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Chapter 1

Spectral Theorems in Euclidean and
Hermitian Spaces

1.1 Normal Linear Maps

Let E be a real Euclidean space (or a complex Hermitian
space) with inner product u, v 7→ 〈u, v〉.

In the real Euclidean case, recall that 〈−,−〉 is bilinear,
symmetric and positive definite (i.e., 〈u, u〉 > 0 for all
u 6= 0).

In the complex Hermitian case, recall that 〈−,−〉 is
sesquilinear, which means that it linear in the first argu-
ment, semilinear in the second argument (i.e.,
〈u, µv〉 = µ〈u, v〉), 〈v, u〉 = 〈u, v〉, and positive definite
(as above).
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4 CHAPTER 1. SPECTRAL THEOREMS

In both cases we let ‖u‖ =
√
〈u, u〉 and the map

u 7→ ‖u‖ is a norm.

Recall that every linear map, f :E → E, has an adjoint
f ∗ which is a linear map, f ∗:E → E, such that

〈f (u), v〉 = 〈u, f ∗(v)〉,

for all u, v ∈ E.

Since 〈−,−〉 is symmetric, it is obvious that f ∗∗ = f .

Definition 1.1.1 Given a Euclidean (or Hermitian) space,
E, a linear map f :E → E is normal iff

f ◦ f ∗ = f ∗ ◦ f.

A linear map f :E → E is self-adjoint if f = f ∗, skew
self-adjoint if f = −f ∗, and orthogonal if
f ◦ f ∗ = f ∗ ◦ f = id.
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Our first goal is to show that for every normal linear map
f :E → E (where E is a Euclidean space), there is an
orthonormal basis (w.r.t. 〈−,−〉) such that the matrix
of f over this basis has an especially nice form:

It is a block diagonal matrix in which the blocks are ei-
ther one-dimensional matrices (i.e., single entries) or two-
dimensional matrices of the form(

λ µ
−µ λ

)
This normal form can be further refined if f is self-adjoint,
skew self-adjoint, or orthogonal.

As a first step, we show that f and f ∗ have the same
kernel when f is normal.

Lemma 1.1.2 Given a Euclidean space E, if
f :E → E is a normal linear map, then
Ker f = Ker f ∗.



6 CHAPTER 1. SPECTRAL THEOREMS

The next step is to show that for every linear map
f :E → E, there is some subspace W of dimension 1 or
2 such that f (W ) ⊆ W .

When dim(W ) = 1, W is actually an eigenspace for some
real eigenvalue of f .

Furthermore, when f is normal, there is a subspace W of
dimension 1 or 2 such that f (W ) ⊆ W and f ∗(W ) ⊆ W .

The difficulty is that the eigenvalues of f are not nec-
essarily real. One way to get around this problem is to
complexify both the vector spaceE and the inner product
〈−,−〉.

First, we need to embed a real vector space E into a
complex vector space EC.

A fancy way to define EC is to use tensor products and
to set

EC = C⊗R E.

However, we can also define EC directly as follows:
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Definition 1.1.3 Given a real vector space E, let EC
be the structure E × E under the addition operation

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2),

and multiplication by a complex scalar z = x+iy defined
such that

(x + iy) · (u, v) = (xu− yv, yu + xv).

It is easily shown that the structure EC is a complex
vector space.

It is also immediate that

(0, v) = i(v, 0),

and thus, identifying E with the subspace of EC consist-
ing of all vectors of the form (u, 0), we can write

(u, v) = u + iv.

Given a vector w = u+ iv, its conjugate w is the vector
w = u− iv.
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Given a linear map f :E → E, the map f can be ex-
tended to a linear map fC:EC → EC defined such that

fC(u + iv) = f (u) + if (v).

Next, we need to extend the inner product on E to an
inner product on EC.

The inner product 〈−,−〉 on a Euclidean space E is ex-
tended to the Hermitian positive definite form 〈−,−〉C
on EC as follows:

〈u1 + iv1, u2 + iv2〉C
= 〈u1, u2〉 + 〈v1, v2〉 + i(〈u2, v1〉 − 〈u1, v2〉).

Then, given any linear map f :E → E, it is easily verified
that the map f ∗

C
defined such that

f ∗
C

(u + iv) = f ∗(u) + if ∗(v)

for all u, v ∈ E, is the adjoint of fC w.r.t. 〈−,−〉C.
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Assuming again that E is a Hermitian space, observe that
Lemma 1.1.2 also holds.

Lemma 1.1.4 Given a Hermitian space E, for any
normal linear map f :E → E, a vector u is an eigen-
vector of f for the eigenvalue λ (in C) iff u is an
eigenvector of f ∗ for the eigenvalue λ.

The next lemma shows a very important property of nor-
mal linear maps: eigenvectors corresponding to distinct
eigenvalues are orthogonal.

Lemma 1.1.5 Given a Hermitian space E, for any
normal linear map f :E → E, if u and v are eigen-
vectors of f associated with the eigenvalues λ and µ
(in C) where λ 6= µ, then 〈u, v〉 = 0.
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We can also show easily that the eigenvalues of a self-
adjoint linear map are real.

Lemma 1.1.6 Given a Hermitian space E, the eigen-
values of any self-adjoint linear map f :E → E are
real.

Given any subspace W of a Hermitian space E, recall
that the orthogonal W⊥ of W is the subspace defined
such that

W⊥ = {u ∈ E | 〈u,w〉 = 0, for all w ∈ W}.

Recall that E = W ⊕W⊥ (construct an orthonormal ba-
sis ofE using the Gram–Schmidt orthonormalization pro-
cedure). The same result also holds for Euclidean spaces.
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The following lemma provides the key to the induction
that will allow us to show that a normal linear map can
diagonalized. It actually holds for any linear map.

Lemma 1.1.7 Given a Hermitian space E, for any
linear map f :E → E, if W is any subspace of E such
that f (W ) ⊆ W and f ∗(W ) ⊆ W , then f (W⊥) ⊆ W⊥

and f ∗(W⊥) ⊆ W⊥.

The above Lemma also holds for Euclidean spaces. Al-
though we are ready to prove that for every normal linar
map f (over a Hermitian space) there is an orthonormal
basis of eigenvectors, we now return to real Euclidean
spaces.
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If f :E → E is a linear map and w = u + iv is an
eigenvector of fC:EC → EC for the eigenvalue z = λ+iµ,
where u, v ∈ E and λ, µ ∈ R, since

fC(u + iv) = f (u) + if (v)

and

fC(u + iv) = (λ + iµ)(u + iv)

= λu− µv + i(µu + λv),

we have

f (u) = λu− µv and f (v) = µu + λv,

from which we immediately obtain

fC(u− iv) = (λ− iµ)(u− iv),

which shows that w = u− iv is an eigenvector of fC for
z = λ − iµ. Using this fact, we can prove the following
lemma.
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Lemma 1.1.8 Given a Euclidean space E, for any
normal linear map f :E → E, if w = u + iv is an
eigenvector of fC associated with the eigenvalue
z = λ + iµ (where u, v ∈ E and λ, µ ∈ R), if µ 6= 0
(i.e., z is not real) then 〈u, v〉 = 0 and 〈u, u〉 = 〈v, v〉,
which implies that u and v are linearly independent,
and if W is the subspace spanned by u and v, then
f (W ) = W and f ∗(W ) = W . Furthermore, with re-
spect to the (orthogonal) basis (u, v), the restriction of
f to W has the matrix(

λ µ
−µ λ

)
.

If µ = 0, then λ is a real eigenvalue of f and either u
or v is an eigenvector of f for λ. If W is the subspace
spanned by u if u 6= 0, or spanned by v 6= 0 if u = 0,
then f (W ) ⊆ W and f ∗(W ) ⊆ W .



14 CHAPTER 1. SPECTRAL THEOREMS

If f is a normal linear map, the proof of Lemma 1.1.8
shows that λ, µ, u, and v, satisfy the equations

f (u) = λu− µv,
f (v) = µu + λv,

f ∗(u) = λu + µv,

f ∗(v) = −µu + λv,

From the above, it is easy to see that λ is an eigenvalue of
1/2 (f + f ∗), that−µ2 is an eigenvalue of (1/2 (f − f ∗))2,
and that u and v are both eigenvectors of 1/2 (f + f ∗)
for λ and of (1/2 (f − f ∗))2 for −µ2.

It is easily verified that 1/2 (f + f ∗) and (1/2 (f − f ∗))2

are self-adjoint.

We can finally prove our first main theorem.
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Theorem 1.1.9 Given a Euclidean space E of di-
mension n, for every normal linear map f :E → E,
there is an orthonormal basis (e1, . . . , en) such that the
matrix of f w.r.t. this basis is a block diagonal matrix
of the form 

A1 . . .
A2 . . .

... ... . . . ...
. . . Ap


such that each block Ai is either a one-dimensional
matrix (i.e., a real scalar) or a two-dimensional ma-
trix of the form

Ai =

(
λi −µi
µi λi

)
where λi, µi ∈ R, with µi > 0.

After this relatively hard work, we can easily obtain some
nice normal forms for the matrices of self-adjoint, skew
self-adjoint, and orthogonal, linear maps.
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However, for the sake of completeness (and since we have
all the tools to so do), we go back to the case of a Her-
mitian space and show that normal linear maps can be
diagonalized with respect to an orthonormal basis.

Theorem 1.1.10 Given a Hermitian space E of di-
mension n, for every normal linear map f :E → E,
there is an orthonormal basis (e1, . . . , en) of eigenvec-
tors of f such that the matrix of f w.r.t. this basis is
a diagonal matrix

λ1 . . .
λ2 . . .

... ... . . . ...
. . . λn


where λi ∈ C.

Remark : There is a converse to Theorem 1.1.10, namely,
if there is an orthonormal basis (e1, . . . , en) of eigenvec-
tors of f , then f is normal. We leave the easy proof as
an exercise.
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1.2 Self-Adjoint, Skew Self-Adjoint, and Orthogonal

Linear Maps

We begin with self-adjoint maps.

Theorem 1.2.1 Given a Euclidean space E of di-
mension n, for every self-adjoint linear map
f :E → E, there is an orthonormal basis (e1, . . . , en)
of eigenvectors of f such that the matrix of f w.r.t.
this basis is a diagonal matrix

λ1 . . .
λ2 . . .

... ... . . . ...
. . . λn


where λi ∈ R.

Theorem 1.2.1 implies that if λ1, . . . , λp are the distinct
real eigenvalues of f and Ei is the eigenspace associated
with λi, then

E = E1 ⊕ · · · ⊕ Ep,

where Ei and Ej are othogonal for all i 6= j.

Next, we consider skew self-adjoint maps.
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Theorem 1.2.2 Given a Euclidean space E of di-
mension n, for every skew self-adjoint linear map
f :E → E, there is an orthonormal basis (e1, . . . , en)
such that the matrix of f w.r.t. this basis is a block
diagonal matrix of the form

A1 . . .
A2 . . .

... ... . . . ...
. . . Ap


such that each block Ai is either 0 or a two-dimensional
matrix of the form

Ai =

(
0 −µi
µi 0

)

where µi ∈ R, with µi > 0. In particular, the eigen-
values of fC are pure imaginary of the form iµi, or
0.

Remark : One will note that if f is skew self-adjoint, then
ifC is self-adjoint w.r.t. 〈−,−〉C.
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By Lemma 1.1.6, the map ifC has real eigenvalues, which
implies that the eigenvalues of fC are pure imaginary or
0.

Finally, we consider orthogonal linear maps.

Theorem 1.2.3 Given a Euclidean space E of di-
mension n, for every orthogonal linear map
f :E → E, there is an orthonormal basis (e1, . . . , en)
such that the matrix of f w.r.t. this basis is a block
diagonal matrix of the form

A1 . . .
A2 . . .

... ... . . . ...
. . . Ap


such that each block Ai is either 1, −1, or a two-
dimensional matrix of the form

Ai =

(
cos θi − sin θi
sin θi cos θi

)
where 0 < θi < π.

In particular, the eigenvalues of fC are of the form
cos θi ± i sin θi, or 1, or −1.
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It is obvious that we can reorder the orthonormal basis of
eigenvectors given by Theorem 1.2.3, so that the matrix
of f w.r.t. this basis is a block diagonal matrix of the
form 

Ip . . .
−Iq

A1 . . .
... ... . . . ...

. . . Ar


where each block Ai is a two-dimensional rotation matrix
Ai 6= ±I2 of the form

Ai =

(
cos θi − sin θi
sin θi cos θi

)
with 0 < θi < π.

The linear map f has an eigenspaceE(1, f) = Ker (f − id)
of dimension p for the eigenvalue 1, and an eigenspace
E(−1, f) = Ker (f + id) of dimension q for the eigen-
value −1.
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If det(f ) = +1 (f is a rotation), the dimension q of
E(−1, f) must be even, and the entries in −Iq can be
paired to form two-dimensional blocks, if we wish.

Remark : Theorem 1.2.3 can be used to prove a sharper
version of the Cartan-Dieudonné Theorem.

Theorem 1.2.4 Let E be a Euclidean space of di-
mension n ≥ 2. For every isometry f ∈ O(E), if
p = dim(E(1, f)) = dim(Ker (f − id)), then f is the
composition of n−p reflections and n−p is minimal.

The theorems of this section and of the previous section
can be immediately applied to matrices.
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1.3 Normal, Symmetric, Skew Symmetric, Orthogo-

nal, Hermitian, Skew Hermitian, and Unitary Ma-

trices

First, we consider real matrices.

Definition 1.3.1 Given a real m × n matrix A, the
transpose A> of A is the n × m matrix A> = (a>i, j)
defined such that

a>i, j = aj, i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. A real n× n matrix
A is

1. normal iff
AA> = A>A,

2. symmetric iff
A> = A,

3. skew symmetric iff

A> = −A,

4. orthogonal iff

AA> = A>A = In.

Theorems 1.1.9 and 1.2.1–1.2.3 can be restated as follows.
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Theorem 1.3.2 For every normal matrix A, there is
an orthogonal matrix P and a block diagonal matrix
D such that A = PDP>, where D is of the form

D =


D1 . . .

D2 . . .
... ... . . . ...

. . . Dp


such that each block Di is either a one-dimensional
matrix (i.e., a real scalar) or a two-dimensional ma-
trix of the form

Di =

(
λi −µi
µi λi

)
where λi, µi ∈ R, with µi > 0.
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Theorem 1.3.3 For every symmetric matrix A, there
is an orthogonal matrix P and a diagonal matrix D
such that A = PDP>, where D is of the form

D =


λ1 . . .

λ2 . . .
... ... . . . ...

. . . λn


where λi ∈ R.
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Theorem 1.3.4 For every skew symmetric matrix A,
there is an orthogonal matrix P and a block diagonal
matrix D such that A = PDP>, where D is of the
form

D =


D1 . . .

D2 . . .
... ... . . . ...

. . . Dp


such that each block Di is either 0 or a two-dimensional
matrix of the form

Di =

(
0 −µi
µi 0

)
where µi ∈ R, with µi > 0. In particular, the eigen-
values of A are pure imaginary of the form iµi, or
0.
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Theorem 1.3.5 For every orthogonal matrix A, there
is an orthogonal matrix P and a block diagonal matrix
D such that A = PDP>, where D is of the form

D =


D1 . . .

D2 . . .
... ... . . . ...

. . . Dp


such that each block Di is either 1, −1, or a two-
dimensional matrix of the form

Di =

(
cos θi − sin θi
sin θi cos θi

)
where 0 < θi < π.

In particular, the eigenvalues of A are of the form
cos θi ± i sin θi, or 1, or −1.

We now consider complex matrices.
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Definition 1.3.6 Given a complex m × n matrix A,
the transpose A> of A is the n×m matrix A> = (a>i, j)
defined such that

a>i, j = aj, i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The conjugate A of
A is the m× n matrix A = (bi, j) defined such that

bi, j = ai, j

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Given an n × n
complex matrix A, the adjoint A∗ of A is the matrix
defined such that

A∗ = (A>) = (A)>.

A complex n× n matrix A is

1. normal iff
AA∗ = A∗A,

2. Hermitian iff
A∗ = A,

3. skew Hermitian iff

A∗ = −A,

4. unitary iff
AA∗ = A∗A = In.
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Theorem 1.1.10 can be restated in terms of matrices as
follows. We can also say a little more about eigenvalues
(easy exercise left to the reader).

Theorem 1.3.7 For every complex normal matrix A,
there is a unitary matrix U and a diagonal matrix D
such that A = UDU ∗. Furthermore, if A is Hermi-
tian, D is a real matrix, if A is skew Hermitian, then
the entries in D are pure imaginary or null, and if A
is unitary, then the entries in D have absolute value
1.


