Math 5200: Active Learning. Orbits of the delightful dozen.

Recall our definition from the video:
Definition. The orbit of a vector $\mathbf{v} \in R^{n}$ under the action of a group of matrices \mathscr{G} is the set

$$
\operatorname{orbit}(\mathbf{v}, \mathscr{G})=\{\mathbf{x} \text { s.t. } \mathbf{x}=A \mathbf{v}, A \in \mathscr{G}\}
$$

and our definition from class:
Definition. The set $\mathscr{S} \subset \mathbb{R}^{n}$ has a symmetry given by an $n \times n$ orthogonal matrix A if

$$
A \mathscr{S}=\{A \mathbf{x} \text { s.t. } \mathbf{x} \in \mathscr{S}\}=\mathscr{S}
$$

Putting these two together, it's immediate that
Proposition. If \mathscr{G} is a subgroup of the group of orthogonal matrices $O(n)$ and $\mathbf{v} \in \mathbb{R}^{n}$, then every $M \in \mathscr{G}$ is a symmetry of $\operatorname{orbit}(\mathbf{v}, \mathscr{G})$.

This means that a good way to construct interesting symmetric sets is to combine orbits of points under subgroups of $O(n)$. In fact, if \mathscr{G} is a finite subgroup of $O(n)$, we call it a "point group" to emphasize this connection. We note that the number of points in orbit $(\mathbf{v}, \mathscr{G})$ is at most the number of matrices in \mathscr{G}.

Definition. Let

$$
\mathbf{c}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{d}=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right], \quad \mathbf{e}=\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right], \quad \mathbf{f}=\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right] .
$$

The set $\mathscr{V}:=\{\mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}\}$ forms a tetrahedron.
Here's a series of pictures showing the tetrahedron:

1. We are now going to use the point group \mathscr{G} from the last homework, so please get out your previous active learning assignment with the list of twelve matrices. Also, load up desmos and define the matrices A and B as well as the column vectors C, D, E and F^{G}.
We're going to classify each of the matrices in our list of twelve by working out what it does to the vectors $\mathbf{c}, \mathbf{d}, \mathbf{e}$ and \mathbf{f}. For example,

$$
\begin{array}{ll}
A \mathbf{c}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\mathbf{c} & A \mathbf{d}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]=\mathbf{f} \\
A \mathbf{e}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]=\mathbf{d} & A \mathbf{f}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right]=\mathbf{e}
\end{array}
$$

To stay organized, write the matrices in dictionary order.

[^0]2. We know from the video some of the matrices in \mathscr{G} are 120° or 240° rotations around the axes $\mathbf{c}, \mathbf{d}, \mathbf{e}$ and \mathbf{f}. Using your table above, you can find all of them by figuring out which matrices fix \mathbf{c}, and which fix \mathbf{d} and so forth. You should find 9 such matrices total, in four groups of three ${ }^{b}$
(1) Find all the matrices where $\mathbf{c} \mapsto \mathbf{c}$ and describe what happens to \mathbf{d}, \mathbf{e}, and \mathbf{f}.

Example Solution:

The matrix I takes $\mathbf{c} \rightarrow \mathbf{c}$ and $\mathbf{d} \rightarrow \mathbf{d}, \mathbf{e} \rightarrow \mathbf{e}, \mathbf{f} \rightarrow \mathbf{f}$.
The matrix A takes $\mathbf{c} \rightarrow \mathbf{c}$ and $\mathbf{d} \rightarrow \mathbf{f} \rightarrow \mathbf{e} \rightarrow \mathbf{d}$.
The matrix $A A$ takes $\mathbf{c} \rightarrow \mathbf{c}$ and $\mathbf{d} \rightarrow \mathbf{e} \rightarrow \mathbf{f} \rightarrow \mathbf{d}$.
(2) Find all the matrices where $\mathbf{d} \mapsto \mathbf{d}$ and describe what happens to \mathbf{c}, \mathbf{e}, and \mathbf{f}.
\square
(3) Find all the matrices where $\mathbf{e} \mapsto \mathbf{e}$ and describe what happens to \mathbf{c}, \mathbf{d}, and \mathbf{f}.
\square
(4) Find all the matrices where $\mathbf{f} \mapsto \mathbf{f}$ and describe what happens to \mathbf{c}, \mathbf{d}, and \mathbf{e}.

[^1]3. On the other hand, the remaining matrices in \mathscr{G} are 180° rotations around the coordinate axes ${ }^{c}$ These have a different effect on the "axes" c, d, e and \mathbf{f}. You should find 4 such matrices, in three groups of two ${ }^{(d)}$
(1) Find all matrices in \mathscr{G} which send $\mathbf{e}_{1} \rightarrow \mathbf{e}_{1}$ and determine what they do to $\mathbf{c}, \mathbf{d}, \mathbf{e}$ and \mathbf{f}.

Example Solution:

The matrix I takes $\mathbf{e}_{1} \rightarrow \mathbf{e}_{1}$ and $\mathbf{c} \rightarrow \mathbf{c}$ and $\mathbf{d} \rightarrow \mathbf{d}, \mathbf{e} \rightarrow \mathbf{e}, \mathbf{f} \rightarrow \mathbf{f}$.
The matrix B takes $\mathbf{e}_{1} \rightarrow \mathbf{e}_{1}$ and swaps both $\mathbf{c} \leftrightarrow \mathbf{d}$ and $\mathbf{e} \leftrightarrow \mathbf{f}$.
(2) Find all matrices in \mathscr{G} which send $\mathbf{e}_{2} \rightarrow \mathbf{e}_{2}$ and determine what they do to $\mathbf{c}, \mathbf{d}, \mathbf{e}$ and \mathbf{f}.
\square
(3) Find all matrices in \mathscr{G} which send $\mathbf{e}_{3} \rightarrow \mathbf{e}_{3}$ and determine what they do to $\mathbf{c}, \mathbf{d}, \mathbf{e}$ and \mathbf{f}.

[^2]4. Notice that we've now shown that $M \mathbf{x} \in \mathscr{V}$ for each $M \in \mathscr{G}$ and $\mathbf{x} \in \mathscr{V}$. In the process, you've proved $\operatorname{orbit}(\mathbf{c}, \mathscr{G})=\mathscr{V}$ and hence that the set \mathscr{V} has every $M \in \mathscr{G}$ as a symmetry \int_{\square}^{e} To understand this orbit geometrically, it will help to know another useful fact about orthogonal matrices:

Proposition. If A is an orthogonal $n \times n$ matrix and \mathbf{v}, \mathbf{w} are any vectors in \mathbb{R}^{n}, then $\mathbf{v} \cdot \mathbf{w}=$ $A \mathbf{v} \cdot A \mathbf{w}$. It follows that $\|\mathbf{v}\|=\|A \mathbf{v}\|$ for any $\mathbf{v} \in \mathbb{R}^{n}$, and hence that

$$
\|A \mathbf{v}-A \mathbf{w}\|=\|\mathbf{v}-\mathbf{w}\|
$$

for any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, and further that $\angle \mathbf{v w}=\angle A \mathbf{v} A \mathbf{w}$ for any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$.
We now want to prove $f f$ that for any $\mathbf{x} \neq \mathbf{y}$ and $\mathbf{w} \neq \mathbf{z}$ in \mathscr{V}, we have $\|\mathbf{x}-\mathbf{y}\|=\|\mathbf{w}-\mathbf{z}\|$.
Let's consider the edge of the tetrahedron given by $\{\mathbf{c}, \mathbf{e}\}$, shown in red below left and the edge $\{\mathbf{c}, \mathbf{f}\}$ shown in red below right.

If we can show that there's an orthogonal matrix so that $\{A \mathbf{c}, A \mathbf{e}\}=\{\mathbf{c}, \mathbf{e}\}$, we'll have proved that $\|\mathbf{c}-\mathbf{e}\|=\|\mathbf{c}-\mathbf{f}\|$.
(1) Find a matrix $M \in \mathscr{G}$ so that $\{M \mathbf{c}, M \mathbf{e}\}=\{\mathbf{c}, \mathbf{f}\}$.

Example Solution:

Looking at the picture, we can see that rotating around \mathbf{c} by 120° or 240° ought to do this; looking at our table of matrices which rotate around \mathbf{c}, we see that $A A$ takes $\mathbf{c} \rightarrow \mathbf{c}$ and $\mathbf{e} \rightarrow \mathbf{f}$, so this will do.

[^3](2) Find a matrix $M \in \mathscr{G}$ so that $\{M \mathbf{c}, M \mathbf{e}\}=\{\mathbf{c}, \mathbf{d}\}$.
\square
(3) Find a matrix $M \in \mathscr{G}$ so that $\{M \mathbf{c}, M \mathbf{e}\}=\{\mathbf{d}, \mathbf{e}\}$.

(4) Find a matrix $M \in \mathscr{G}$ so that $\{M \mathbf{c}, M \mathbf{e}\}=\{\mathbf{e}, \mathbf{f}\}$.
\square
(5) Find a matrix $M \in \mathscr{G}$ so that $\{M \mathbf{c}, M \mathbf{e}\}=\{\mathbf{f}, \mathbf{d}\}$.

[^0]: ${ }^{a}$ To do matrix-vector multiplication in the desmos calculator, write the vector \mathbf{c} as a 3×1 matrix. Then you can multiply $A C$ and $B C$ (and so forth) by typing these into desmos as usual.

[^1]: ${ }^{b}$ The matrix I fixes all vectors (it's a "rotation by 0 degrees around every axis") so it's listed in each group. Thus there are only 9 different matrices among the 12 you'll list below.

[^2]: ${ }^{c}$ Of course, the easiest way to do this is to define the vectors $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ in desmos and multiply them by various combinations of A 's and B 's from our list of matrices in \mathscr{G} until you win!
 ${ }^{d}$ Again, the identity matrix is going to be in each group, so there are really only four unique matrices you're going to find among the six total.

[^3]: ${ }^{e}$ We haven't proved that these are the only symmetries of \mathscr{V} because, well, it's not true: there are reflection symmetries that aren't in \mathscr{G}.
 ${ }^{f}$ Of course, we could list the $6=\binom{4}{2}$ pairs of (different) points among the four points in $\mathscr{V}=\{\mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}\}$ and just compute each distance; we know the coordinates of $\mathbf{c}, \mathbf{d}, \mathbf{e}$, and \mathbf{f}. But we want to do this in a way that's more respectful of the symmetry structure.

