Gauss Bonnet and the meaning of K

We want to understand the Gauss curvature. To do that, we ll need to talk about area.

Recall:
Definition. Given vectors $\vec{a}, \vec{b} \in T_{p} M$, the oriented area of the parallelogram spanned by \vec{a}, \vec{b} is

$$
\sigma_{M}(\vec{a}, \vec{b})=\langle\vec{a} \times \vec{b}, \vec{n}\rangle_{\mathbb{R}^{3}} .
$$

We note that

$$
\begin{aligned}
\sigma_{M}\left(\vec{x}_{u} \vec{x}_{v}\right) & =\left\langle\vec{x}_{u} \times \vec{x}_{v} \vec{n}_{\mathbb{R}^{3}}\right. \\
& =\frac{\left\langle\vec{x}_{u} \times \vec{x}_{v}, \vec{x}_{u} \times \vec{x}_{v}\right\rangle_{\mathbb{R}^{3}}}{\left|\vec{x}_{u} \times \vec{x}_{v}\right|} \\
& =\left|\vec{x}_{u} \times \vec{x}_{v}\right|
\end{aligned}
$$

Now recall that

$$
\vec{a} \times(\vec{b} \times \vec{c})=\langle\vec{a}, \vec{c}\rangle \vec{b}-\langle\vec{a}, \vec{b}\rangle \vec{c}
$$

for any vectors. And further,

$$
\langle\vec{a}, \vec{b} \times \vec{c}\rangle=\langle\vec{b}, \vec{c} \times \vec{a}\rangle=\langle\vec{c}, \vec{a} \times \vec{b}\rangle .
$$

Thus we have

$$
\begin{aligned}
\langle\vec{p} \times \vec{q}, \vec{r} \times \vec{s}\rangle & =\langle\vec{r}, \vec{s} \times(\vec{p} \times \vec{q})\rangle \\
& =\langle\vec{r},\langle\vec{s}, \vec{q}\rangle \vec{p}-\langle\vec{s}, \vec{p}\rangle \vec{q}\rangle \\
& =\langle\vec{s}, \vec{q}\rangle\langle\vec{r}, \vec{p}\rangle-\langle\vec{s}, \vec{p}\rangle\langle\vec{r}, \vec{q}\rangle
\end{aligned}
$$

and in particular,

$$
\begin{aligned}
\sigma_{M}\left(\vec{x}_{u}, \vec{x}_{v}\right) & =\sqrt{\left\langle\vec{x}_{u} \times \vec{x}_{v}, \vec{x}_{u} \times \vec{x}_{v}\right\rangle} \\
& =\sqrt{\left\langle\vec{x}_{v}, \vec{x}_{v}\right\rangle\left\langle\vec{x}_{w} \vec{x}_{u}\right\rangle-\left\langle\vec{x}_{u}, \vec{x}_{v}\right\rangle^{2}} \\
& =\sqrt{E G-F^{2}}
\end{aligned}
$$

Note: This is a particular example in differential forms, where we have proved that

$$
\vec{X}^{*} \sigma_{M}=\sqrt{E G-F^{2}} d u \wedge d v
$$

Now let's do something interesting. Suppose we think of $\vec{n}(u, v)$ as a parametrization of the sphere:

The sphere has the interesting property that the normal vector
is equal to the position vector.
So we have

$$
\begin{aligned}
\sigma_{s^{2}}\left(\vec{n}_{u}, \vec{n}_{v}\right)= & \left\langle\vec{n}_{u} \times \vec{n}_{v}, \vec{n}_{v}\right\rangle \\
& \quad \begin{array}{l}
\text { normal to sphere } \\
\text { and position } \frac{x_{u} \times x_{v}}{\left|x_{u} \times x_{v}\right|}
\end{array} \\
= & \frac{\left\langle\vec{n}_{u} \times \vec{n}_{v}, \vec{x}_{u} \times \vec{x}_{v}\right\rangle}{\left|\vec{x}_{u} \times \vec{x}_{v}\right|}
\end{aligned}
$$

But we can do the side computation

$$
\begin{array}{r}
\left\langle\vec{n}_{u} \times \vec{n}_{v}, \vec{x}_{u} \times \vec{x}_{v}\right\rangle=\left\langle\vec{x}_{v}, \vec{n}_{v}\right\rangle\left\langle\vec{x}_{u}, \vec{n}_{u}\right\rangle \\
\\
-\left\langle\vec{x}_{u}, \vec{n}_{v}\right\rangle\left\langle\vec{x}_{v} \vec{n}_{u}\right\rangle
\end{array}
$$

Recalling that $\left\langle\vec{n}, \vec{x}_{v}\right\rangle \equiv\left\langle\vec{n}, \vec{x}_{u}\right\rangle \equiv 0$,

$$
\begin{aligned}
& =\left\langle\vec{x}_{w}, \vec{n}\right\rangle\left\langle\vec{x}_{u m}, \vec{n}\right\rangle-\left\langle\vec{n}, \vec{x}_{u v}\right\rangle^{2} \\
& =\ln -m^{2}
\end{aligned}
$$

which means that

$$
\sigma_{s^{2}}\left(\vec{n}_{u}, \vec{n}_{v}\right)=\frac{l m-n^{2}}{\sqrt{E G-F^{2}}}
$$

or $\vec{n}^{*} \sigma_{s^{2}}=\frac{l_{m-n^{2}}}{\sqrt{E G-F^{2}}} d u n d v$.
Theorem. The Gauss curvature is the pullback of the area form on S^{2} by the Gauss map to the surface M.
(Oriented) area (on S^{2}) covered by normal vectors of the portion of the surface parametrized by $\Omega \subset \mathbb{R}^{2}$
we integrate

$$
\int_{\Omega} K(u, v) \underbrace{\sqrt{E G-F^{2}} d u d v}_{\text {surface area on } M}
$$

or in pictures

large positive curvature!

A surface of negative curvature reverses orientation so the signed area of normals is negative.
Theorem. The total curvature of any compact surface without boundary $\int_{M} K \sigma_{M}$ doesn't change when surface is smoothly deformed.

Proof. The gauss map $\vec{g}: M \rightarrow S^{2}$ takes $\vec{x} \in M \rightarrow \vec{n}(\vec{x}) \in S^{2}$

We know that

$$
g^{*} \sigma_{s^{2}}=K \sigma_{M}
$$

Suppose we have two surfaces M_{0} and M_{1} which can be deformed into each other.

Formally, this means there is a smooth map

$$
M \times[0,1] \rightarrow \mathbb{R}^{3}
$$

so that $M_{0}=$ image of $(M, 0)$ and M_{1} = image of $(M, 1)$. We can extend the gauss map to a map

$$
\vec{g}: M \times[0,1] \longrightarrow S^{2}
$$

by letting $\vec{g}(p, t)=$ normal vector to the surface at the image of p at time t.

Now

$$
\begin{aligned}
& \int_{M_{0}} K d \sigma_{M_{0}}-\int_{M_{1}} K d \sigma_{\mu_{1}}=\int_{\partial\left(M_{\times}[0,1]\right)} \vec{g}^{*} \sigma_{s^{2}} \\
& =\int_{M_{\times[0,1]}} d\left(\vec{g}^{*} \sigma_{s^{2}}\right)=\int_{M_{\times[0,1]}} \vec{g}^{*}\left(d \sigma_{s^{2}}\right)
\end{aligned}
$$

Stokes
theorem
d and pullback commute

$$
=\int_{\mu} \vec{g}^{*}(0)=0
$$

S^{2} is 2 -dimensional and $d \sigma_{2}$ is a 3 -form

Definition. A smooth $(n-1)$-dimensional submanifold of \mathbb{R}^{n} is called a hyper surface.

If M is a hypersurface, $T_{\vec{p}} M$ is an $(n-1)$-dimensional hyper plane, whose orthogonal complement $\left(T_{p}, M\right)^{\perp}$ is 1 -dimensional. A continuous choice of basis defines a Gauss map $\overrightarrow{\mathrm{g}}: M \rightarrow S^{n-1}$ and a Gauss (or scalar) curvature K so that

$$
\vec{g}^{*} \sigma_{S^{n-1}}=K \sigma_{\mu}
$$

Theorem. Total curvature $\int K \sigma_{M}$ does not change when the hypersurface M is smoothly deformed.

In fact, even more is true.
Theorem. (Gauss-Bonnet Theorem)
If M is a compact surface in \mathbb{R}^{3} with no boundary or self-intersections,

$$
\int k d \sigma_{\mu}=2 \pi(2-2 g)
$$

where g is the genus of the surface.

Proof idea. Every surface can be deformed to one of the
models above.
For the sphere, \vec{g} is the identity and $\int K d \sigma_{M}=$ area $=4 \pi$.

For the torus

area is being swept out positively on one semicircle and negatively on the other at equal rates.

$$
\int K d \sigma_{M}=\operatorname{area}=0
$$

For the g-holed torus, we can deform the surface to

where the tiny "neck" is approximately

sweeps once over the sphere, but negatively oriented!
Counting ($9-1$) necks:

$$
\int k d \sigma=-4 \pi(g-1)=2 \pi(2-2 g)
$$

Examples.

$\int k d \sigma=0$.

