## The Space Forms

We now return to a surface we've considered before:


$$
\begin{aligned}
\vec{x}(u, v) & =(f(u) \cos v, f(u) \sin v, g(u)) \\
\vec{X}_{u} & =\left(f^{\prime} \cos v, f^{\prime} \sin v, g^{\prime}\right) \\
\vec{X}_{v} & =(-f \sin v, f \cos v, 0) \\
E & =\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}, f=0, \quad G=f^{2} \\
\vec{n} & =\frac{\left(-g^{\prime} f \cos v,-g^{\prime} f \sin v, f^{\prime} f\right)}{\sqrt{\left(g^{\prime}\right)^{2} f^{2}+\left(f^{\prime}\right)^{2} f}} \\
& =\frac{\left(-g^{\prime} \cos v,-g^{\prime} \sin v, f^{\prime}\right)}{\sqrt{\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}}} \cdot \operatorname{sign}(f)
\end{aligned}
$$

Now

$$
\begin{aligned}
& \vec{X}_{u u}=\left(f^{\prime \prime} \cos v, f^{\prime \prime} \sin v, g^{\prime \prime}\right) \\
& \vec{X}_{u v}=\left(-f^{\prime} \sin v, f^{\prime} \cos v, 0\right) \\
& \vec{X}_{v v}=(-f \cos v,-f \sin v, 0)
\end{aligned}
$$

so we have

$$
\begin{aligned}
l=\left\langle\vec{n}_{,} \vec{x}_{u u}\right\rangle & =\frac{-g^{\prime} f^{\prime \prime} \cos ^{2} v-g^{\prime} f^{\prime \prime} \sin ^{2} v+f^{\prime} g^{\prime \prime}}{\sqrt{\left(f^{\prime}\right)^{2}(f)}+\left(g^{\prime}\right)^{2}} \\
& =\frac{f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}}{\sqrt{\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}}} \operatorname{sign}(f) \\
m=\left\langle\vec{n}, \vec{x}_{u v}\right\rangle & =\frac{g^{\prime} f^{\prime \prime} \cos v \sin v-g^{\prime} f^{\prime \prime} \sin v \cos v}{\sqrt{\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}}} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
n=\left\langle\vec{n}, \vec{x}_{u v}\right\rangle & =\frac{+g^{\prime} f \cos ^{2} v+g^{\prime} f \sin ^{2} v}{\sqrt{\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}}} \operatorname{sign}(f) \\
& =\frac{g^{\prime} f}{\sqrt{\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}}} \operatorname{sign}(f)
\end{aligned}
$$

We can now compute

$$
S_{p}=\left(I_{p}\right)^{-1} \mathbb{I}_{p}
$$

so

$$
\begin{aligned}
K & =\operatorname{det}\left(S_{p}\right)=\frac{l n-m^{2}}{E G-F^{2}} \\
& =\frac{1}{\left(\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right) f^{2}} \cdot \frac{\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right) g^{\prime}}{\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}} \\
& =\frac{f^{\prime} g^{\prime} g^{\prime \prime}-f^{\prime \prime}\left(g^{\prime}\right)^{2}}{f\left(\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right)^{2}}
\end{aligned}
$$

If $\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}=1$, we also have $2 f^{\prime} f^{\prime \prime}+2 g^{\prime} g^{\prime \prime}=0$ or $f^{\prime} f^{\prime \prime}=-g^{\prime} g^{\prime \prime}$.
In this case,

$$
K=\frac{-\left(f^{\prime}\right)^{2} f^{\prime \prime}-\left(g^{\prime}\right)^{2} f^{\prime \prime}}{f\left(\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right)^{2}}=-\frac{f^{\prime \prime}}{f}
$$

Now

$$
\begin{aligned}
H & =\frac{1}{2} t r S_{p}=\frac{E n-2 F_{m}+G l}{2\left(E G-F^{2}\right)} \\
& =\frac{\left(\left(f^{\prime}\right)^{\prime}+\left(g^{\prime}\right)^{2}\right) g^{\prime} f+f^{2}\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right)}{2\left(\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right) f^{2}\left(\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right)^{1 / 2}} \operatorname{sign}(f) \\
& =\frac{\left(\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right) g^{\prime}+f\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right)}{2 f\left(\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right)^{3 / 2}} \operatorname{sign}(f)
\end{aligned}
$$

Again, if $\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}=1$, we can simplify, obtaining

$$
H=\frac{g^{\prime}+f\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right)}{2 f} \operatorname{sign}(f)
$$

However, it's more useful to simplify using the assumption $g(u)=u$, in which case

$$
H=\frac{\left(1+\left(f^{\prime}\right)^{2}\right)-f f^{\prime \prime}}{2 f\left(1+\left(f^{\prime}\right)^{2}\right)^{3 / 2}} \operatorname{sign}(f)
$$

Example. Consider the sphere of radius $r$, with $f(u)=r \cos \left(\frac{u}{r}\right)$ and $g(u)=r \sin \left(\frac{u}{r}\right)$.

Since $f^{\prime}(u)=-\sin \left(\frac{u}{r}\right)$ and $g^{\prime}(u)=\cos \left(\frac{u}{r}\right)$, we have

$$
f^{\prime}(u)^{2}+g^{\prime}(u)^{2}=1
$$

and may compute using the simplified formulas

$$
K=-\frac{f^{\prime \prime}}{f}=-\frac{-\frac{1}{r} \cos \left(\frac{u}{r}\right)}{r \cos \left(\frac{u}{r}\right)}=\frac{1}{r^{2}}
$$

$$
H=\frac{g^{\prime}+f\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right)}{2 f} \operatorname{sign}(f)
$$

Now

$$
\begin{aligned}
& f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}=-\sin \left(\frac{u}{r}\right)\left(-\frac{1}{r} \sin \frac{u}{r}\right) \\
& -\left(-\frac{1}{r} \cos \frac{u}{r}\right)\left(\cos \frac{u}{r}\right) \\
& \quad=\frac{1}{r}
\end{aligned}
$$

So

$$
H=\frac{\cos \left(\frac{u}{r}\right)+r^{\prime} \cos \left(\frac{u}{r}\right) \cdot \frac{1}{r}}{2 r \cos \left(\frac{u}{r}\right)}=\frac{1}{r}
$$

Example. The plane Suppose $f(u)=u$ while $g(u)=0$ Again,

$$
f^{\prime}(u)^{2}+g^{\prime}(u)^{2}=1^{2}+0^{2}=1
$$

So we use the simplified formulas to compute

$$
\begin{aligned}
K & =\frac{-f^{\prime \prime}(u)}{f(u)}=\frac{0}{u}=0 \\
H & =\frac{g^{\prime}+f\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right)}{2 f} \operatorname{sign}(f) \\
& =\frac{0+u(0 \cdot 0-0 \cdot 0)}{2 u}=0
\end{aligned}
$$

Example. The Pseudosphere.
A long time ago, we parametrized the tractrix by

$$
\vec{\alpha}(t)=(t-\tanh t, \operatorname{sech} t)
$$

Recalling that

$$
\cosh ^{2} t-\sinh ^{2} t=1
$$

so

$$
1-\tanh ^{2} t=\operatorname{sech}^{2} t
$$

while

$$
\begin{aligned}
& \frac{d}{d u} \tanh t=\operatorname{sech}^{2} t \\
& \frac{d}{d u} \operatorname{sech} t=-\operatorname{sech} t \tanh t
\end{aligned}
$$

We can compute

$$
\begin{aligned}
\left(f^{\prime}\right)^{2} & +\left(g^{\prime}\right)^{2}=(-\operatorname{sech} t \tanh t)^{2}+\left(1-\operatorname{sech}^{2} t\right)^{2} \\
& =\operatorname{sech}^{2} t \tanh ^{2} t+\tanh ^{4} t \\
& =\tanh ^{2} t\left(\tanh ^{2} t+\operatorname{sech}^{2} t\right) \\
& =\tanh ^{2} t
\end{aligned}
$$

So we know that the arclength

$$
\begin{aligned}
s(t) & =\int_{0}^{t} \tanh x d x \\
& =\ln (\cosh t)
\end{aligned}
$$

and we can reparametrize by arclength by writing

$$
t(s)=\operatorname{arccosh}\left(e^{s}\right)
$$

and substituting
to get

$$
\begin{gathered}
\vec{\alpha}(s)=\left(\sim, \cosh \left(\operatorname{arccosh} e^{s}\right)\right) \\
\\
\left(\sim, e^{s}\right)
\end{gathered}
$$

where $\sim$ is some messy function we dislike. Now we can construct a surface by revolving the tractrix

and letting $f(u)=e^{u}, g(u)=m$. We built $f$ and $g$ so that $\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}=1$, so

$$
K=-\frac{f^{\prime \prime}}{f}=-1
$$

The mean curvature involves 9 , so it's messy, and we wont compute it.

We have seen three surfaces of constant curvature:

$+1$


0


These are called the space forms as they model three different
geometries for a 2 -dimensional space.

