## Ropelength and the Geometry of Knots

Jason Cantarella ${ }^{1}$ J.H.G. Fu ${ }^{1}$ R. Kusner ${ }^{2}$ J. Sullivan ${ }^{4}$ N. Wrinkle ${ }^{5}$ (theory)

$\begin{array}{lll}\text { T. Ashton } & \text { M. Piatek } & \text { E. Rawdon }\end{array}$ (computation)

${ }^{1}$ University of Georgia<br>${ }^{2}$ University of Massachusetts,<br>${ }^{3}$ Technische Universität-Berlin,<br>${ }^{4}$ Northeastern Illinois University<br>${ }^{5}$ NSA<br>${ }^{6}$ University of Washington (CS)<br>${ }^{7}$ St. Thomas University

UnKnot Conference, Denison, 2009

## Motivating questions

## Question

What are the shapes of tightly knotted tubes?

## Question

How do those shapes depend on the topology of the knot?

## Motivating questions

## Question

What are the shapes of tightly knotted tubes?

## Question

How do those shapes depend on the topology of the knot?

## Motivating questions

## Question

## What are the shapes of tightly knotted tubes?

## Question

How do those shapes depend on the topology of the knot?

(From numerical computation, true shape unknown.)

## Review from Elizabeth Denne's talk:

## Definition (Federer 1959)

The reach of a space curve is the largest $\epsilon$ so that any point in an $\epsilon$-neighborhood of the curve has a unique nearest neighbor on the curve.


## Idea

reach $(K)$ (also called thickness) is controlled by curvature maxima (kinks) and self-distance minima (struts).

## Definition

The ropelength of $K$ is given by $\operatorname{Rop}(K)=\operatorname{Len}(K) /$ reach $(K)$.

> Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave 2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002) Ropelength minimizers (called tight knots) exist in each knot and link type and are $C^{1,1}$

Question
What is the smoothness of a tight knot? Current examples suggest that such a knot is piecewise smooth but not $C^{2}$

## Ropelength

## Definition

The ropelength of $K$ is given by $\operatorname{Rop}(K)=\operatorname{Len}(K) /$ reach $(K)$.
Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave
2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002)
Ropelength minimizers (called tight knots) exist in each knot and link type and are $C^{1,1}$.

Question
What is the smoothness of a tight knot? Current examples suggest that such a knot is piecewise smooth but not $C^{2}$.

## Ropelength

## Definition

The ropelength of $K$ is given by $\operatorname{Rop}(K)=\operatorname{Len}(K) / \operatorname{reach}(K)$.
Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave
2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002)
Ropelength minimizers (called tight knots) exist in each knot and link type and are $C^{1,1}$.

## Question

What is the smoothness of a tight knot? Current examples suggest that such a knot is piecewise smooth but not $C^{2}$.

## Examples: Why only piecewise smooth?



Theorem (with Fu, Kusner, Sullivan, Wrinkle 2009, cf. Gonzalez, Maddocks 2000, Schuricht, Von der Mosel 20.3
Any open interval of a tight knot either: contains an endpoint of a strut, has curvature 1 almost everywhere, or is a straight line segment.

## Examples: Why only piecewise smooth?



Theorem (with Fu, Kusner, Sullivan, Wrinkle 2009, cf. Gonzalez, Maddocks 2000, Schuricht, Von der Mosel 2003)
Any open interval of a tight knot either: contains an endpoint of a strut, has curvature 1 almost everywhere, or is a straight line segment.

## Lower Bounds on Ropelength

## Theorem (Diao 2006)

$$
\operatorname{Rop}(K) \geq \frac{1}{2}\left(17.334+\sqrt{17.334^{2}+64 \pi \operatorname{Cr}(K)}\right) .
$$

## Corollary

The unknot has the lowest ropelength of all knots. For any N, there are only a finite number of knots with ropelength $<N$.

## Proof.

The ropelength of a tight unknot is $4 \pi=12.566$, less than any knot of higher crossing number. All knots with Rop $<N$ have
0.000125


## Lower Bounds on Ropelength

## Theorem (Diao 2006)

$$
\operatorname{Rop}(K) \geq \frac{1}{2}\left(17.334+\sqrt{17.334^{2}+64 \pi \operatorname{Cr}(K)}\right) .
$$

## Corollary

The unknot has the lowest ropelength of all knots. For any N, there are only a finite number of knots with ropelength $<N$.

## Lower Bounds on Ropelength

## Theorem (Diao 2006)

$$
\operatorname{Rop}(K) \geq \frac{1}{2}\left(17.334+\sqrt{17.334^{2}+64 \pi \operatorname{Cr}(K)}\right) .
$$

## Corollary

The unknot has the lowest ropelength of all knots. For any N, there are only a finite number of knots with ropelength $<N$.

## Proof.

The ropelength of a tight unknot is $4 \pi=12.566$, less than any knot of higher crossing number. All knots with Rop $<N$ have

$$
\mathrm{Cr}<\frac{0.000125}{\pi} N(500 N-8667) .
$$

## More consequences of this $\mathrm{Cr} / \mathrm{Rop}$ bound.

## Corollary

Hopf link ( $\mathrm{Rop}=25.1327$ ) is the tightest nontrivial link.

```
Proof.
Evaluating the formula in a few cases,
\begin{tabular}{llllll}
\(\operatorname{Cr}(K)\) & 3 & 4 & 5 & \(\ldots\) & 10 \\
\(\operatorname{Rop}(K) \geq\) & 23.698 & 25.286 & 26.735 & \(\ldots\) & 32.704 \\
& 33.73
\end{tabular}
So only Rop(31) could be lower than Rop(21). But DDS show
Rop}(\mp@subsup{3}{1}{})\geq31.32>25.13
```

Question
Is the trafnil $($ Rop $\simeq 32.74$ ) the tightest knot?

## More consequences of this Cr / Rop bound.

## Corollary

Hopf link (Rop $=25.1327$ ) is the tightest nontrivial link.

## Proof.

Evaluating the formula in a few cases,

| $\operatorname{Cr}(K)$ | 3 | 4 | 5 | $\ldots$ | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\operatorname{Rop}(K) \geq$ | 23.698 | 25.286 | 26.735 | $\ldots$ | 32.704 | 33.73 |

So only $\operatorname{Rop}\left(3_{1}\right)$ could be lower than $\operatorname{Rop}\left(2_{1}\right)$. But DDS show $\operatorname{Rop}\left(3_{1}\right) \geq 31.32>25.137$.

Question
Is the trefoil $(R o p \simeq 32.74)$ the tightest knot?

## More consequences of this Cr / Rop bound.

## Corollary

Hopf link $($ Rop $=25.1327$ ) is the tightest nontrivial link.

## Proof.

Evaluating the formula in a few cases,

| $\operatorname{Cr}(K)$ | 3 | 4 | 5 | $\ldots$ | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\operatorname{Rop}(K) \geq$ | 23.698 | 25.286 | 26.735 | $\ldots$ | 32.704 | 33.73 |

So only $\operatorname{Rop}\left(3_{1}\right)$ could be lower than $\operatorname{Rop}\left(2_{1}\right)$. But DDS show $\operatorname{Rop}\left(3_{1}\right) \geq 31.32>25.137$.

## Question

Is the trefoil (Rop $\simeq 32.74$ ) the tightest knot?

## Are these bounds close to tight?

To know, we need approximate numerical data. How to get it? Simulate the gradient flow of length

... with struts entered as new constraints as they form ...

... eventually all motion is stopped by constraints.

## Trefoil tightening movie

## Show tightening movie 1.

## What does this tell you about the math?

## Theorem (Rawdon 2000)

Suppose that $P$ is a polygonal knot. Then there exists a $C^{1,1}$ knot $K$ inscribed in $P$ so that $\operatorname{Rop}(P) \geq \operatorname{Rop}(K)$.

Given this theorem, we can use computational methods to find upper bounds for smooth ropelength by finding tight polygonal knots.

## What does this tell you about the math?

## Theorem (Rawdon 2000)

Suppose that $P$ is a polygonal knot. Then there exists a $C^{1,1}$ knot $K$ inscribed in $P$ so that $\operatorname{Rop}(P) \geq \operatorname{Rop}(K)$.

Given this theorem, we can use computational methods to find upper bounds for smooth ropelength by finding tight polygonal knots.


## What does this tell you about the math?

## Theorem (Rawdon 2000)

Suppose that $P$ is a polygonal knot. Then there exists a $C^{1,1}$ knot $K$ inscribed in $P$ so that $\operatorname{Rop}(P) \geq \operatorname{Rop}(K)$.

Given this theorem, we can use computational methods to find upper bounds for smooth ropelength by finding tight polygonal knots.


## What does this tell you about the math?

## Theorem (Rawdon 2000)

Suppose that $P$ is a polygonal knot. Then there exists a $C^{1,1}$ knot $K$ inscribed in $P$ so that $\operatorname{Rop}(P) \geq \operatorname{Rop}(K)$.

Given this theorem, we can use computational methods to find upper bounds for smooth ropelength by finding tight polygonal knots.


## Some more tight polygonal knots

## Some more tight polygonal knots ...



## Some more tight polygonal knots . . .



## Some more tight polygonal knots ...



EE (Everybody Else $\leq 10$ crossings)


## Ropelength and Crossing Number vs Data

## Question

Find effective Rop bounds for simple (< 10 crossing) knots.


## Wait a minute: how accurate was that data?

## Answer

Unknown. We can only check known answers.

## Computation (with Ashton, Piatek, Rawdon,



## Link name <br> Vertices <br> Rop bound Rop <br> Error

## Hopf linh 216 25.1389 <br>  <br> 0.02\%

$2_{1}^{2} \# 2_{1}^{2}$
384
41.7086588

0.02\%
63
630
58.0146
58.0060
0.01\%

## Wait a minute: how accurate was that data?

## Answer

Unknown. We can only check known answers.

Computation (with Ashton, Piatek, Rawdon, ridgerunner)

|  |  | 2 | 6 |
| :--- | :--- | :--- | :--- |
| Link name | Hopf link $\left(2_{1}^{2}\right)$ | $2_{1}^{2}+2_{1}^{2}$ | 62 |
| Vertices | 216 | 384 | 630 |
| Rop bound | 25.1389 | 41.7086588 | 58.0146 |
| Rop | $8 \pi$ | $12 \pi+4$ | 58.0060 |
| Error | $0.02 \%$ | $0.02 \%$ | $0.01 \%$ |

## Natural question: Are there local minimum knots?

If we start a knot from two different positions, could we get different "tight" configurations?

$\stackrel{10_{137}}{\text { KnotPlot (Rob Scharein) }}$

$10_{137}$ (really)
Kawauchi (Ellie Dannenberg)

## Movies of the $10_{137}$ tightenings

We just feed them to the computer and watch it go ...

## Natural question: Are there local minimum knots?

Here are the resulting stopping points for the algorithm side-by-side:

$10_{137}$
KnotPlot (Rob Scharein)

(still) $10_{137}$
Kawauchi (Ellie Dannenberg)

## Local minimum knots: What can we actually prove?

## Question

Suppose we have an unknotted open interval of rope and we pull it tight. Is there any tight shape other than the straight line?

Theorem (with Fu, Kusner, Sullivan, Wrinkle)
There are open, ropelength critical, curves with no tube
contacts different from the straight line.
Actually, this is a semi-classical question:
Question (Markov-Dubins-Reed-Shepp Car (Sussmann 1995)
What are the length-critical curves with curvature bounded
above? How do they depend on boundary conditions?

## Local minimum knots: What can we actually prove?

## Question

Suppose we have an unknotted open interval of rope and we pull it tight. Is there any tight shape other than the straight line?

Theorem (with Fu, Kusner, Sullivan, Wrinkle)
There are open, ropelength critical, curves with no tube contacts different from the straight line.

Actually, this is a semi-classical question:
$\square$
Question (Markov-Dubins-Reed-Shepp Car (Sussmann 19 above? How do they depend on boundary conditions?

## Local minimum knots: What can we actually prove?

## Question

Suppose we have an unknotted open interval of rope and we pull it tight. Is there any tight shape other than the straight line?

## Theorem (with Fu, Kusner, Sullivan, Wrinkle)

There are open, ropelength critical, curves with no tube contacts different from the straight line.

Actually, this is a semi-classical question:
Question (Markov-Dubins-Reed-Shepp Car (Sussmann 1995))
What are the length-critical curves with curvature bounded above? How do they depend on boundary conditions?

## Intuition: What do we expect to be true?

Switch to document camera demo ...

## Option 1: Some circle arcs. . .



## Option 2: Certain helices . . .



## Option 3: Something else ...

## Just to remember . . .

## Definition

The reach of a space curve is the largest $\epsilon$ so that any point in an $\epsilon$-neighborhood of the curve has a unique nearest neighbor on the curve.


## Idea

Reach is controlled by curvature (kinks) and pairs of closest approach (struts).

## Strut measures



## Definition

A strut measure is a non-negative Radon measure on the struts representing a compression force pointing outwards.

## Definition

A strut force measure $S$ on $L$ is the vector-valued Radon measure defined at each point $p$ of $L$ by integrating a strut measure over all the struts with an endpoint at $p$.

## Main Theorem

We can find an Euler-Lagrange equation for ropelength-critical curves. Think of the strut force measure as an (infinite) set of Lagrange multipliers. Then

## Idea of theorem (CFKSW (2009))

Suppose $L$ is thickness 1 , and the parts of $L$ with maximum curvature are nice. Then at each point on the curve
total force from self contacts = elastic force

+ force transmitted through kinks.


## Main Theorem

We can find an Euler-Lagrange equation for ropelength-critical curves. Think of the strut force measure as an (infinite) set of Lagrange multipliers. Then

## Theorem (CFKSW (2009))

Suppose $L$ is $\lambda$-critical, and that Kink is included in a subarc on which $L$ is regulated. Then $\exists$ a strut force measure $S$ and a nonnegative lower semicontinuous function $\phi \in \operatorname{BV}(L)$ such that $(\phi N)^{\prime} \in \operatorname{BV}(L)$, with

$$
\left.\mathrm{S}\right|_{\text {interior } L}=-\left.\left((1-2 \phi) T-\frac{\lambda}{2}(\phi N)^{\prime}\right)^{\prime}\right|_{\text {interior } L} .
$$

If $p$ is a fixed endpoint of $L, \phi(p)=0$.

## Main Theorem

We can find an Euler-Lagrange equation for ropelength-critical curves. Think of the strut force measure as an (infinite) set of Lagrange multipliers. Then

## Theorem (CFKSW (2009))

Suppose $L$ is $\lambda$-critical and piecewise $C^{2}$ and $L$ has no struts. Then $L$ is piecewise analytic and there exists a nonnegative lower semicontinuous function $\phi \in \mathrm{BV}(L)$ such that $(\phi N)^{\prime} \in \mathrm{BV}(L)$ and

$$
(1-2 \phi) T-\frac{\lambda}{2}(\phi N)^{\prime} \equiv V_{0}=\text { constant } .
$$

## Main Theorem

We can find an Euler-Lagrange equation for ropelength-critical curves. Think of the strut force measure as an (infinite) set of Lagrange multipliers. Then

## Theorem (CFKSW (2009))

Suppose $L$ is $\lambda$-critical and piecewise $C^{2}$ and $L$ has no struts. Then $L$ is piecewise analytic and there exists a nonnegative smooth function $\phi$ so that

$$
\begin{align*}
\phi^{\prime \prime}+\left(\kappa^{2}-\tau^{2}\right) \phi & =\kappa^{2}  \tag{1}\\
\tau \phi^{2} & =c \tag{2}
\end{align*}
$$

for some constant c. Since $\kappa=2 / \lambda=$ constant, this is a system of ODE for $\tau$ and $\phi$ with initial conditions specified by $c$ and $\phi(0)$, and a constant solution $\phi=\phi_{0}(c)$.

Pictures of solutions


## The case $c=0$.

Suppose first that $c=0$. Either $\phi=0$ (the curve is a line) or $\tau=0$ (the curve is planar, and hence a circle arc).

## Proposition

A circular arc of radius $\frac{\lambda}{2}$ with fixed endpoints is critical with no strut force measure $\Longleftrightarrow$ its angle exceeds $\pi$.

## Proof.

Rewriting (1) in terms of an angle $\theta$ along an $\operatorname{arc} \theta \in\left[0, \theta_{0}\right]$, we get the system

$$
\begin{equation*}
\phi^{\prime \prime}+\phi=1, \quad \phi(0)=\phi\left(\theta_{0}\right)=0 . \tag{3}
\end{equation*}
$$

This has a positive solution $(\phi=1-\cos \theta+B \sin \theta)$ is $\geq 0$
$\Longleftrightarrow \theta_{0}>\pi$.

## The case $\phi=$ constant.

## Lemma

A critical curve without strut force measure and with $\phi$ constant is a helix with $|\tau|<\kappa$. Further, the conserved vector $V_{0}$ points in the direction of the axis of the helix.

## Proof.

Recall that $V_{0}=(1-2 \phi) T-\frac{\lambda}{2}(\phi N)^{\prime}$ so

$$
\begin{equation*}
T \cdot V_{0}=(1-2 \phi)-\frac{\phi}{\kappa} T \cdot N^{\prime}=1-\phi=\text { const. } \tag{4}
\end{equation*}
$$

Thus (cf. doCarmo) $\kappa / \tau$ (and so $\tau$ ) are constant.
Now $\phi^{\prime \prime}=0$ so (1) becomes $\left(\kappa^{2}-\tau^{2}\right) \phi=\kappa^{2}$.
Since $\phi \geq 0$, we have $\kappa^{2}>\tau^{2}$.

## The general case.

We may assume $c \neq 0$, so $\phi$ is not always zero. Where $\phi>0$, we have $\tau=c / \phi^{2}$, so (1) and (2) become the semilinear ODE

$$
\begin{equation*}
\phi^{\prime \prime}=\kappa^{2}(1-\phi)+\frac{c}{\phi^{3}}:=f_{c}(\phi) . \tag{5}
\end{equation*}
$$

## Lemma

All solutions of (5) are positive periodic functions.

## Proof.

(5) is an autonomous system with integrating function

$$
\begin{equation*}
F(x, y)=\left(\frac{\kappa^{2}}{2} x^{2}+\frac{1}{2} y^{2}\right)-\kappa^{2} x+\frac{c^{2}}{2 x^{2}}=\text { const }, \tag{6}
\end{equation*}
$$

where $x=\phi$ and $y=\phi^{\prime}$.

## Can these curves ever close?

## Theorem (CFKSW (2009))

Any closed piecewise $C^{2} \lambda$-critical curve with no strut force measure is a circle of radius $\lambda / 2$.

## Proof.

We have reduced to the case $\phi>0$ with period $P$. Recall
$T \cdot V_{0}=1-\phi$. Solving (5) for $1-\phi$, we see
$1-\phi=\frac{1}{\kappa^{2}} \phi^{\prime \prime}-\frac{c}{\kappa^{2} \phi^{3}}$. So we have

$$
\begin{equation*}
\int_{0}^{P} T \cdot V_{0} \mathrm{~d} s=\int_{0}^{P} \frac{1}{\kappa^{2}} \phi^{\prime \prime}-\frac{c}{\kappa^{2} \phi^{3}} \mathrm{~d} s=-\frac{c}{\kappa^{2}} \int_{0}^{P} \phi^{-3} \mathrm{~d} s \tag{7}
\end{equation*}
$$

This $\neq 0$, since $c \neq 0$ and $\phi>0$. So over each period the curve moves a constant distance in the $V_{0}$ direction.

## Alternate critical configurations for (some) knots



## Remark

It would be really nice to extend this strategy to find an "alternate" or Gordian unknot, but you can't, because the round circle already has a symmetry of every period.

## Alternate critical configurations for (some) knots



Theorem (with Fu, Kusner, Sullivan, Wrinkle, in preparation)
There is another critical configuration of $3_{1}$ with 2 -fold symmetry.

Proof.
The proof is based on a symmetric version of the criticality theorem. There should be a critical configuration with 3-fold and with 2-fold symmetry (there is no configuration with both symmetries.)

## Alternate critical configurations for (some) knots



Theorem (with Fu, Kusner, Sullivan, Wrinkle, in preparation)
There is another critical configuration of $3_{1}$ with 2 -fold symmetry.

## Proof.

The proof is based on a symmetric version of the criticality theorem. There should be a critical configuration with 3 -fold and with 2 -fold symmetry (there is no configuration with both symmetries.)

## Alternate critical configurations for (some) knots



Remark
It would be really nice to extend this strategy to find an "alternate" or Gordian unknot, but you can't, because the round circle already has a symmetry of every period.

## Open questions: What about large-scale tight knots?

With our computer algorithm in place, it looks like a good idea to check out large knots.


Ashley knot (ie. your favorite sweater) KnotPlot

## Movies (of putting your favorite sweater in the dryer)

This is why we have simulation: some experiments are just too cruel to perform in real life. (No sweaters were harmed in the making of this film.)

## Observation

Notice that the sweater became (sadly) nonplanar after being tightened, but did not completely collapse. It seems like it takes a knot like this to form a large blob.

blob (KnotPlot)

## Movies of the blob

(No blobs were harmed in the making of this film either.)

## Thank you!

Thank you for inviting me!

## Thank you!

Thank you for inviting me!
And be sure to see Ellie's talk tomorrow ...

## Another solution: Clasps

What happens when a rope is pulled over another?


## Another solution: Clasps

What happens when a rope is pulled over another?


It depends on the angle $(\tau)$ and the stiffness $(\lambda)$ of the rope.

## Four types of clasps



## Gehring clasp (CFSKW 2006)



- $\delta$ length balanced against strut force only.
- Curvature given explicitly, position as an elliptic integral.
- Small gap between the two tubes.
- Curvature unbounded at tip.


## Gehring clasp (CFSKW 2006)



- $\delta$ length balanced against strut force only.
- Curvature given explicitly, position as an elliptic integral.
- Small gap between the two tubes.
- Curvature unbounded at tip.


## Gehring clasp (CFSKW 2006)



- $\delta$ length balanced against strut force only.
- Curvature given explicitly, position as an elliptic integral.
- Small gap between the two tubes.
- Curvature unbounded at tip.


## Gehring clasp (CFSKW 2006)



- $\delta$ length balanced against strut force only.
- Curvature given explicitly, position as an elliptic integral.
- Small gap between the two tubes.
- Curvature unbounded at tip.


## Kinked, Transitional, Generic Clasps



