The Space Forms

- ٢

We now return to a surface We've considered before: **f**(w) N . g(u) > n $\hat{\chi}(u,v) = (f(u)\cos v, f(u)\sin v, g(u))$ $\dot{X}_{u} = (f' \cos v, f' \sin v, q')$ $X_{v} = (-f \sin v, f \cos v, O)$ $E = (f')^{2} + (q')^{2}$, F = 0, $G = f^{2}$ $\vec{n} = (-g'f \cos v, -g'f \sin v, f'f)$ $\sqrt{(q')^2 f^2 + (f')^2 f}$ $(-g'\cos v, -g'\sin v, f')$. sign(f) $\sqrt{(f')^2 + (q')^2}$

Now $\dot{X}_{uu} = (f''\cos v, f''\sin v, g'')$ $\vec{X}_{uv} = (-f' \sin v, f' \cos v, O)$ $\vec{X}_{vv} = (-f \cos v, -f \sin v, 0)$ so we have $g'f''_{cos^2v} - g'f''_{sin^2v} + fg''_{sign}(f)$ l = < n, Xun> $\sqrt{(f')^2 + (g')^2}$ $\frac{f'g'' - f''g'}{\sqrt{(f')^2 + (g')^2}} \cdot sign(f)$ $m = \langle \vec{n}, \vec{X}_{uv} \rangle = g'f'' \cos v \sin v - g'f'' \sin v \cos v$ $\sqrt{(f')^2 + (g')^2}$

+g'fcosv+g'fsinv $n = \langle \hat{n}, \hat{x} \rangle =$ sign(f) $\sqrt{(f')^2 + (g')^2}$ $\frac{g'f}{\sqrt{(f')^2 + (g')^2}} \operatorname{sign}(f)$ We can now compute $S_p = (I_p)^{-1} I_p$ 50 $K = \det(S_P) = \frac{ln - m^2}{EG - F^2}$ (f'g'-f'g')g'f1 $(f')^{2} + (g')^{2}$ $((f')^{2} + (g')^{2}) f^{2}$ $f'g'g'' - f''(g')^2$ $f((f')^{2} + (g')^{2})^{2}$

If $(f')^2 + (g')^2 = 1$, we also have or f'f'' = -g'g''. 2f'f'' + 2g'g'' = 0In this case, $K = -(f')^{2}f'' - (g')^{2}f''$ <u>۱۱ م</u> $f((f')^2 + (g')^2)^2$ Now $\frac{En - 2Fm + Gl}{2(EG - F^2)}$ $H = \frac{1}{2} \text{tr} S_p =$ $= \frac{\left(\left(f'\right)^{2} + \left(g'\right)^{2}\right) g' f' + f^{2} \left(f' g'' - f'' g''\right)}{2\left(\left(f'\right)^{2} + \left(g'\right)^{2}\right) f^{2} \left(\left(f'\right)^{2} + \left(g'\right)^{2}\right) f^{2} \left(\left(f'\right)^{2} + \left(g'\right)^{2}\right)^{1/2}}$ $((f')^{2} + (g')^{2})g' + f(f'g'' - f''g')$ sign(f) $2f((f')^{2} + (g')^{2})^{3/2}$

Again, if $(f')^{2} + (g')^{2} = 1$, we can simplify, obtaining $\frac{g' + f(f'g'' - f''g')}{2f} \operatorname{sign}(f)$ However, it's more useful to simplify Using the assumption g(u) = u, in which case $|-| = \frac{(1 + (f')^2) - f f''}{2f (1 + (f')^2)^{3/2}} \operatorname{sign}(f)$

Example. Consider the sphere of radius r, with $f(w) = r(os(\frac{w}{r}))$ and $g(u) = r \sin(\frac{u}{r})$. Since $f'(w) = -\sin(\frac{w}{r})$ and $g'(u) = \cos\left(\frac{u}{r}\right)$, we have $f'(u)^2 + g'(u)^2 = 1$ and may compute using the simplified formulas $\frac{\frac{1}{r}\cos\left(\frac{u}{r}\right)}{r\cos\left(\frac{u}{r}\right)} = \frac{1}{r^2}$ K = - + - =

 $H = \frac{g' + f(f'g' - f''g')}{2f}$ sign(f) Now $f'g''-f''g'=-sin\left(\frac{u}{r}\right)\left(-\frac{1}{r}sin\frac{u}{r}\right)$ $-\left(-\frac{1}{\Gamma}\cos\frac{\pi}{\Gamma}\right)\left(\cos\frac{\pi}{\Gamma}\right)$ 50 $\cos\left(\frac{u}{r}\right) + P\cos\left(\frac{u}{r}\right) \cdot \frac{1}{r} =$ H-H-1 $2r\cos(\frac{w}{r})$

Example. The plane. Suppose flu)= u while glu)= O Again, $f'(u)^2 + g'(u)^2 = 1^2 + 0^2 = 1$ 50 we use the simplified formulas to compute $= -\frac{f''(u)}{f(u)} = \frac{0}{u} = 0$ K $H = \frac{g' + f(f'g' - f''g')}{2f}$ sign(f) = 0 + u(0.0 - 0.0) = 0Ju

Example. The Pseudosphere.
A long time ago, we parametrized
the tractrix by
$\vec{\alpha}(t) = (t - t \cosh t, \operatorname{sech} t)$
Recalling that
$\cosh^2 t - \sinh^2 t = 1$
50
$1 - tanh^2 t = sech^2 t$
while
$\frac{d}{dt}$ tank $t = \operatorname{sech}^2 t$
$\frac{d}{du}$ sech t = - sech t tanht

We can compute $(f')^{2} + (g')^{2} = (-\operatorname{secht} \operatorname{tanht})^{2} + (1 - \operatorname{sech}^{2})^{2}$ = sechit tanhit + tanhit = $tanh^2 t (tanh^2 t + sech^2 t)$ $= \tanh^2 t$ So we know that the arclength $5(t) = \int_{0}^{t} t \operatorname{dx} dx$ $= \ln(\cosh t)$ and we can reparametrize by arclength by writing $t(s) = \operatorname{arccosh}(e^{s})$ and substituting

to get $\vec{\alpha}(s) = (-, \cosh(\operatorname{arccosh} e^{s}))$ $\left(\begin{array}{cccc} & & & & & & \\ & & & & \\ & & & & \\ \end{array}\right), & & & \\ & & & \\ & & & \\ \end{array}\right), & & \\ & & & \\ & & & \\ \end{array}\right), & & \\ & & \\ & & \\ & & \\ \end{array}\right)$ where - is some messy function we dislike. Now we can construct a surface by revolving the tractrix and letting $f(u) = e^{u}$, g(u) =We built f and g so that $(f')^{2} + (g')^{2} = 1, 50$

 $K = -\frac{t}{t''}$ The mean convature involves g, So it's messy, and we won't compute it. We have seen three surfaces of constant corvatore: These are called the space forms as they model three different

geometries																		2-dimensional space.													
•	•	•	•	• •	•	•	•	•	• •	•••	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	• •	•	•
•	•	•	•		•	•	•	•			•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•			•	•
•	•	•	•		•	•	•	•		• •			•	•	•	•	•	•	•	•	• •		•		•	•				•	•
	•	•	•	• •	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •		•	•
	•	•	•	• •		•	•	•	••••	· ·	•	•	•	•	•	•	•	•	•	•	••••	•	•	•	•	•	•	· ·	• •	•	•
	•	•	•	• •		•	•	•	• •	· ·	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	· ·	• •	•	•
•	•	•	•	• •	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	•	• •	•	•		•	•	•	• •		•	•
•	•	•	•	• •		•	•	•	• •	••••	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•••	•	•
		•	÷	• •	•	٠	٠	٠	• •			٠	٠	•	٠	•	÷	٠	٠	•	o (•	٠	٠	•	•	• •	• •	÷	÷
		•	÷	• •		٠	٠	٠	• •		·	٠	٠	•	٠	٠	÷	٠		٠	• •		٠	٠	٠	•	٠	• •	• •	0	٠
	. 0		ø	• •		٠	٠	٠	• •			٠	٠	•	٠		÷	٠		٠	0 1	0		٠	٠	•	٠		• •	0	٠
			ø	• •	•		٠	٠	• •			٠		•	٠		٠	٠		٠	• •		٠	٠	٠				• •	0	٠
•	•		÷	• •			•	•	• •			٠		•	٠		٠	٠	•	•	• •	٠	٠	٠	٠	•	•		• •	0	٠
•		•		• •	•		•							•	•			٠	•	•	• •		٠	·		٠	•		• •		
•	•	•	•	••••		•	•	•	• •		•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •		•	•