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Motivating questions

Question
What are the shapes of tightly knotted tubes?

Question
How do those shapes depend on the topology of the knot?
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Motivating questions

Question
What are the shapes of tightly knotted tubes?

Question
How do those shapes depend on the topology of the knot?

(From numerical computation, true shape unknown.)
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Review from Elizabeth Denne’s talk:

Definition (Federer 1959)
The reach of a space curve is the largest ε so that any point in
an ε-neighborhood of the curve has a unique nearest neighbor
on the curve.

Idea
reach(K ) (also called thickness) is controlled by curvature
maxima (kinks) and self-distance minima (struts).
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Ropelength

Definition
The ropelength of K is given by Rop(K ) = Len(K )/ reach(K ).

Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave
2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002)
Ropelength minimizers (called tight knots) exist in each knot
and link type and are C1,1.

Question
What is the smoothness of a tight knot? Current examples
suggest that such a knot is piecewise smooth but not C2.
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Examples: Why only piecewise smooth?

Theorem (with Fu, Kusner, Sullivan, Wrinkle 2009, cf.
Gonzalez, Maddocks 2000, Schuricht, Von der Mosel 2003)
Any open interval of a tight knot either: contains an endpoint of
a strut, has curvature 1 almost everywhere, or is a straight line
segment.

Cantarella, Fu, Kusner, Sullivan, Wrinkle Ropelength and Knot Geometry



Examples: Why only piecewise smooth?

Theorem (with Fu, Kusner, Sullivan, Wrinkle 2009, cf.
Gonzalez, Maddocks 2000, Schuricht, Von der Mosel 2003)
Any open interval of a tight knot either: contains an endpoint of
a strut, has curvature 1 almost everywhere, or is a straight line
segment.

Cantarella, Fu, Kusner, Sullivan, Wrinkle Ropelength and Knot Geometry



Lower Bounds on Ropelength

Theorem (Diao 2006)

Rop(K ) ≥ 1
2

(
17.334 +

√
17.3342 + 64π Cr(K )

)
.

Corollary
The unknot has the lowest ropelength of all knots. For any N,
there are only a finite number of knots with ropelength < N.

Proof.
The ropelength of a tight unknot is 4π = 12.566, less than any
knot of higher crossing number. All knots with Rop < N have

Cr <
0.000125

π
N(500N − 8667).

Cantarella, Fu, Kusner, Sullivan, Wrinkle Ropelength and Knot Geometry



Lower Bounds on Ropelength

Theorem (Diao 2006)

Rop(K ) ≥ 1
2

(
17.334 +

√
17.3342 + 64π Cr(K )

)
.

Corollary
The unknot has the lowest ropelength of all knots. For any N,
there are only a finite number of knots with ropelength < N.

Proof.
The ropelength of a tight unknot is 4π = 12.566, less than any
knot of higher crossing number. All knots with Rop < N have

Cr <
0.000125

π
N(500N − 8667).

Cantarella, Fu, Kusner, Sullivan, Wrinkle Ropelength and Knot Geometry



Lower Bounds on Ropelength

Theorem (Diao 2006)

Rop(K ) ≥ 1
2

(
17.334 +

√
17.3342 + 64π Cr(K )

)
.

Corollary
The unknot has the lowest ropelength of all knots. For any N,
there are only a finite number of knots with ropelength < N.

Proof.
The ropelength of a tight unknot is 4π = 12.566, less than any
knot of higher crossing number. All knots with Rop < N have

Cr <
0.000125

π
N(500N − 8667).

Cantarella, Fu, Kusner, Sullivan, Wrinkle Ropelength and Knot Geometry



More consequences of this Cr / Rop bound.

Corollary
Hopf link (Rop = 25.1327) is the tightest nontrivial link.

Proof.
Evaluating the formula in a few cases,
Cr(K ) 3 4 5 . . . 10 11
Rop(K ) ≥ 23.698 25.286 26.735 . . . 32.704 33.73

So only Rop(31) could be lower than Rop(21). But DDS show
Rop(31) ≥ 31.32 > 25.137.

Question
Is the trefoil (Rop ' 32.74) the tightest knot?
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Are these bounds close to tight?

To know, we need approximate numerical data. How to get it?
Simulate the gradient flow of length

. . . with struts entered as new constraints as they form . . .

. . . eventually all motion is stopped by constraints.
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Trefoil tightening movie

Show tightening movie 1.
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What does this tell you about the math?

Theorem (Rawdon 2000)

Suppose that P is a polygonal knot. Then there exists a C1,1

knot K inscribed in P so that Rop(P) ≥ Rop(K ).

Given this theorem, we can use computational methods to find
upper bounds for smooth ropelength by finding tight polygonal
knots.
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Some more tight polygonal knots . . .
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Some more tight polygonal knots . . .
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EE (Everybody Else ≤ 10crossings)
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Ropelength and Crossing Number vs Data

Question
Find effective Rop bounds for simple (< 10 crossing) knots.

 20
 30
 40
 50
 60
 70
 80
 90

 2 3 4 5 6 7 8 9
Cr

Rop

Cr Rop Links
3 32.74 31
4 [40.01, 42.09] 42

1, 41
5 [47.20, 49.77] 51, 52

1
6 [50.57, 58.1] 63

3, 63
2

7 [55.53, 66.33] 72
7, 72

6
8 [60.58, 77.83] 83

7, 83
4

9 [66.06, 85.47] 92
49, 94

1
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Wait a minute: how accurate was that data?

Answer
Unknown. We can only check known answers.

Computation (with Ashton, Piatek, Rawdon, ridgerunner)

Link name Hopf link (22
1) 22

1#22
1 63

2
Vertices 216 384 630
Rop bound 25.1389 41.7086588 58.0146
Rop 8π 12π + 4 58.0060
Error 0.02% 0.02% 0.01%
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Natural question: Are there local minimum knots?

If we start a knot from two different positions, could we get
different “tight” configurations?

10137 10137 (really)
KnotPlot (Rob Scharein) Kawauchi (Ellie Dannenberg)
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Movies of the 10137 tightenings

We just feed them to the computer and watch it go . . .
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Natural question: Are there local minimum knots?

Here are the resulting stopping points for the algorithm
side-by-side:

10137 (still) 10137
KnotPlot (Rob Scharein) Kawauchi (Ellie Dannenberg)
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Local minimum knots: What can we actually prove?

Question
Suppose we have an unknotted open interval of rope and we
pull it tight. Is there any tight shape other than the straight line?

Theorem (with Fu, Kusner, Sullivan, Wrinkle)
There are open, ropelength critical, curves with no tube
contacts different from the straight line.

Actually, this is a semi-classical question:

Question (Markov-Dubins-Reed-Shepp Car (Sussmann 1995))
What are the length-critical curves with curvature bounded
above? How do they depend on boundary conditions?
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Intuition: What do we expect to be true?

Switch to document camera demo . . .
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Option 1: Some circle arcs. . .

Cantarella, Fu, Kusner, Sullivan, Wrinkle Ropelength and Knot Geometry



Option 2: Certain helices . . .
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Option 3: Something else . . .

(Numerical solution to known ODE given later in talk.)
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Just to remember . . .

Definition
The reach of a space curve is the largest ε so that any point in
an ε-neighborhood of the curve has a unique nearest neighbor
on the curve.

Idea
Reach is controlled by curvature (kinks) and pairs of closest
approach (struts).
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Strut measures

Definition
A strut measure is a non-negative Radon measure on the struts
representing a compression force pointing outwards.

Definition
A strut force measure ~S on L is the vector-valued Radon
measure defined at each point p of L by integrating a strut
measure over all the struts with an endpoint at p.
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Main Theorem

We can find an Euler-Lagrange equation for ropelength-critical
curves. Think of the strut force measure as an (infinite) set of
Lagrange multipliers. Then

Idea of theorem (CFKSW (2009))
Suppose L is thickness 1, and the parts of L with maximum
curvature are nice. Then at each point on the curve

total force from self contacts = elastic force
+ force transmitted through kinks.

Cantarella, Fu, Kusner, Sullivan, Wrinkle Ropelength and Knot Geometry



Main Theorem

We can find an Euler-Lagrange equation for ropelength-critical
curves. Think of the strut force measure as an (infinite) set of
Lagrange multipliers. Then

Theorem (CFKSW (2009))
Suppose L is λ-critical, and that Kink is included in a subarc on
which L is regulated. Then ∃ a strut force measure ~S and a
nonnegative lower semicontinuous function φ ∈ BV(L) such
that (φN)′ ∈ BV(L), with

~S|interior L = −
(

(1− 2φ)T − λ

2
(φN)′

)′∣∣∣∣
interior L

.

If p is a fixed endpoint of L, φ(p) = 0.
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Main Theorem

We can find an Euler-Lagrange equation for ropelength-critical
curves. Think of the strut force measure as an (infinite) set of
Lagrange multipliers. Then

Theorem (CFKSW (2009))

Suppose L is λ-critical and piecewise C2 and L has no struts.
Then L is piecewise analytic and there exists a nonnegative
lower semicontinuous function φ ∈ BV(L) such that
(φN)′ ∈ BV(L) and

(1− 2φ)T − λ

2
(φN)′ ≡ V0 = constant.
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Main Theorem

We can find an Euler-Lagrange equation for ropelength-critical
curves. Think of the strut force measure as an (infinite) set of
Lagrange multipliers. Then

Theorem (CFKSW (2009))

Suppose L is λ-critical and piecewise C2 and L has no struts.
Then L is piecewise analytic and there exists a nonnegative
smooth function φ so that

φ′′ + (κ2 − τ2)φ = κ2 (1)

τφ2 = c (2)

for some constant c. Since κ = 2/λ = constant, this is a
system of ODE for τ and φ with initial conditions specified by c
and φ(0), and a constant solution φ = φ0(c).
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Pictures of solutions

φ0(c)× 1 1.125 1.25 1.5 1.75 2

c = 1
2

c = 1

c = 3
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The case c = 0.

Suppose first that c = 0. Either φ = 0 (the curve is a line) or
τ = 0 (the curve is planar, and hence a circle arc).

Proposition

A circular arc of radius λ
2 with fixed endpoints is critical with no

strut force measure ⇐⇒ its angle exceeds π.

Proof.
Rewriting (1) in terms of an angle θ along an arc θ ∈ [0, θ0], we
get the system

φ′′ + φ = 1, φ(0) = φ(θ0) = 0. (3)

This has a positive solution (φ = 1− cos θ + B sin θ) is ≥ 0
⇐⇒ θ0 > π.
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The case φ = constant.

Lemma
A critical curve without strut force measure and with φ constant
is a helix with |τ | < κ. Further, the conserved vector V0 points
in the direction of the axis of the helix.

Proof.

Recall that V0 = (1− 2φ)T − λ
2 (φN)′ so

T · V0 = (1− 2φ)− φ

κ
T · N ′ = 1− φ = const . (4)

Thus (cf. doCarmo) κ/τ (and so τ ) are constant.
Now φ′′ = 0 so (1) becomes (κ2 − τ2)φ = κ2.
Since φ ≥ 0, we have κ2 > τ2.
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The general case.

We may assume c 6= 0, so φ is not always zero. Where φ > 0,
we have τ = c/φ2, so (1) and (2) become the semilinear ODE

φ′′ = κ2(1− φ) +
c
φ3 := fc(φ). (5)

Lemma
All solutions of (5) are positive periodic functions.

Proof.
(5) is an autonomous system with integrating function

F (x , y) =

(
κ2

2
x2 +

1
2

y2
)
− κ2x +

c2

2x2 = const, (6)

where x = φ and y = φ′.
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Can these curves ever close?

Theorem (CFKSW (2009))

Any closed piecewise C2 λ-critical curve with no strut force
measure is a circle of radius λ/2.

Proof.
We have reduced to the case φ > 0 with period P. Recall
T · V0 = 1− φ. Solving (5) for 1− φ, we see
1− φ = 1

κ2 φ′′ − c
κ2φ3 . So we have

∫ P

0
T · V0 ds =

∫ P

0

1
κ2 φ′′ − c

κ2φ3 ds = − c
κ2

∫ P

0
φ−3 ds. (7)

This 6= 0, since c 6= 0 and φ > 0. So over each period the curve
moves a constant distance in the V0 direction.
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Alternate critical configurations for (some) knots

Remark
It would be really nice to extend this strategy to find an
“alternate” or Gordian unknot, but you can’t, because the round
circle already has a symmetry of every period.
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Alternate critical configurations for (some) knots

Theorem (with Fu, Kusner, Sullivan, Wrinkle, in preparation)
There is another critical configuration of 31 with 2-fold
symmetry.

Proof.
The proof is based on a symmetric version of the criticality
theorem. There should be a critical configuration with 3-fold
and with 2-fold symmetry (there is no configuration with both
symmetries.)

Remark
It would be really nice to extend this strategy to find an
“alternate” or Gordian unknot, but you can’t, because the round
circle already has a symmetry of every period.
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Open questions: What about large-scale tight knots?

With our computer algorithm in place, it looks like a good idea
to check out large knots.

Ashley knot (ie. your favorite sweater)
KnotPlot
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Movies (of putting your favorite sweater in the dryer)

This is why we have simulation: some experiments are just too
cruel to perform in real life. (No sweaters were harmed in the
making of this film.)
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Observation

Notice that the sweater became (sadly) nonplanar after being
tightened, but did not completely collapse. It seems like it takes
a knot like this to form a large blob.

blob (KnotPlot)
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Movies of the blob

(No blobs were harmed in the making of this film either.)
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Thank you!

Thank you for inviting me!
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Thank you!

Thank you for inviting me!
And be sure to see Ellie’s talk tomorrow . . .
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Another solution: Clasps

What happens when a rope is pulled over another?

arcsin τ
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Another solution: Clasps

What happens when a rope is pulled over another?

arcsin τ

It depends on the angle (τ ) and the stiffness (λ) of the rope.
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Four types of clasps

fully kinked

Gehring

generic

transitional

0.5

1.0

1.5

2.0

2.5

λ

0.2 0.4 0.6 0.8 τ
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Gehring clasp (CFSKW 2006)

δ length balanced against strut force only.
Curvature given explicitly, position as an elliptic integral.
Small gap between the two tubes.
Curvature unbounded at tip.
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Kinked, Transitional, Generic Clasps

kink
shoulder

kink
Gehring

shoulder

Kinked Clasp Transitional Clasp Generic Clasp
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