\right)=0 .
$$

Proposition. The dimension of $\Lambda^{k}\left(\mathbb{R}^{n}\right)$ is $\binom{n}{k}$ and a basis for $\Omega^{k}\left(\mathbb{R}^{n}\right)$ is given by $\left\{d x_{I}\right\}$ where $I=\left(i_{\Delta,}, ., i_{k}\right)$ with $i_{1}<i_{2}<\ldots<i_{k}$.

Proof. Homework.
Example. $\Lambda^{2}\left(\mathbb{R}^{3}\right)$ has dimension

$$
\binom{3}{2}=\frac{3!}{2!(3-2)!}=\frac{6}{2}=3
$$

A basis for $\Lambda^{2}\left(\mathbb{R}^{3}\right)$ is given by

$$
d x_{12}, d x_{13}, d x_{23}
$$

Definition. The wedge product $\Lambda: \Lambda^{k}\left(\mathbb{R}^{n}\right) \times \Lambda^{l}\left(\mathbb{R}^{n}\right) \rightarrow \Lambda^{k+l}\left(\mathbb{R}^{n}\right)$ is the unique bilinear map which has

$$
d x_{I} \wedge d x_{J}=d x_{(I, J)}
$$

where if $I=\left(i_{1}, \ldots, i_{k}\right)$ and $J=\left(j_{1}, \ldots, j_{l}\right)$ then

$$
(I, J)=\left(i_{1, \ldots}, i_{k}, j_{1}, \ldots, j e\right)
$$

is the concatenation of I and J.
Examples.

$$
\begin{aligned}
& d x_{12} \wedge d x_{3}=d x_{123} \\
& d x_{17} \wedge d x_{25}=d x_{1725}
\end{aligned}
$$

Important example. Suppose

$$
\begin{aligned}
& w=a_{1} d x_{1}+a_{2} d x_{2} \in \Lambda^{1}\left(\mathbb{R}^{2}\right) \\
& \eta=b_{1} d x_{1}+b_{2} d x_{2} \in \Lambda^{1}\left(\mathbb{R}^{2}\right) .
\end{aligned}
$$

Then we compute (bilineurity)

$$
\begin{aligned}
w \wedge n & =a_{1} b_{1} d x_{1} n d x_{1} \\
& +a_{1} b_{2} d x_{1} \wedge d x_{2} \\
& +a_{2} b_{1} d x_{2} \wedge d x_{1} \\
& +a_{2} b_{2} d x_{2} \wedge d x_{2} \\
= & a_{1} b_{1} d x_{11}+a_{1} b_{2} d x_{12} \\
& +a_{2} b_{1} d x_{21}+a_{2} b_{2} d x_{22}
\end{aligned}
$$

Now we stop to think.
Exchanging entries in a multi-index exchanges rows
in a determinant. So it changes the sign of the result (alternating). This means

$$
\begin{aligned}
& d x_{\sqrt[11]{N}}=-d x_{11}=0 \\
& d x_{21}=-d x_{12} \\
& d x_{22}=-d x_{22}=0
\end{aligned}
$$

so

$$
\omega \wedge \eta=\left(a_{1} b_{2}-a_{2} b_{1}\right) d x_{12}
$$

Proposition. The wedge product $\Lambda: \Lambda^{k}\left(\mathbb{R}^{n}\right) \times \Lambda^{l}\left(\mathbb{R}^{n}\right) \rightarrow \Lambda^{k+l}\left(\mathbb{R}^{n}\right)$ is associative and obeys

$$
\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega
$$

Proof. Associativity for basis elements is formal:

$$
\left(d x_{I} \wedge d x_{\bar{J}}\right) \wedge d x_{k}=d x_{(I, J), k}
$$

bot $((I, \bar{J}), K)$ is the concatenation of the multi-indices I, J, K, so it is the same as $(I,(J, K))$.
Thus

$$
\left(d x_{I} \wedge d x_{J}\right) \wedge d x_{k}=d x_{I} \wedge\left(d x_{J} \wedge d x_{k}\right)
$$

Now we've already observed that if I' is related to I by swapping a pair of indices,

$$
d x_{I}=-d x_{I}
$$

50

$$
\begin{aligned}
& d x_{I} n d x_{J}=d x_{I J} \\
& \quad= \pm d x_{J I}=d x_{J} n d x_{I}
\end{aligned}
$$

where the sign is determined by how many swaps it takes to rearrange

$$
i_{1} \ldots i_{k} j_{1} \ldots j_{e} \rightarrow j_{1} \cdots j_{e} i_{1}, \ldots i_{k}
$$

but it takes k swaps to move j_{1} to the front

$$
i_{1} \cdots i_{k} j_{1} \cdots j_{e} \rightarrow j_{1} i_{1} \cdots i_{k} j_{2} \cdots j_{e}
$$

and then k more for j_{2}, and eventually Kl total swaps.
Thus
$\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$.
This allows us to prove
Lemma. If $I=\left(i_{1, \ldots,}, i_{k}\right)$
then

$$
d x_{I}=d x_{i_{1}} n \ldots n d x_{i_{k}}
$$

Note the lack of parentheses!

Let's take stock. We've defined vector spaces $\Lambda^{k}\left(\mathbb{R}^{n}\right)$. We are now going to consider vector valued functions. whose values lie in these spaces.

Definition. If $U \subset \mathbb{R}^{n}$ is an open set, and w:UC $\mathbb{R}^{n} \rightarrow \Lambda^{k}\left(\mathbb{R}^{n}\right)$ is a smooth function, we say ω is a differential k-form on U.

The set of k-forms $A^{k}(U)$ is an (infinite-dimensional) vector space,
which just means that we may add and scalar multiply k-forms using the vector space structure on $\Lambda^{k}\left(\mathbb{R}^{n}\right)$.

Since our basis for $\Lambda^{k}\left(\mathbb{R}^{n}\right)$ doesn't have a natural order, it's easier to think of "basis functions" for a form instead of "coordinate functions" and write

$$
w=\sum_{\substack{I \\ \text { increasing } \\ K-\text { index } \\ \text { in } \mathbb{R}^{n}}} f_{I} d x_{I}
$$

where $f_{I}: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Now we're going to write

$$
\omega=\sum_{I} f_{I} d x_{I} \in A^{k}(u)
$$

for an open $U \subset \mathbb{R}^{n}$.
On the right hand side, we know the $\left\{d x_{I}\right\} \operatorname{span} \Lambda^{k}\left(\mathbb{R}^{n}\right)$ so every vector in this vector space can be written as a linear combination of $d x_{I}$'s.
The f_{I} 's are the coefficients.
Actually, a subset of $\left\{d X_{I} \xi\right.$ (the ones with increasing indices) suffices. But there's no harm in summing over every I if you want (and it simplifies things later).

We now think about notation.
ω : a vector valued function

$$
\underset{\text { in } u}{\stackrel{\rightharpoonup}{X} \longmapsto \underbrace{}_{i n} \longmapsto \Lambda^{k}\left(\mathbb{R}^{n}\right)}
$$

$\omega(\vec{x})$: an element of $\Lambda^{k}\left(\mathbb{R}^{n}\right)$, an alternating, multilinear function from $\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$
$\omega(\vec{x})\left(\vec{v}_{1}, \cdots \vec{v}_{k}\right)$: a real number.
\circledast
When $k=0$,
$\omega(\vec{x})$ is an element
of $\Lambda^{0}\left(\mathbb{R}^{\prime \prime}\right)=\mathbb{R}$.

Examples.
If $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, then every $w \in A^{\hat{1}}\left(\mathbb{R}^{2}\right)$ can be written in the form:

$$
\omega=f_{1} d x_{1}+f_{2} d x_{2}
$$

So if $\vec{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ we have

$$
\begin{aligned}
w(\vec{x})(\vec{v})= & f_{1}(\vec{x}) d x_{1}(\vec{v}) \\
& +f_{2}(\vec{x}) d x_{2}(\vec{v}) \\
= & f_{1}(\vec{x}) \cdot v_{1}+f_{2}(\vec{x}) \cdot v_{2} \\
= & {\left[\begin{array}{l}
f_{1}(\vec{x}) \\
f_{2}(\vec{x})
\end{array}\right] \cdot\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \in \mathbb{R} }
\end{aligned}
$$

If $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, then every $\omega \in A^{2}\left(\mathbb{R}^{3}\right)$ can be written in the form:

$$
\begin{aligned}
w & =f_{12} d x_{1} \wedge d x_{2} \\
& +f_{13} d x_{1} \wedge d x_{3} \\
& +f_{23} d x_{2} \wedge d x_{3}
\end{aligned}
$$

So if we have vectors \vec{v}_{1}, \vec{V}_{2} the value

$$
\begin{aligned}
& w(\vec{x})\left(\vec{v}_{1}, \vec{v}_{2}\right)= \\
& \quad f_{12}(\vec{x}) d x_{1} \wedge d x_{2}\left(\vec{v}_{1} \vec{v}_{2}\right) \\
& +f_{13}(\vec{x}) d x_{1} \wedge d x_{3}\left(\vec{v}_{1}, \vec{v}_{2}\right) \\
& + \\
& +f_{23}(\vec{x}) d x_{2} \wedge d x_{3}\left(\vec{v}_{1} \vec{v}_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =f_{12}(\vec{x}) \cdot \operatorname{det}\left[\begin{array}{ll}
\left(\vec{v}_{1}\right)_{1} & \left(\vec{v}_{2}\right)_{1} \\
\left(\vec{v}_{1}\right)_{2} & \left(\vec{v}_{2}\right)_{2}
\end{array}\right] \\
& +f_{1}(\vec{x}) \cdot \operatorname{det}\left[\begin{array}{ll}
\left(\vec{v}_{1}\right)_{1} & \left(\vec{v}_{2}\right)_{1} \\
\left(\vec{v}_{1}\right)_{3} & \left(\vec{v}_{2}\right)_{3}
\end{array}\right] \\
& +f_{23}(\vec{x}) \cdot \operatorname{det}\left[\begin{array}{ll}
\left(\vec{v}_{1}\right)_{2} & \left(\vec{v}_{2}\right)_{2} \\
\left(\vec{v}_{1}\right)_{3} & \left(\vec{v}_{2}\right)_{3}
\end{array}\right]
\end{aligned}
$$

which is starting to look a lot like expansion by minors in a determinant?

In fact, this is a determinant:

$$
\begin{aligned}
& w(\vec{x})\left(\vec{v}_{11} \vec{v}_{2}\right)= \\
& \operatorname{det}\left[\begin{array}{ccc}
f_{23}(\vec{x}) & \uparrow & \uparrow \\
-f_{13}(\vec{x}) & \vec{v}_{1} & \vec{v}_{2} \\
f_{12}(\vec{x}) & \downarrow & \downarrow
\end{array}\right]
\end{aligned}
$$

Note that it's not traditional to write forms with a "vector" superscript, but we certainly could: $\omega(\vec{x})$ is a vector (in a vector space of functions) (so it's also a function).

We define the wedge product for differential forms by bilinearity of wedge, so

Definition. If $w \in A^{k}(u), \eta \in A^{l}(u)$ for some open $U \subset \mathbb{R}^{n}$, and
$\omega=\sum_{I} f_{I} d x_{I}$ while
$\eta=\sum_{j} g_{J} d x_{J}$, we define

$$
\begin{aligned}
\omega \wedge \eta & =\sum_{I, J} f_{I} g_{J} d x_{I} \wedge d x_{J} \\
& =\sum_{I, J} f_{I} g_{J} d x_{I J}
\end{aligned}
$$

Proposition. If $U \subset \mathbb{R}^{n}$ is open, $\omega \in A^{k}(u), \eta \in A^{l}(u), \varphi \in A^{m}(u)$,
then

1) If $k=l=m$, we have

$$
\begin{aligned}
& \omega+\eta=\eta+\omega \in A^{k}(u) \\
& (\omega+\eta)+\varphi=\omega+(\eta+\varphi) \in A^{k}(u)
\end{aligned}
$$

2) $\omega \wedge \eta=(-1)^{k \ell} \eta \wedge \omega \in A^{k+\ell}(u)$
3) $(\omega \wedge \eta) \wedge \varphi=\omega \wedge(\eta \wedge \varphi) \in A^{k+l+m}(u)$
4) If $k=l$, then

$$
(\omega+\eta) \wedge \varphi=\omega_{n} \varphi+\eta \wedge \varphi
$$

All of this seems awfully simple and clean; so much that you might worry that it oloesn't tell you much. But there are some nonobvious conclusions already.

Lemma. If $k>n$, then $A^{k}\left(\mathbb{R}^{n}\right)$ contains only one form $\omega=0$.
Proof. The vector space $\Lambda^{k}\left(\mathbb{R}^{n}\right)$ has a basis consisting of functions $d x_{I}$ where $I=\left(i_{1}, \ldots, i_{k}\right)$. Since $k>n$, an
index must be repeated. But then $d x_{I}\left(\vec{v}_{1, \ldots}, \vec{v}_{k}\right)=0$ for all inputs. Thus $\Lambda^{k}\left(\mathbb{R}^{n}\right)=\{0\}$. Now ω is a smooth map $\omega: U \rightarrow\{0\}$, so ω must have the constant value O. This uniquely determines ω, so there is only a single element in $A^{k}\left(\mathbb{R}^{n}\right)$.

Differentiating differential forms.
Consider the 0 -form. By our definition, if $U \subset \mathbb{R}^{n}$ is open

$$
A^{0}(U)=\text { smooth functions }
$$

from $U \rightarrow \Lambda^{0}\left(\mathbb{R}^{n}\right)=\mathbb{R}$
Now we know how to define the derivative: If $f: u<\mathbb{R}^{n} \rightarrow \mathbb{R}$ then each $\operatorname{Df}(\vec{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a linear function from $\mathbb{R}^{n} \rightarrow \mathbb{R}$.

If we instead think of $\operatorname{Df}(\vec{x})$ as an element of $\Lambda^{1}\left(\mathbb{R}^{n}\right)$, we are inspired to say

Definition. The exterior derivative of $f \in A^{0}(u)$ is given by

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\ldots+\frac{\partial f}{\partial x_{n}} d x_{n} \in A^{1}(u)
$$

If $\omega=\sum_{I} f_{I} d x_{I} \in A^{k}(u)$, then

$$
d \omega=\sum_{I} d f_{I} \wedge d x_{I} \in A^{k+1}(u) .
$$

We note that

$$
d \omega=\sum_{I} \sum_{j=1}^{n} \frac{\partial f_{I}}{\partial x_{j}} d x_{j} \wedge d x_{i_{1}} \wedge \wedge d x_{i_{k}}
$$

Examples.

$$
\begin{aligned}
f: & \mathbb{R} \rightarrow \mathbb{R} \quad d f=f^{\prime}(x) d x \\
\omega= & y d x+x d y \in A^{1}\left(\mathbb{R}^{2}\right) \\
d \omega= & \left(\frac{\partial}{\partial x} y d x+\frac{\partial}{\partial y} y d y\right) \wedge d x \\
& +\left(\frac{\partial}{\partial x} \frac{1}{x} d x+\frac{\partial}{\partial y} x d y\right) \wedge d y \\
= & d y \wedge d x+d x \wedge d y=0 . \\
\omega= & x_{1} d x_{2}+x_{3} d x_{4}+x_{5} d x_{6} \in A^{1}\left(\mathbb{R}^{6}\right) \\
d \omega= & d x_{4} \wedge d x_{2}+d x_{3} \wedge d x_{4}+d x_{5} \wedge d x_{6} \in A^{2}\left(\mathbb{R}^{6}\right)
\end{aligned}
$$

Proposition. Let $\omega \in A^{k}(u), \eta \in A^{l}(u)$ and $f \in A^{\circ}(u)$ a smooth function.

1) When $k=l$,

$$
d(w+\eta)=d w+d \eta
$$

2) $d(f \omega)=d f \wedge \omega+f d \omega$
3) $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$.
4) $d(d \omega)=0$.

Proof. We start with 1. Suppose f and g are smooth functions $u \rightarrow \mathbb{R}$.

$$
\begin{aligned}
& d(f+g)=\sum_{i} \frac{\partial}{\partial x_{i}}(f+g) d x_{i} \\
& =\sum_{i} \frac{\partial}{\partial x_{i}} f d x_{i}+\frac{\partial}{\partial x_{i}} g d x_{i} \\
& =d f+d g
\end{aligned}
$$

Now suppose $\omega=\sum_{I} f_{I} d X_{I}$ and $\eta=\sum_{I} g_{I} d x \in A^{k}(u)$.
Then

$$
d(w+\eta)=d\left(\sum_{I}\left(f_{I}+g_{I}\right) d x_{I}\right)
$$

(definition of d)

$$
\stackrel{d}{=} \sum_{I} d\left(f_{I}+g_{I}\right) \wedge d X_{I}
$$

(we just proud it)

$$
\stackrel{d i t)}{=} \sum_{I}\left(d f_{I}+d g_{I}\right) \wedge d X_{I}
$$

(linearity of $n)=\sum_{I} d f_{I} \wedge d x_{I}+d g_{I} n d x_{I}$ ${ }^{(\text {ramanaying sums })}=d \omega+d \eta$.
$\not \otimes$ \qquad we are summing over the same set of increasing k-indices for \mathbb{R}^{n},
so it makes sense to write \sum_{I} in each case.

Now we'll prove property 3.
We have proved that d is linear and know that \wedge is bilinear. So both sides of the proposed equation

$$
d(w \wedge \eta) \stackrel{?}{=} d w \wedge \eta+(-1)^{k} w \wedge d \eta
$$

are linear in ω and in η.
Therefore, it suffices to show

$$
\begin{aligned}
& d\left(f d x_{I} \wedge g d x_{J}\right) \\
= & d\left(f g d x_{I} \wedge d x_{J}\right) \\
= & d(f g) \wedge d x_{I} \wedge d x_{J} \\
= & (g d f+f d g) \wedge d x_{I} \wedge d x_{J}
\end{aligned}
$$

$$
\begin{aligned}
= & g d f \wedge d x_{I} \wedge d x_{J} \\
& +f d g \wedge d x_{I} \wedge d x_{J} \\
= & \left(d f \wedge d x_{I}\right) \wedge\left(g d x_{J}\right) \\
& +(-1)^{K \cdot 1} f d x_{I} \wedge d g \wedge d x_{J} \\
= & d\left(f d x_{I}\right) \wedge g d x_{J} \\
& +(-1)^{k} f d x_{I} \wedge d\left(g d x_{J}\right) .
\end{aligned}
$$

Note that property 2 follows by the same argument.
We now consider property 4 :

$$
d(d(\omega))=
$$

Since d is linear, dod is linear. So it suffices to show this in the case $\omega=f d X_{I}$.

$$
\begin{aligned}
d w & =d f \wedge d x_{I} \\
& =\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} d x_{j} \wedge d x_{I}
\end{aligned}
$$

so

$$
\begin{array}{r}
d(d \omega)=\sum_{j=1}^{n} d\left(\frac{\partial f}{\partial x_{j}}\right) \wedge d x_{j} \wedge d x_{I} \\
\quad=\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} f}{\partial x_{j} \partial x_{k}} d x_{k} \wedge d x_{j} \wedge d x_{I}
\end{array}
$$

Now $d x_{k} \wedge d x_{j}=(-1)^{1 \cdot 1} d x_{j} \wedge d x_{k}$.

So we may regroup this sum as

$$
=\sum_{j=1}^{n} \sum_{k=1}^{j-1} \underbrace{\left(\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}-\frac{\partial^{2} f}{\partial x_{k} \partial x_{j}}\right)}_{=0 \text { since the }} d x_{j} \wedge d x_{k} \wedge d x_{I}
$$

$=0$, since the functions are smooth $\left(C^{\infty}\right)$ they are C^{2} and mixed partials commute.

This completes the proof.

Pullbacks.
Definition. Let $U \subset \mathbb{R}^{m}$ be open and $\vec{g}: U \rightarrow \mathbb{R}^{n}$ be smooth. If $\omega \in A^{k}\left(\mathbb{R}^{n}\right)$, we define the pullback $\vec{g}^{*} \omega \in \lambda^{k}(u)$ as follows:

1) If w is a o-form, then $g^{*} \omega: U \rightarrow \mathbb{R}$ is given by $\omega \cdot \vec{g}$.
2) Suppose u_{1}, \ldots, U_{m} are coordinates for \mathbb{R}^{m}. We define

$$
g^{*} d x_{i}=d g_{i}=\sum_{j=1}^{m} \frac{\partial g_{i}}{\partial u_{j}} d u_{j}
$$

where g_{i} is the i th coordinate function for $\vec{g}: u \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
3) We define

$$
g^{*}(\omega \wedge \eta)=g^{*} \omega \wedge g^{*} \eta
$$

so

$$
g^{*}\left(d x_{i_{1}} \wedge \wedge n d x_{i_{k}}\right)=d g_{i_{1}} \wedge \cdots \wedge d g_{i_{k}}
$$

For convenience, we use $d g_{I}$ to denote $g^{*}\left(d x_{I}\right)$.
4) We define $g^{*}(\omega+\eta)=g^{*} \omega+g^{*} \eta$.

Putting these together, we see that if $\omega=\sum_{I} f_{I} d x_{I} \in A^{k}\left(\mathbb{R}^{n}\right)$ we have

$$
\begin{aligned}
g^{*} \omega & =\sum_{I} f_{I} \circ g d g_{I} \\
& =\sum_{I}\left(f_{I} \circ g\right) d g_{i_{I}} n \cdots a d g_{i_{k}}
\end{aligned}
$$

This is really technical and dry.
But let's observe that we can use it to do calculations.

Examples.
If $g: U \subset \mathbb{R} \rightarrow \mathbb{R}$, and $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
g^{*}(f d x) & =(f \circ g) d g \\
& =f \circ g \frac{\partial g}{\partial u} d u
\end{aligned}
$$

or

$$
\left(g^{*}(f d x)\right)(u)=f(g(u)) \cdot g^{\prime}(u) d u
$$

Example.
Suppose $g: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is given by

$$
\vec{g}(t)=\left[\begin{array}{l}
\cos t \\
\sin t
\end{array}\right]=\left[\begin{array}{l}
g_{1}(t) \\
g_{2}(t)
\end{array}\right]
$$

Now

$$
D g(t)=\left[\begin{array}{c}
-\sin t \\
\cos t
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial g_{1}}{\partial t} \\
\frac{\partial g_{2}}{\partial t}
\end{array}\right]
$$

so

$$
\begin{aligned}
& g^{*} d x=-\sin t d t \\
& g^{*} d y=\cos t d t
\end{aligned}
$$

Now suppose $\omega \in A^{1}\left(\mathbb{R}^{2}\right)$ is

$$
w=-y d x+x d y
$$

Then

$$
\begin{aligned}
g^{*} \omega= & (-\sin t)(-\sin t d t) \\
& \uparrow f_{1}(g(t)) \quad(\cos t)(\cos t d t) \\
& \tau f_{2}(g(t)) \\
= & \sin ^{2} t d t+\cos ^{2} t d t \\
= & d t
\end{aligned}
$$

Example. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
\vec{g}\left(\left[\begin{array}{l}
r \\
\theta
\end{array}\right]\right)=\left[\begin{array}{l}
r \cos \theta \\
r \sin \theta
\end{array}\right]
$$

we compute

$$
\operatorname{D} \vec{g}\left(\left[\begin{array}{l}
r \\
\theta
\end{array}\right]\right)=\left[\begin{array}{ll}
\cos \theta & -r \sin \theta \\
\sin \theta & -r \cos \theta
\end{array}\right]
$$

So we see

$$
\begin{aligned}
& g^{*} d x=\cos \theta d r-r \sin \theta d \theta \\
& g^{*} d y=\sin \theta d r+r \cos \theta d \theta
\end{aligned}
$$

and

$$
\begin{aligned}
& g^{*}(dx \wedge d y)=g^{*} d x \wedge g^{*} d y \\
&= \cos \theta \sin \theta d r \wedge d r^{0} \\
&+r \cos ^{2} \theta d r \wedge d \theta \\
&-r \sin ^{2} \theta d \theta \wedge d r \\
&-r^{2} \sin \theta \cos \theta d \theta \wedge d \theta^{\circ} \\
&=\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right) d r \wedge d \theta \\
&= r d r n d \theta
\end{aligned}
$$

Now suppose $\omega=x d x+y d y \in A^{1}\left(\mathbb{R}^{2}\right)$
Then we have

$$
\begin{gathered}
g^{*} \omega=g^{*}(x d x)+g^{*}(y d y) \\
=r \cos \theta g^{*} d x+r \sin y g^{*} d y \\
\tau_{f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=x \quad \tau_{f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=y}}
\end{gathered}
$$

composed with g composed with g

$$
\begin{aligned}
= & r \cos \theta(\cos \theta d r-r \sin \theta d \theta) \\
& +r \sin \theta(\sin \theta d r+r \cos \theta d \theta) \\
= & \left(r \cos ^{2} \theta+r \sin ^{2} \theta\right) d r \\
& \left(-r^{2} \sin \theta \cos \theta+r^{2} \sin \theta \cos \theta\right) d \theta \\
= & r d r
\end{aligned}
$$

As shifrin points out, this process of simplifying wedge products when evaluating pullbacks naturally leads to determinants of submatrices of the derivative matrix.

Theorem. If $I=\left(i_{1}, \ldots, i_{k}\right)$ is a K index for \mathbb{R}^{n} and $g: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ then

$$
g^{*} d x_{I}=\sum_{\substack{J \text { in } \\ \text { increasing } \\ \text { k-indices } \\ \text { for } \mathbb{R}^{n}}} \operatorname{det}(D \vec{g})_{I_{1}, J} d u_{J}
$$

Where $A_{I, J}$ denotes the submatrix obtained by choosing rows from I and columns from J.

Proof. By definition

$$
g^{*}\left(d x_{I}\right)=d g_{i_{1}} \wedge \ldots \wedge d g_{i_{k}}
$$

where $d g_{i_{p}}=\sum_{q \in 1}^{m} \frac{\partial g_{i p}}{\partial u_{q}} d u_{q}$. Now the wedge product is multilinear, so we can expand to get

$$
\begin{aligned}
& \operatorname{dg}_{i_{1}} \wedge \ldots \wedge d g_{i_{k}}= \\
& \quad=\sum_{\substack{J a k-i n d e x}} \frac{\partial g_{i_{1}}}{\partial j_{1}} \cdots \frac{\partial g_{i_{k}}}{\partial u_{j_{k}}} d u_{j_{1}} \wedge \ldots \wedge d u_{j_{k}}
\end{aligned}
$$

$$
=\sum_{\substack{J \text { a } k \text {-index } \\ \text { for } \mathbb{R}^{m}}}\left(\frac{\partial g_{j_{1}}}{\partial v_{j}} \cdots \frac{\partial g_{i_{k}}}{\partial v_{j_{k}}}\right) d u_{J}
$$

Now this is a sum over all K-indices J. However, if there's a repeated number in $J, d u_{J}=0$. So we may as well sum over k-indices with distinct entries j_{1}, \ldots, j_{k}. Any such index is a permutation σ of an increasing index J^{+}, and $d u_{J}=(\operatorname{sign} \sigma) d u_{J^{+}}$. Collecting terms,

$$
=\sum_{\substack{J^{+} \text {an } \\ \text { increasing } \\ k-\text { index }}} \underbrace{\left(\sum_{\substack{\text { permutations } \\ \sigma \text { of }\{1,-, k \xi}} \operatorname{sign}(\sigma) \frac{\partial g_{i_{1}}}{\partial u_{\sigma\left(j_{1}^{+}\right)}} \ldots \frac{\partial g_{i_{k}}}{\partial u_{\sigma\left(j_{k}^{+}\right)}^{+}}\right)}_{\operatorname{det}(D g)_{I_{,} J^{+}}}) d u_{J^{+}}
$$

This algebraic miracle completes proof.

Proposition. Let $U \subset \mathbb{R}^{m}$ be an open set and $\vec{g}: U \rightarrow \mathbb{R}^{n}$ be a smooth function. If $\omega \in A^{k}(u)$,

$$
\vec{g}^{*}(d \omega)=d\left(\vec{g}^{*}(\omega)\right) .
$$

Proof. Suppose $k=0$. Then $\omega=f$ where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and we compute

$$
\begin{aligned}
d\left(\vec{g}^{*} f\right) & =d\left(f_{0} \vec{g}\right) \\
& =\sum_{j=1}^{m} \frac{\partial\left(f_{0} \vec{g}\right)}{\partial u_{j}} d u_{j}
\end{aligned}
$$

Now the function $f \circ g: U \rightarrow \mathbb{R}$. The partial derivative $\frac{\partial(t \cdot \dot{g})}{\partial u_{j}}$ is the j th component of the $1 \times \mathrm{m}$ matrix $D(f \circ \vec{g})$, which (by chain rule) is

$$
\underset{1 \times m}{D(f \circ \vec{g})(\vec{u})}=\underset{1 \times n}{D(\vec{g}(\vec{u}))} \cdot \underset{n \times m}{D} \vec{g}(\vec{u})
$$

Now the ij-entry

$$
(D f(\vec{g}(\vec{l})) D \vec{g}(\vec{u}))_{i j} \sum_{k=1}^{n} D f\left(\vec{g}(\vec{u})_{i k} D \vec{g}(\vec{u})_{k j}\right.
$$

So the $1 j$ entry $\frac{\partial(f \circ g)}{\partial u_{j}}$ is given by

$$
\begin{aligned}
\frac{\partial(f \circ g)}{\partial u_{j}} & =\sum_{k=1}^{n} D f(\vec{g}(\vec{u}))_{1 k} D \vec{g}(\vec{u})_{k j} \\
& =\sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}}(\vec{g}(\vec{u})) \cdot \frac{\partial g_{k}}{\partial u_{j}}(\vec{u})
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \sum_{j=1}^{m} \frac{\partial\left(f f_{0}\right)}{\partial u_{j}} d u_{j}=\sum_{j=1}^{n}\left(\sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}}(\vec{g}(\vec{u})) \cdot \frac{\partial g_{k}}{\partial u_{j}}\right) d u_{j} \\
& \xrightarrow{\substack{\text { reversed } \\
\text { adder items }}} \sum_{k=1}^{n}\left(\sum_{j=1}^{m} \frac{\partial f}{\partial x_{k}}(\vec{g}(\vec{u})) \cdot \frac{\partial g_{k}}{\partial u_{j}} d u_{j}\right)
\end{aligned}
$$

polled $\frac{\partial f}{\partial x_{k}}$

$$
\left.\begin{array}{rl}
\text { polled } \frac{\partial f}{\partial x_{k}} \\
\text { out of } j \sin
\end{array}=\sum_{k=1}^{n}\left(\frac{\partial f}{\partial x_{k}}(\vec{g}(\vec{u})) \sum_{j=1}^{m} \frac{\partial g_{k}}{\partial u_{j}} d u_{j}\right)\right)
$$

pullback is composition for functions
definition of pullback for basis 1 -form $d x_{k}$
$3 \frac{\partial f}{\partial x_{k}}$ is a scalar
function

$$
\begin{array}{r}
=\sum_{k=1}^{n} \vec{g}^{*}\left(\frac{\partial f}{\partial x_{k}} d x_{k}\right) \\
\\
\quad \frac{\partial f}{\partial x_{k}} d x_{k}=\frac{\partial f}{\partial x_{k}} \wedge d x_{k}
\end{array}
$$

$b / c \frac{\partial f}{\partial x_{k}}$ is a 0 -form, and

$$
\vec{g}^{k}(\omega \wedge \eta)=\vec{g}^{*}(\omega) n \vec{g}^{k}(\eta)
$$

$$
=\vec{g}^{*}\left(\sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}} d x_{k}\right)
$$

pollack
is linear

$$
=\vec{g}^{*}(d f)
$$

\uparrow
definition of af
Now we get to integration.
Definition. The vector space $\Lambda^{n}\left(\mathbb{R}^{n}\right)$ is 1 -dimensional, and we may take

$$
d x_{1 \ldots n}=d x_{1} \wedge \cdots \wedge d x_{n}=\operatorname{det}
$$

as the basis element. We call the corresponding constant form
"the volume form" or "the standard n-form".

Definition. If $\omega \in A^{n}(u), u \subset \mathbb{R}^{n}$ is an open set, and $\Omega c U$ is a region, and $\omega=f d x_{1} \wedge \ldots \wedge d x_{n}$, we define

$$
\int_{\Omega} \omega:=\int_{\Omega} f d \text { Area }
$$

Note: we are only dealing with smooth forms, so f is a smooth function. Thus f is continuous and therefore integrable.
Theorem. Let $\Omega \subset \mathbb{R}^{n}$ be a region and $\vec{g}: \Omega \rightarrow \mathbb{R}^{n}$ be smooth and 1-1 with $\operatorname{det} D \vec{g}(\vec{x})>0$. Then for any n-form $\omega=f d x_{1} \wedge \ldots \wedge d x_{n}$ on $S=\vec{g}(\Omega)$

$$
\int_{S} \omega=\int_{\Omega} \vec{g}^{*} \omega .
$$

Proof. We have already shown
Theorem. If $I=\left(i_{1}, \ldots, i_{k}\right)$ is a K index for \mathbb{R}^{n} and $g: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ then

$$
\vec{g}^{*} d x_{I}=\sum_{\substack{\text { Tin } \\ \text { increasing } \\ \text { Kindidies } \\ \text { for } \mathbb{R}^{n}}} \operatorname{det}(D \vec{g})_{I, J} d u_{J}
$$

If $k=n$, there's only one increasing k-index: $1, \ldots, n$, and so

$$
\begin{aligned}
\vec{g}^{*} d x_{1 \ldots n} & =\operatorname{det} D \vec{g}_{1 \ldots, 1 \ldots n} d u_{1 \ldots n} \\
& =\operatorname{det} D \vec{g} d u_{1 \ldots n} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\vec{g}^{*} f \omega & =\vec{g}^{*} f \vec{g}^{*} d x_{1 \cdots n} \\
& =(f \circ \vec{g}) \operatorname{det} D \vec{g} d u_{1 \cdots n}
\end{aligned}
$$

But then

$$
\begin{aligned}
& \int_{\Omega} \vec{g}^{*} \omega=\int_{\Omega} f \circ \vec{g} \operatorname{det} D \vec{g} d u_{1} \ldots n \\
& \int \varepsilon^{\operatorname{det} D \vec{g}>0} \text { by hypothesis } \\
& =\int_{\Omega} f \circ \vec{g}|\operatorname{det} D \vec{g}| d \text { Area } \\
& \begin{array}{c}
\text { change of } \\
\text { variables the } \\
= \\
\vec{g}(\Omega)
\end{array} f d \text { Area } \\
& \text { integration of } \\
& n \text {-forms } \\
& \text { definition of } \\
& \begin{array}{c}
\begin{array}{c}
\text { definition of } \\
\text { integration of } \\
n \text {-forms }
\end{array}
\end{array}=\int_{S(\Omega)} f d x_{1^{\wedge} \wedge n d x_{n}} \\
& \underset{S(\Omega)}{\text { definition }} \begin{array}{l}
\text { of } \omega
\end{array}=\int_{S} \omega
\end{aligned}
$$

This was kind of the point of forms! It allows to engage with this question: what does it mean to integrate over a (smooth) submanifold of \mathbb{R}^{n} ?

For now, we define a parametrized K-dimensional submanifold of \mathbb{R}^{n} to be a subset $M \subset \mathbb{R}^{n}$ so that \exists a region $\Omega \subset \mathbb{R}^{k}$ and a smooth 1-1 map $\vec{g}: \Omega \rightarrow \mathbb{R}^{n}$ with $\operatorname{rank} D g=K$ on Ω so that $M=g(\Omega)$.

Now suppose $\omega \in A^{k}\left(\mathbb{R}^{n}\right)$. Then we define

$$
\int_{M} \omega=\int_{\Omega} \vec{g}^{*} \omega \leftarrow \begin{aligned}
& \text { an integral of a } \nless \text { form } \\
& \text { over a region in } \\
& \text { defined previously! }
\end{aligned}
$$

The parametrization \vec{g} is certainly not unique. So how does the choice of \vec{g} affect the integral?

Now we know $\vec{g}_{2}^{-1} \circ \vec{g}_{1}: \Omega_{1} \rightarrow \Omega_{2}$.
So we may write

$$
\begin{aligned}
& 0 \text { we may write } \\
& \left.\int_{\Omega_{2}} \vec{g}_{2}^{*} \omega=\int_{ \pm}^{V_{0} \text { pullback integration theorem }} \text { (} \vec{g}_{2}^{-1} \circ \vec{g}_{1}\right)^{*} \vec{g}_{2}^{*} \omega \\
& \text { the sian depends on whet }
\end{aligned}
$$

weill prove

$$
(f \circ g)^{*}=g^{*} f^{*}
$$

$$
\text { in homework }= \pm \int_{\Omega_{1}}\left(\vec{g}_{2} \cdot \vec{g}_{2}^{-1} \circ \vec{g}_{1}\right)^{*} \omega
$$

$$
= \pm \int_{\Omega_{1}} \vec{g}_{1}^{*} \omega
$$

and we see that the integral is the same for all parametrization s with $\operatorname{det}\left(D\left(\vec{g}_{2}^{-1} \circ g_{1}\right)\right)>0$.

