> Curvature of Plane Curves

Suppose we have a curve $\vec{\alpha}: \mathbb{R} \rightarrow \mathbb{R}^{2}$, parametrized by arclength.
Definition. If $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear map "rotate by $+\pi / 2$ " given by $A \vec{x}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-x_{2} \\ x_{1}\end{array}\right]$, we let $\vec{x}^{1}=A \vec{x}$.

Definition. The unit tangent vector $T(s)=\vec{\alpha}^{\prime}(s)$. The unit normal vector $N(s)=T(s)^{\perp}$.

Definition. The Gauss curvature of $\vec{\alpha}(s)$ is defined by $K_{ \pm}(s):=\left\langle\vec{\alpha}^{\prime \prime}(s), N(s)\right\rangle$.

Example. Circle of radius a, $c c u$ parametrization.

$$
\begin{aligned}
& \vec{\alpha}(s)=\left(a \cos \left(\frac{s}{a}\right), a \sin \left(\frac{s}{a}\right)\right) . \\
& \vec{\alpha}^{\prime}(s)=\left(-\sin \left(\frac{s}{a}\right), \cos \left(\frac{s}{a}\right)\right) . \\
& \vec{\alpha}^{\prime \prime}(s)=\left(-\frac{1}{a} \cos \left(\frac{s}{a}\right),-\frac{1}{a} \sin \left(\frac{s}{a}\right)\right) . \\
& T(s)=\vec{\alpha}^{\prime}(s)=\left(-\sin \left(\frac{s}{a}\right), \cos \left(\frac{s}{a}\right)\right) . \\
& N(s)=T(s)^{1}=\left(-\cos \left(\frac{s}{a}\right),-\sin \left(\frac{s}{a}\right)\right) \\
& K_{ \pm}(s)=\left\langle\vec{\alpha}^{\prime \prime}(s), N(s)\right\rangle=+\frac{1}{a} \cos ^{2} \frac{s}{a}+\frac{1}{a} \sin ^{2} \frac{s}{a} \\
& \\
& =\frac{1}{a} .
\end{aligned}
$$

Example. Circle of radius a, cw parametrization.

$$
\begin{aligned}
& \vec{\alpha}(s)=\left(a \cos \left(-\frac{s}{a}\right), a \sin \left(-\frac{s}{a}\right)\right) . \\
& \vec{\alpha}^{\prime}(s)=\left(+\sin \left(-\frac{s}{a}\right),-\cos \left(-\frac{s}{a}\right)\right) . \\
& \vec{\alpha}^{\prime \prime}(s)=\left(-\frac{1}{a} \cos \left(-\frac{s}{a}\right),-\frac{1}{a} \sin \left(-\frac{s}{a}\right)\right) \text {. } \\
& T(s)=\vec{\alpha}^{\prime}(s)=\left(+\sin \left(-\frac{s}{a}\right),-\cos \left(-\frac{s}{a}\right)\right) \\
& N(s)=T(s)^{\perp}=\left(+\cos \left(-\frac{s}{a}\right),+\sin \left(-\frac{s}{a}\right)\right) \\
& K_{ \pm}(s)=\left\langle\vec{\alpha}^{\prime \prime}(s), N(s)\right\rangle=-\frac{1}{a} \cos ^{2}\left(-\frac{s}{a}\right)-\frac{1}{a} \sin ^{2}\left(-\frac{s}{a}\right) \\
& =-\frac{1}{a} \text {. }
\end{aligned}
$$

Proposition. If $\vec{\beta}(s)=\vec{\alpha}(-s), X_{ \pm}^{\beta}(s)=-K_{ \pm}^{\alpha}(s)$.
Proof. We just compute:

$$
\begin{aligned}
\vec{\beta}^{\prime}(s) & =-\vec{\alpha}^{\prime}(-s), \quad \vec{\beta}^{\prime \prime}(s)=+\vec{\alpha}^{\prime \prime}(-s), \\
T^{\beta}(s) & =-T^{\alpha}(s), N^{\beta}(s)=-N^{\alpha}(s), \\
K_{ \pm}^{\beta}(s) & =\left\langle\vec{\beta}^{\prime \prime}(s), N^{\beta}(s)\right\rangle \\
& =\left\langle\vec{\alpha}^{\prime \prime}(s),-N^{\alpha}(s)\right\rangle=-K_{ \pm}^{\alpha}(s) .
\end{aligned}
$$

Proposition. If $\vec{\alpha}(t)$ is a regular parametrization, then

$$
K_{ \pm}(t)=\frac{\left\langle\vec{\alpha}^{\prime \prime}(t), \vec{\alpha}^{\prime}(t)^{\perp}\right\rangle}{\left\langle\vec{\alpha}^{\prime}(t), \vec{\alpha}^{\prime}(t)\right\rangle^{3 / 2}}
$$

Proof. We know there exists some function $t(s)$ so that $\vec{\alpha}(t(s))$ is arclength parametrized. Further,

$$
t^{\prime}(s)=\frac{1}{s^{\prime}(t)}=\frac{1}{\left\|\vec{\alpha}^{\prime}(t)\right\|} .
$$

Now

$$
\frac{d}{d s} \vec{\alpha}(t(s))=\vec{\alpha}^{\prime}(t(s)) \cdot t^{\prime}(s)=T(t(s))
$$

so

$$
\begin{aligned}
& N(t(s))=T(t(s))^{\perp}=\vec{\alpha}^{\prime}(t(s))^{\perp} \cdot t^{\prime}(s) \\
& L \text { is a linear map, } \\
& \text { so the scalar tels) } \\
& \frac{d^{2}}{d s^{2}} \vec{\alpha}(t(s))=\vec{\alpha}^{\prime \prime}(t(s)) \cdot t^{\prime}(s)^{2}+\vec{\alpha}^{\prime}(t(s)) \cdot t^{\prime \prime}(s)
\end{aligned}
$$

$\tau_{\text {product role for scalar moltiplicition }}$

Now that were done differentiating, well stop writing " $t(s)$ " and just write" t ".

$$
\begin{aligned}
K_{ \pm}(t) & =\left\langle\frac{d^{2}}{d s^{2}} \vec{\alpha}(t), N(t)\right\rangle \\
& =\left\langle\vec{\alpha}^{\prime \prime}(t) \cdot\left(t^{\prime}\right)^{2}+\vec{\alpha}^{\prime}(t) t^{\prime \prime}, \vec{\alpha}^{\prime}(t)^{\perp} \cdot t^{\prime}\right\rangle \\
& =\left\langle\vec{\alpha}^{\prime \prime}(t), \vec{\alpha}^{\prime}(t)^{1}\right\rangle \cdot\left(t^{\prime}\right)^{3} \\
& =\frac{\left\langle\vec{\alpha}^{\prime \prime}(t), \vec{\alpha}^{\prime}(t)^{1}\right\rangle}{\left\langle\vec{\alpha}^{\prime}(t), \vec{\alpha}^{\prime}(t)\right\rangle^{3 / 2}} \cdot \frac{1}{\left\|\vec{\alpha}^{\prime}(t)\right\|}
\end{aligned}
$$

Example. Ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$$
\begin{aligned}
& \vec{\alpha}(t)=(a \cos t, b \sin t) \\
& \vec{\alpha}^{\prime}(t)=(-a \sin t, b \cos t) \\
& \vec{\alpha}^{\prime}(t)^{\perp}=(-b \cos t,-a \sin t) \\
& \vec{\alpha}^{\prime \prime}(t)=(-a \cos t,-b \sin t) \\
& K_{ \pm}(t)=\frac{\left\langle\vec{\alpha}^{\prime \prime}(t), \vec{\alpha}^{\prime}(t)^{\prime}\right\rangle}{\left\langle\vec{\alpha}^{\prime}(t), \vec{\alpha}^{\prime}(t)\right\rangle^{3 / 2}}=\frac{a b}{\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)^{3 / 2}}
\end{aligned}
$$

so

$$
\begin{aligned}
& K_{ \pm}(0)=K_{ \pm}(\pi)=\frac{a b}{b^{3}}=\frac{a}{b^{2}} \\
& K_{ \pm}(\pi / 2)=K_{ \pm}\left(\frac{3 \pi}{2}\right)=\frac{a b}{a^{3}}=\frac{b}{a^{2}}
\end{aligned}
$$

Note: if $b=a$, this reduces to our previous calculation for circle.

Lemma. If $\vec{v}(t), \vec{w}(t)$ are unit vectors in \mathbb{R}^{2} with $\langle\vec{v}(t), \vec{\omega}(t)\rangle=0$ for all t,

$$
\begin{aligned}
& \left\langle\vec{v}^{\prime}, \vec{w}\right\rangle=-\left\langle\vec{v}, \vec{w}^{\prime}\right\rangle \\
& \left\langle\vec{v}^{\prime}, \vec{v}\right\rangle=0 \\
& \left\langle\vec{w}^{\prime}, \vec{w}\right\rangle=0 .
\end{aligned}
$$

Proof. All of these come from the product rule. $\langle\vec{v}(t), \vec{\omega}(t)\rangle=0$ for all t, so

$$
\begin{aligned}
O & =\frac{d}{d t}\langle\vec{v}(t), \vec{w}(t)\rangle \\
& =\left\langle\vec{v}^{\prime}(t), \vec{w}(t)\right\rangle+\left\langle\vec{v}(t), \vec{w}^{\prime}(t)\right\rangle
\end{aligned}
$$

Further, because $\vec{v}(t)$ is a unit vector for all $t,\langle\vec{v}(t), \vec{v}(t)\rangle=1$ for all t,

$$
\begin{aligned}
0 & =\frac{d}{d t}\langle\vec{v}(t), \vec{v}(t)\rangle \\
& =2\left\langle\vec{v}^{\prime}(t), \vec{v}(t)\right\rangle .
\end{aligned}
$$

The proof that $\langle\vec{\omega}, \vec{\omega}\rangle=0$ is similar. 包

Definition. The orthogonal group

$$
O(n)=\left\{A \in M_{a} t_{n \times n} \mid A^{\top}=A^{-1}\right\}
$$

and the special orthogonal group

$$
S O(n)=\{A \in O(n) \mid \operatorname{det} A=1\}
$$

We think of $O(n)$ as "orthonormal bases" and SO(n) as "positively oriented orthonormal bases".
Proposition. If $\vec{\alpha}(t)$ is a regular plane curve, $F(t)=\left[\begin{array}{cc}\uparrow & \uparrow \\ \downarrow & \downarrow(t)\end{array}\right] \in S O(2)$.
Proof. $T(t)$ is a unit vector, so $T(t)=(\cos \theta(t), \sin \theta(t))$ for some $\theta(t)$. $N(t)=T(t)^{\perp}=(-\sin \theta(t), \cos \theta(t))$. So

$$
F^{\top} F=\left[\begin{array}{cc}
\leftarrow T(t) \rightarrow \\
\leftarrow N(t) \rightarrow & \rightarrow
\end{array}\right]\left[\begin{array}{cc}
\hat{T}(t) & N^{\hat{1}}(t) \\
\psi & \psi
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

and $\operatorname{det} F=\cos ^{2} \theta(t)+\sin ^{2} \theta(t)=1$.

Definition. If $\vec{\alpha}(s)$ is an arclength parametrized curve in \mathbb{R}^{2}, we call the map $F(s)=\left[\begin{array}{cc}\hat{T}(s) & \hat{N}(s) \\ \downarrow & \downarrow\end{array}\right]$ the Frenet frame, and note $F: \mathbb{R} \rightarrow S O(2)$.

Proposition. In this case,

$$
\begin{array}{ll}
T^{\prime}(s)= & x_{ \pm}(s) N(s) \\
N^{\prime}(s)=-x_{ \pm}(s) T(s) &
\end{array}
$$

(we call these the Frenet equations.)
Proof. T, N is an orthonormal basis, so

$$
\begin{aligned}
T^{\prime} & =\left\langle T_{=0 \text { (lemma) }}^{\left\langle T^{\prime} T\right\rangle} T+\left\langle T_{,}^{\prime} N\right\rangle N=K_{ \pm}\right. \text {(def) } \\
N^{\prime} & =\underbrace{\left\langle N^{\prime}, T\right\rangle} T+\left\langle N^{\prime} N\right\rangle N=-X_{ \pm} T . \\
& =-\left\langle N_{,} T\right\rangle \text { (lemma) }=0 \text { (lemma) } \\
& =-K_{ \pm} \text {(den) }
\end{aligned}
$$

Note that the Frenet equations imply

$$
F^{\top} F^{\prime}=\left[\begin{array}{cc}
\leftarrow T & {[} \\
\leftarrow & N \rightarrow
\end{array}\right]\left[\begin{array}{cc}
\hat{1} & 1 \\
T & N \\
\imath
\end{array}\right]=\left[\begin{array}{cc}
0 & -x_{ \pm} \\
x_{ \pm} & 0
\end{array}\right]
$$

Proposition. If $F: \mathbb{R} \rightarrow O(n)$, then $F^{\prime}=F S$ where $S^{\top}=-S$ (S is skew-symmetric)
Proof. Set $S=F^{\top} F^{\prime}$. Then

$$
F S=\underbrace{F F^{\top}}_{C=I} F^{\prime}=F^{\prime} \cdot F^{\prime} \text { is in } \text { So (n) }
$$

Now $F F^{\top}=I$ for all t so

$$
O=\frac{d}{d t} F F^{\top}=F^{\prime} F^{\top}+F\left(F^{\top}\right)^{\prime}=S+F\left(F^{\top}\right)^{\prime}
$$

Since F^{\top} has the same coordinate functions as F (just written in different places in the grid), $\left(F^{\top}\right)^{\prime}=\left(F^{\prime}\right)^{\top}$. Thus

$$
F\left(F^{\top}\right)^{\prime}=F\left(F^{\prime}\right)^{\top}=\left(F^{\prime} F^{\top}\right)^{\top}=S^{\top}
$$

We now have $S+S^{T}=0$.

But what is Gauss cunature?

Assume $\vec{\alpha}(s)$ is parametrized by arclength, and consider $N(s)$ sweeping back and forth around the unit circle, parametrized ccu by θ.

$$
\begin{aligned}
\frac{d \theta}{d s} & =\left\langle N^{1}, N^{+}\right\rangle \\
& =\left\langle-X_{ \pm} T,\left(T^{+}\right)^{+}\right\rangle
\end{aligned}
$$

Frenctequations def n

$$
\begin{aligned}
& =K_{ \pm}\langle-T,-T\rangle_{\perp} \\
& =K_{ \pm} .
\end{aligned}
$$

Definition. If $\vec{\alpha}$ is a regular closed curve in \mathbb{R}^{2} with length L, then we call $\int_{0}^{L} X_{ \pm}(s) d s$ the total curvature.
Definition A regular homotopy is a map $\vec{\alpha}: S^{1} \times[0,1] \rightarrow \mathbb{R}^{2}$ so that for each fixed $t_{0}, \vec{\alpha}\left(s, t_{0}\right)$ is a regular parametrization of a cone in \mathbb{R}^{2}. We say $\vec{\alpha}$ joins $\vec{\alpha}(s, 0)$ and $\vec{\alpha}(s, 1)$.

Theorem. If $\vec{\alpha}^{0}$ and $\vec{\alpha}^{\perp}$ are regular closed curves joined by a regular homotopy, they have the same total curvature.
Proof. Since total curvature doesn't change under scaling or reparametrization, we may assume all $\vec{\alpha}\left(s, t_{0}\right)$ have length 2σ and $\vec{\alpha}: S^{1} \times[0,1] \rightarrow \mathbb{R}^{2}$ has S as an arclength parameter on each curve.

Consider

and define a vector field

$$
\stackrel{\rightharpoonup}{V}=\left(\left\langle N_{s}, N^{\perp}\right\rangle_{,}\left\langle N_{t}, N^{\perp}\right\rangle\right)
$$

Now we recall Green's theorem,

$$
\int_{\partial \Omega} \vec{V} d \text { length }=\iint_{\Omega} \nabla \times \vec{V} d \text { Area }
$$

Where if $\vec{V}=(f, g), \nabla_{x} \vec{V}=g_{s}-f_{t}$.
We compute

$$
\begin{aligned}
& \nabla \times V=\left\langle N_{t} N^{\perp}\right\rangle_{s}-\left\langle N_{s} N^{\perp}\right\rangle_{t} \\
& =\left\langle N_{t s)} N^{+}\right\rangle+\left\langle N_{t}, N_{s}^{+}\right\rangle
\end{aligned}
$$

mixed partials

$$
\begin{gathered}
\text { mixed partials } \\
\text { commute }
\end{gathered}-\left\langle N_{s t}, N^{+}\right\rangle-\left\langle N_{t}, N_{s}^{1}\right\rangle
$$

Now $\langle N, N\rangle \equiv 1$, so $\langle N, N\rangle=0$ and $\left\langle N_{t}, N\right\rangle=0$. But N, N^{\perp} are an orthonormal basis for \mathbb{R}^{2}, so this implies N_{s} and N_{t} are colinear - both are multiples of $N+$ Thus $\left\langle N_{s} N_{t}^{\perp}\right\rangle=\left\langle N_{t}, N_{s}^{\perp}\right\rangle=0$.

By Green's theorem, we now have

$$
\begin{aligned}
O= & \int_{\partial \Omega} \vec{V} \text { dlength } \\
= & \int_{0}^{2 \pi}\langle\vec{V}(s, 0),(1,0)\rangle d s+\int_{0}^{1}\langle\vec{V}(2 \pi, t),(0,1)\rangle d t \\
& -\int_{0}^{2 \pi}\langle\vec{V}(s, 1),(1,0)\rangle d s-\int_{0}^{1}\langle\vec{V}(0, t),(0,1)\rangle d t \\
= & \int_{0}^{2 \pi} K_{ \pm}^{0}(s) d s-\int_{0}^{2 \pi} K_{ \pm}(1) d s, \quad \vec{V}(0, t)=\vec{V}(2 \pi, t)
\end{aligned}
$$

which completes the proof!

If you took 350013510 :
For a single curve, we have

Total curvature $=\int N^{*} d \theta$.

$$
d \theta=\underset{\substack{\text { length } \\ 1 \text { form }}}{ }
$$

For a homotopy between cones

$$
\int_{S_{1}^{1} \times\{\perp\}} N^{*} d \theta-\int_{S^{1} \times\{0\}} N^{*} d \theta=\int_{\partial\left(S^{1} \times[0,1]\right)} N^{*} d \theta=\iint_{\substack{S^{1} \times[0,1] \\ \text { Stokes theorem }}} d\left(N^{*} d \theta\right)
$$ 1 -form

stokes theorem

$$
=\int_{\uparrow^{S^{1} \times[0,1]}} N^{*}(d(d \theta))=\int_{S^{1} \times[0,1]}^{n_{0}} N^{2} \text {-forms on the the } 1 \text {-manifold } S^{1}
$$

pullback and d commute

Whitney-Gravenstein Theorem.
Every regular closed plane curve has total curvature $2 \pi n$, where $n \in \mathbb{Z}$ and is regularly homotopic to

1) an n-covered circle, if $n \neq 0$
2) the figure 8 curve, if $n=0$.

Proof. Alas, beyond scope of this class!
Example.

