Gauss Bonnet and the meaning of K

We want to understand the Gauss corvature. To do that, we'll need to talk about area. Recall: Definition. Given vectors à, b & TpM, the oriented area of the parallelogram spanned by ā, b is $\sigma_{n}(\vec{a}, \vec{b}) = \langle \vec{a} \times \vec{b}, \vec{n} \rangle_{R^{3}}.$ We note that $O_{M}(\vec{X}_{u},\vec{X}_{v}) = \langle \vec{X}_{u} \times \vec{X}_{v}, \vec{n} \rangle_{R^{3}}$ $= \langle \vec{X}_{u} \times \vec{X}_{v}, \vec{X}_{u} \times \vec{X}_{v} \rangle_{R^{3}}$ IXux Xul $= |\dot{X}_{u} \times \dot{X}_{v}|$

Now recall that 式×(b×さ)=<え,こ>b-<え,b>さ for any vectors. And further, く a, b× c> = < b, c×a> = < c, a×b> Thus we have $\langle \vec{p} \times \vec{q}, \vec{r} \times \vec{s} \rangle = \langle \vec{r}, \vec{s} \times (\vec{p} \times \vec{q}) \rangle$ $=\langle \vec{r}, \langle \vec{s}, \vec{q} \rangle \vec{p} - \langle \vec{s}, \vec{p} \rangle \vec{q} \rangle$ and in particular, $\mathcal{O}_{n}(\vec{x}_{u},\vec{X}_{v}) = \sqrt{\langle \vec{X}_{u} \times \vec{X}_{v}, \vec{X}_{u} \times \vec{X}_{v} \rangle}$ $= \sqrt{\langle \vec{X}_{v}, \vec{X}_{v} \rangle \langle \vec{X}_{u}, \vec{X}_{u} \rangle - \langle \vec{X}_{u}, \vec{X}_{v} \rangle^{2}}$ $= \sqrt{EG - F^2}$

Note: This is a particular example in differential forms, where we have proved that X* OM = VEG-F2 durdu Now let's do something interesting. Suppose we think of rilu, v) as a parametrization of the sphere. The sphere has the interesting property that the normal vector

is equal to the position vector. So we have $\langle \tilde{n}_{u} \times \tilde{n}_{v}, \tilde{n} \rangle$ $O_{S^2}(\vec{n}_u,\vec{n}_v)$ normal to sphere and position <u>XuXX</u> IXuXXJ 〈nu×nu、Xu×Xu〉 1 xux Xul But we can do the side computation $\langle \vec{n}_u \times \vec{n}_v, \vec{X}_u \times \vec{X}_v \rangle = \langle \vec{X}_v, \vec{n}_v \rangle \langle \vec{X}_u, \vec{n}_u \rangle$ $-\langle \vec{x}_{u}, \vec{n}_{v} \rangle \langle \vec{x}_{v}, \vec{n}_{u} \rangle$ Recalling that $\langle \vec{n}, \vec{x}_{v} \rangle = \langle \vec{n}, \vec{x}_{u} \rangle = 0$, $\langle \vec{x}_{n}, \vec{n} \rangle \langle \vec{x}_{n}, \vec{n} \rangle - \langle \vec{n}, \vec{x}_{n} \rangle^{2}$ $= ln - m^2$

which means that $\mathcal{O}_{S^2}(\vec{n}_u, \vec{n}_v) = \frac{lm - n^2}{\sqrt{EG - F^2}}$ $Or \quad \vec{n}^* \sigma_{s^2} = \frac{lm - n^2}{\sqrt{EG - F^2}} du \, n \, dv$ Theorem. The Gauss curvature is the pullback of the area form on 5° by the Gauss map to the surface M. (Oriented) area (on 52) covered by normal vectors of the portion of the surface parametrized by AcIR²

we integrate) K(u,v), JEG-F² du du D Surface area on in pictures 00 J large positive curvature!

Ω S Talaz л Х small positive curvature A surface of negative convature reverses orientation so the signed area of normals is negative. Theorem. The total curvature of any compact surface without boundary) Kon doesn't change when surface is smoothly deformed.

Proof. The gauss map g: M-S² takes xeM > n(x) eS $\frac{1}{3}$ 6 ر ۲ We Know that $G^* \sigma_{S^2} = K \sigma_M$ Suppose we have two surfaces Mo and M₁ which can be deformed into each other.

Formally, this means there is a Smooth map $M \times [0, 1] \longrightarrow \mathbb{R}^3$ So that Mo = image of (M, 0) and $M_1 = image of (M, 1)$. We can extend the gauss map to a map $g: M \times [0,1] \longrightarrow 5^2$ by letting $\tilde{g}(p,t)$ = normal vector to the surface at the image of p at time t.

Now theorem about K $\int K d\sigma_{N_0} - \int K d\sigma_{M_1} = \int \overline{g}^* \sigma_{s^2}$ $M_0 \qquad M_1 \qquad \partial (M \times [0, 1])$ $= \int d(\tilde{g}^* \sigma_{s^2}) = \int \tilde{g}^* (d\sigma_{s^2})$ $M \times [0,1] \qquad M \times [0,1]$ Stokes d and pullback commute theorem $= \int \vec{g}^{*}(0) = 0.$ / M×[0,1] 5² is 2-dimensional and doz is a 3-form

Definition. A smooth (n-1)-dimensional submanifold of Rⁿ is called a hypersurface. If M is a hypersurface, JpM is on (n-1) - dimensional hyperplane, whose orthogonal complement (TpM)+ is 1-dimensional. A continuous choice of basis defines a Gauss map g: M > S, and a Gauss (or scalar) curvature K so that 3 051-1 = K 05 Theorem. Total curvature JKom does not change when the hypersurface M is smoothly deformed.

In fact, even more is true. Theorem (Gauss-Bonnet Theorem) IF Mis a compact surface in IR³ with no boundary or self-intersections, $\int K d\sigma_{m} = 2\pi (2 - 2g)$ where g is the genus of the surface. genus 1 genus 2 genus O Proof idea. Every surface can be deformed to one of the

models above. For the sphere, g is the identity and JKdom = area = 4TT. For the torus \mathcal{O} area is being swept out positively on one semicircle and negatively on the other at equal rates. $\int K d\sigma_m = area = O$

For the g-holed torus, we can deform the surface to SKdo=-4TT Galance)Kdo=0 where the tiny "neck" is approximately sweeps once over the sphere, but Negatively oriented! Counting (g-1) necks: $-4\pi(g-1) = 2\pi(2-2g)$)Kdo= D

Examples. XI x 6 xЗ)Kdo Skdo + Skdo + Skdo HTT 41 deforms SKdo=411

deforms to SKdo=0. deforms ot)Kdo = -8 π