Case 2 for Theorem 1

Erik Forseth

July 13, 2007

1 Setup

For Case $2, e_{1} \neq e_{2}$ and so for our "variational" calculations we choose:

$$
\begin{equation*}
\xi=e_{1} \ominus e_{2} \tag{1}
\end{equation*}
$$

We know (or can at least compute easily after the first section) the following:

$$
\begin{gather*}
\delta\left(e_{1} \ominus e_{2}\right)(d)=-\left\langle\omega, e_{1}+e_{2}\right\rangle \tag{2}\\
\delta\left(e_{1} \ominus e_{2}\right)(l)=-2 \tag{3}\\
\delta\left(e_{1} \ominus e_{2}\right)\left(\frac{d}{l}\right)=2 \frac{d}{l}-\frac{1}{l}\left\langle\omega, e_{1}+e_{2}\right\rangle=0 \tag{4}\\
\left\langle\omega, e_{1}\right\rangle=\left\langle\omega, e_{2}\right\rangle=\frac{d}{l} \tag{5}\\
\delta^{2}\left(\frac{d}{l}\right)=\frac{1}{l} \delta^{2}(d)-\frac{2 \delta(d) \delta(l)}{l^{2}}+\frac{2 d(\delta(l))^{2}}{l^{3}}-\frac{d}{l^{2}} \delta^{2}(l) \geq 0 \tag{6}
\end{gather*}
$$

2 Calculations

Now that $e_{1} \neq e_{2}$, when we see these two vectors dotted with one another we will not be able to simplify to 1 . We'll need to come up with an expression for their product:

$$
\begin{aligned}
& \left\langle e_{1}+e_{2}, e_{1}+e_{2}\right\rangle=\left|e_{1}+e_{2}\right|^{2} \\
& \Rightarrow 2+2\left\langle e_{1}, e_{2}\right\rangle=\left|e_{1}+e_{2}\right|^{2} \\
& \Rightarrow 2\left\langle e_{1}, e_{2}\right\rangle=\left|e_{1}+e_{2}\right|^{2}-2
\end{aligned}
$$

We'll want to keep this relationship in mind. Now, plugging in equations (2) and (3) above into equation (6), we can simplify our second variation inequality to

$$
\begin{equation*}
\delta^{2}\left(\frac{d}{l}\right)=\frac{1}{l} \delta^{2}(d)-\frac{4}{l^{2}}\left\langle\omega, e_{1}+e_{2}\right\rangle+8 \frac{d}{l^{3}} \geq 0 \tag{7}
\end{equation*}
$$

Then, in light of equation (5), we can simplify the middle term as follows:

$$
\begin{equation*}
\delta^{2}\left(\frac{d}{l}\right)=\frac{1}{l} \delta^{2}(d)-\frac{4}{l^{2}}\left(2 \frac{d}{l}\right)+8 \frac{d}{l^{3}}=\frac{1}{l} \delta^{2}(d) \geq 0 \tag{8}
\end{equation*}
$$

Thus, we need only compute $\delta^{2}(d)$, which is not the same as in Case 1 , as we will see when we compute it. There are two reasons for this: first of all, our variation vector is now $(1,-1)$ as opposed to $(1,1)$, and secondly, we will get cross term inner products when we compute $d_{u v}$, which is why we needed an expression for $\left\langle e_{1}, e_{2}\right\rangle$. In Case 1 that expression was simply 1.

Now we begin our computation of $\delta^{2}\left(e_{1} \ominus e_{2}\right)(d)$:

$$
\begin{gather*}
\delta^{2}\left(e_{1} \ominus e_{2}\right)(d)=\left\langle H(d)\binom{1}{-1},\binom{1}{-1}\right\rangle=\left\langle\left(\begin{array}{cc}
d_{u u} & d_{u v} \\
d_{v u} & d_{v v}
\end{array}\right)\binom{1}{-1},\binom{1}{-1}\right\rangle \\
=d_{u u}-2 d_{u v}+d_{v v} \tag{9}
\end{gather*}
$$

So we need to compute these second partials, starting with the relations $d_{u}=$ $-\left\langle\omega, e_{1}\right\rangle$ and $d_{v}=\left\langle\omega, e_{2}\right\rangle$.
Starting with d_{u}, we get that:

$$
\begin{equation*}
d_{u u}=-\left\langle\omega_{u}, e_{1}\right\rangle-\langle\omega, \vec{\kappa}(u, t)\rangle \tag{10}
\end{equation*}
$$

So we need to compute ω_{u} :

$$
\begin{equation*}
\omega_{u}=-\frac{1}{d} e_{1}-\frac{X(v, t)-X(u, t)}{d^{2}} d_{u}=\frac{\left\langle\omega, e_{1}\right\rangle}{d} \omega-\frac{e_{1}}{d} \tag{11}
\end{equation*}
$$

Plugging this back into equation (10) and using equation (5), we get that

$$
\begin{equation*}
d_{u u}=\frac{1}{d}-\frac{d}{l^{2}}-\langle\omega, \vec{\kappa}(u, t)\rangle \tag{12}
\end{equation*}
$$

It should not be difficult, following the same procedure and using equation (5), to compute that

$$
\begin{equation*}
d_{v v}=\frac{1}{d}-\frac{d}{l^{2}}+\langle\omega, \vec{\kappa}(v, t)\rangle \tag{13}
\end{equation*}
$$

Lastly, we compute that

$$
\begin{equation*}
d_{u v}=-\left\langle\omega_{v}, e_{1}\right\rangle=\frac{d}{l^{2}}-\frac{1}{d}\left\langle e_{1}, e_{2}\right\rangle \tag{14}
\end{equation*}
$$

Now, we want to plug all of these into equation (9) and use our expression for $\left\langle e_{1}, e_{2}\right\rangle$. We should get that

$$
\begin{equation*}
\delta^{2}\left(e_{1} \ominus e_{2}\right)\left(\frac{d}{l}\right)=\frac{1}{d l}\left|e_{1}+e_{2}\right|^{2}-4 \frac{d}{l^{3}}+\frac{1}{l}\langle\omega, \vec{\kappa}(v, t)-\vec{\kappa}(u, t)\rangle \geq 0 \tag{15}
\end{equation*}
$$

But we will show that the first two terms are, in fact, equal. In this case $\omega \|\left(e_{1}+e_{2}\right)$, so we can use the fact that $\left\langle\omega, e_{1}+e_{2}\right\rangle=\left|e_{1}+e_{2}\right|$ to rewrite the first term in (15) as

$$
\begin{equation*}
\frac{1}{d l}\left\langle\omega, e_{1}+e_{2}\right\rangle^{2}=\frac{1}{d l}\left(\left\langle\omega, e_{1}\right\rangle+\left\langle\omega, e_{2}\right\rangle\right)^{2}=\frac{1}{d l}\left(\frac{d}{l}+\frac{d}{l}\right)^{2}=4 \frac{d}{l^{3}} \tag{16}
\end{equation*}
$$

Then the first two terms in (15) obviously do cancel and we wind up with the same conclusion as in Case 1, as we wanted:

$$
\begin{equation*}
\frac{1}{l}\langle\omega, \vec{\kappa}(v, t)-\vec{\kappa}(u, t)\rangle \geq 0 \tag{17}
\end{equation*}
$$

