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1 Preliminary Results

We define a new curvature flow which deforms plane curves along their unit normal vectors at a rate
proportional to the local curvature, such that the total length of the curve cannot change:

Xt = κN +
(

1
L

∫
κ2ds

)
X (1)

where X is the parametrization of a plane curve with arc-length parameter s, κ denotes signed
curvature, N is the indward-pointing unit normal, and L is the total length of the curve. Let T be
the parametrization of the unit tangent to the curve. As defined, our flow differs from that developed
by M. Gage, R. Hamilton, M. Grayson, and others in the addition of the second term in (1). We
shall proceed to show that the total length of the curve now remains fixed, and we shall explore
some of the initial results for the new flow, taking cues from Gage 1. Henceforth, let the curve
parametrization be denoted X(φ, t), where φ is the curve parameter and t is a ‘time’ parameter
distinguishing members of the family of curves generated during the deformation.

1.1 Length-Rescaling

Recall that the total length of a plane curve is given by

L =
∫ ∣∣∣∣∂X∂φ

∣∣∣∣dφ (2)

Hence, the time derivative of the total length of a curve is given by

Lt =
∫ ∣∣∣∣∂X∂φ

∣∣∣∣
t

dφ (3)

And we are therefore interested in the t-dependence of the integrand. Notice that:
1M. Gage, An Isopermietric Inequality with Applications to Curve Shortening, Duke Mathematical Journal 50

(1983), 1225-1229.
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∣∣∣∣∂X∂φ
∣∣∣∣
t

=
∂

∂t

(〈
∂X

∂φ
,
∂X

∂φ

〉1/2
)

=

〈
∂X
∂φ ,

∂2X
∂t∂φ

〉
∣∣∣∂X∂φ ∣∣∣ =

〈
∂X
∂φ ,

∂2X
∂φ∂t

〉
∣∣∣∂X∂φ ∣∣∣

=
〈
T,

∂

∂φ

(
κN +

X

L

∫
κ2ds

)〉
=
〈
T,
∂κ

∂φ
N − κ2

∣∣∣∣∂X∂φ
∣∣∣∣T +

T

L

∣∣∣∣∂X∂φ
∣∣∣∣ ∫ κ2ds

〉
=

(
1
L

∫
κ2ds

) ∣∣∣∣∂X∂φ
∣∣∣∣− κ2

∣∣∣∣∂X∂φ
∣∣∣∣

where we have made use of the Frenet formulas and the orthogonality of T and N . If we now
integrate this result with respect to φ, we obtain an expression for (3):

Lt =
(

1
L

∫
κ2ds

)∫ ∣∣∣∣∂X∂φ
∣∣∣∣ dφ− ∫ κ2

∣∣∣∣∂X∂φ
∣∣∣∣ dφ =

L

L

∫
κ2ds−

∫
κ2ds = 0

since
∣∣∣∂X∂φ ∣∣∣ dφ = ds and

∫
ds along the whole curve is just the total length L.

Hence, we see that the total length of the curve does not change under this modified flow. Note,
however, that this is a condition which arises from integration and which will not hold locally.

1.2 Area

As Gage shows, we can use the support function p = −〈X,N〉 to express the area enclosed by a
plane curve:

2A = −
∫
〈X,N〉

∣∣∣∣∂X∂φ
∣∣∣∣dφ (4)

Then, as before, we differentiate both sides with respect to t:

2At = −
∫ 〈

κN +
(

1
L

∫
κ2ds

)
X,N

〉 ∣∣∣∣∂X∂φ
∣∣∣∣dφ− ∫ 〈X,Nt〉 ∣∣∣∣∂X∂φ

∣∣∣∣dφ
−
∫
〈X,N〉

(
1
L

∣∣∣∣∂X∂φ
∣∣∣∣ ∫ κ2ds− κ2

∣∣∣∣∂X∂φ
∣∣∣∣)dφ

To simplify this expression, we’ll need to focus on the Nt term. To begin with, we differentiate (1)
with respect to φ, which we have already done in deriving an expression for

∣∣∣∂X∂φ ∣∣∣
t
:

Xtφ =
∂κ

∂φ
N − κ2

∣∣∣∣∂X∂φ
∣∣∣∣T − ( 1

L

∣∣∣∣∂X∂φ
∣∣∣∣ ∫ κ2ds

)
T = Xφt =

(
T

∣∣∣∣∂X∂φ
∣∣∣∣)

t

(5)

Now we take the inner product of the terms in (5) with N , obtaining:
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〈(
T

∣∣∣∣∂X∂φ
∣∣∣∣)

t

, N

〉
= −

〈
T

∣∣∣∣∂X∂φ
∣∣∣∣ , Nt〉 =

∂κ

∂φ
(6)

and it therefore follows that

Nt = −
∂κ
∂φ∣∣∣∂X∂φ ∣∣∣T (7)

Returning to the time derivative of area, we can now write

2At = −
∫ 〈

κN +
(

1
L

∫
κ2ds

)
X,N

〉 ∣∣∣∣∂X∂φ
∣∣∣∣dφ− ∫

〈
X,−

∂κ
∂φ∣∣∣∂X∂φ ∣∣∣T

〉∣∣∣∣∂X∂φ
∣∣∣∣dφ

−
∫
〈X,N〉

(
1
L

∣∣∣∣∂X∂φ
∣∣∣∣ ∫ κ2ds− κ2

∣∣∣∣∂X∂φ
∣∣∣∣)dφ

= −2π −
(

2
L

∫
κ2ds

)∫
〈X,N〉ds+

∫
∂κ

∂φ
〈X,T 〉dφ+

∫
κ2 〈X,N〉ds

Now, we integrate the third term by parts in order to proceed. Move the derivative from ∂κ
∂φ to the

inner product, so that
∫
∂κ
∂φ 〈X,T 〉dφ = κ 〈X,T 〉 −

∫
κds−

∫
κ2 〈X,N〉ds, but the first term should

vanish since it will be the same at the endpoints. Furthermore, we recall that, around the closed
curve,

∫
κds = 2π. Recalling also the relationship we stated earlier between the support function

and area, we now have:

At = −2π −
(

1
L

∫
κ2ds

)∫
〈X,N〉ds = −2π +

(
2
L

∫
κ2ds

)
A (8)

as our final expression for the time derivative of area under the length-rescaled flow.

1.3 Curvature

To obtain an expression for the time derivative of curvature, we begin by differentiating our expres-
sion for Nt (7) with respect to φ.

Ntφ = −∂
2κ

∂φ2

∣∣∣∣∂X∂φ
∣∣∣∣−1

T +
∂κ

∂φ

∣∣∣∣∂X∂φ
∣∣∣∣−2 ∣∣∣∣∂X∂φ

∣∣∣∣
φ

T − ∂κ

∂φ
κN = Nφt =

(
−
∣∣∣∣∂X∂φ

∣∣∣∣κT)
t

(9)

This last term is (
−
∣∣∣∣∂X∂φ

∣∣∣∣κT)
t

= −
∣∣∣∣∂X∂φ

∣∣∣∣
t

κT −
∣∣∣∣∂X∂φ

∣∣∣∣κtT − ∣∣∣∣∂X∂φ
∣∣∣∣κTt (10)

and so we shall need an expression for Tt. In (6) we showed that
〈(
T
∣∣∣∂X∂φ ∣∣∣)

t
, N
〉

= ∂κ
∂φ . By carrying

out the indicated differentiation and plugging in the expression we obtained for
∣∣∣∂X∂φ ∣∣∣

t
, we find that
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Tt =
∂κ

∂φ

∣∣∣∣∂X∂φ
∣∣∣∣−1

N (11)

Now (9) becomes (
−
∣∣∣∣∂X∂φ

∣∣∣∣κT)
t

= −
∣∣∣∣∂X∂φ

∣∣∣∣
t

κT −
∣∣∣∣∂X∂φ

∣∣∣∣κtT − κ∂κ∂φN
Putting this into (9) and then dotting that entire expression with T yields

−∂
2κ

∂φ2

∣∣∣∣∂X∂φ
∣∣∣∣−1

+
∂κ

∂φ

∣∣∣∣∂X∂φ
∣∣∣∣−2 ∣∣∣∣∂X∂φ

∣∣∣∣
φ

= −
∣∣∣∣∂X∂φ

∣∣∣∣
t

κ−
∣∣∣∣∂X∂φ

∣∣∣∣κt (12)

which we can rewrite as

κt =
∣∣∣∣∂X∂φ

∣∣∣∣−1
∂

∂φ

(
∂κ

∂φ

∣∣∣∣∂X∂φ
∣∣∣∣−1
)
−
∣∣∣∣∂X∂φ

∣∣∣∣−1 ∣∣∣∣∂X∂φ
∣∣∣∣
t

κ (13)

and so plugging in the expression for
∣∣∣∂X∂φ ∣∣∣

t

κt =
∣∣∣∣∂X∂φ

∣∣∣∣−1
∂

∂φ

(
∂κ

∂φ

∣∣∣∣∂X∂φ
∣∣∣∣−1
)

+ κ3 − κ

L

∫
κ2ds (14)

Note that this differs from the time derivative of curvature for the ordinary curve-shortening flow
only in the last term. Without this term, Gage2 remarks that one can use the maximum principle
to deduce that if curvature is initially everywhere positive, it will remain so under the flow.

1.4 The Isoperimetric Ratio

We are now ready to state a theorem.

Theorem 1 A family of C2, convex curves γ(t) satisfying the evolution equation (1) for 0 < t < T
also satisfies

lim
t→T

L

4πA
= 1

Proof. We begin by computing the time derivative of the isoperimetric ratio using the time derivatives
of length and area. So: (

L2

4πA

)
t

=
LLt
2πA

− L2

4πA2
At = − L2

4πA2
At (15)

and with (8) this becomes (
L2

4πA

)
t

=
L2

2A2
− L

2πA

∫
κ2ds (16)

2M. Gage, Curve Shortening Makes Convex Curves Circular, Invent. Math. 76 (1984), 357-364.
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What can we say about the sign of this quantity? Setting the expression less than zero and rear-
ranging, we obtain the condition ∫

κ2ds > π
L

A
(17)

Gage has shown in Lemma 3, page 359 of [2] that there is a nonnegative functional F (γ) which is
defined for all convex, C2 curves γ and which satisfies(∫

κ2ds

)
(1− F (γ))− π L

A
≥ 0 (18)

and F (γ) = 0 when γ is a circle. Hence, (17) must be satisfied for all convex, C2 curves, and
therefore the time derivative of the isoperimetric ratio is always negative under the evolution (1)
unless the curve is a circle.

We conclude that the isoperimetric ratio for C2, convex curves is strictly decreasing until it
reaches the value 1, at which point the curve is a circle and the ratio no longer changes. �

We shall now consider some results of a different nature for this length-rescaled flow. The notation
may change slightly in places in order to correspond more closely with the references we’ll be using.
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2 The Chord Length to Arc Length Ratio for Open Curves
Undergoing Length-Rescaled Curvature Flow

Theorem 2 Let d and l denote the chord length and arc length, respectively, between any two points
p and q on an open curve, so that

d = |X(p, t)−X(q, t)| (19)

and

l =
∫ q

p

∣∣∣∣∂X∂φ
∣∣∣∣ dφ (20)

Then let X : Γ× [0, T ]→ R2 be an embedded solution of the length-rescaled curvature flow (1), where
Γ 6= S1 so that l is smoothly defined on Γ× Γ. Then the minimum of d/l on Γ is nondecreasing; it
is strictly increasing unless d/l ≡ 1 and Γ is a straight line segment.

Proof. This theorem, for ordinary curve-shortening flow, is due to G. Huisken3. We follow his
methods of proof, adapting them for the new flow. Furthermore, many of his calculations are
suppressed, and we shall here try to be very explicit.

Since d and l are smooth functions off the diagonal of Γ× Γ, it suffices to show that whenever their
ratio attains a spatial minimum for some pair of points (p, q) ∈ Γ × Γ at some time t0 ∈ [0, T ], we
have

d

dt

(
d

l

)
(p, q, t0) ≥ 0 (21)

Assume without loss of generality that p 6= q and that if s is the arclength parameter at t0 then
s(p) ≥ s(q) at t0. Then, by the assumption of a spatial minimum we have that the first and second
‘variations’ (for our purposes these will simply be directional derivatives) obey the following:

δ(ξ)
(
d

l

)
= 0 (22)

δ2(ξ)
(
d

l

)
≥ 0 (23)

for vectors ξ ∈ TpΓt0 ⊕ TqΓt0 , the space of tangent vectors at p and q at time t0.

It will be helpful to re-parametrize the curve locally around p and q using arc-length parameters u
and v, respectively, so that the curve is described at time t0 near these points by the parametrizations
X(u, t0) and X(v, t0). Then we shall need to define several vectors before continuing. Have e1 and
e2 denote the unit tangent vectors along the curve at p and q:

e1 =
∂X(u, t0)

∂u
(24)

3G. Huisken, A Distance Comparison Principle for Evolving Curves, Asian J. Math. 2 (1998), 127-134
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e2 =
∂X(v, t0)

∂v
(25)

Let ω denote the unit vector in the direction from p to q:

ω =
X(v, t)−X(u, t)

d
(26)

and then note that our first variation obeys a Leibniz rule

δ

(
d

l

)
=
δ(d)
l
− d

l2
δ(l) (27)

so that we need only compute the variations of d and l individually. In order to compute the first
variation of d, we shall need to first compute du, dv, and dt. We pause now to do so. Let the
curvature vector ~κ stand for κN in what follows.

du =
〈X(u, t)−X(v, t), e1〉

d
= −〈ω, e1〉 (28)

dv =
〈X(u, t)−X(v, t),−e2〉

d
= 〈ω, e2〉 (29)

dt =
1
d

〈
(X(u, t)−X(v, t)), ~κ(u, t) +

(
1
L

∫
κ2ds

)
X(u, t)− ~κ(v, t)−

(
1
L

∫
κ2ds

)
X(v, t)

〉
= 〈−ω,~κ(u, t)− ~κ(v, t)〉 −

(
1
L

∫
κ2ds

)
〈ω,X(u, t)−X(v, t)〉

= 〈ω,~κ(v, t)− ~κ(u, t)〉+
d

L

∫
κ2ds

We now consider the vanishing of the first variation along e1 and e2. We first compute the first
variations of d and l in these directions and then proceed to plug them into (27).

δ(e1 ⊕ 0)(d) = De1d = 〈e1,∇d〉 = du = −〈ω, e1〉 (30)

δ(e1 ⊕ 0)(l) = −1 (31)

δ(0⊕ e2)(d) = De2d = 〈e2,∇d〉 = dv = 〈ω, e2〉 (32)

δ(0⊕ e2)(l) = 1 (33)

and so, plugging these into (27), we get

δ(e1 ⊕ 0)
(
d

l

)
=
d

l2
− 〈ω, e1〉

l
= 0 (34)
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δ(0⊕ e2)
(
d

l

)
=
〈ω, e2〉
l
− d

l2
= 0 (35)

from which it follows that

〈ω, e1〉 = 〈ω, e2〉 =
d

l
(36)

which we’ll want to keep in mind for future calculations.

Now we turn to the second variation, for which we can write

δ2
(
d

l

)
=
δ2(d)
l
− 2

δ(d)δ(l)
l2

+ 2
d(δ(l))2

l3
− δ2(l)

d

l2
≥ 0 (37)

Here, we must now consider two cases.

2.0.1 Case 1: e1 = e2

Here, we are essentially moving in the same direction along the curve at p and at q, and so all
variations of l now vanish, and we need only consider the first term in equation (37). Computing
the second variation of d:

δ2(e1 ⊕ e2)(d) =
〈
H(d)

(
1
1

)
,

(
1
1

)〉
= duu + 2duv + dvv (38)

where H(d) was the Hessian matrix of partial derivatives of d. Now, by differentiating (28) and (29)
and using (36), it should turn out that

duu =
1
d
− d

l2
− 〈ω,~κ(u, t)〉 (39)

dvv =
1
d
− d

l2
+ 〈ω,~κ(v, t)〉 (40)

duv =
d

l2
− 1
d

(41)

Plugging these into (38) and then (37), we get

δ2(e1 ⊕ e2)
(
d

l

)
=

1
l
δ2(e1 ⊕ e2)(d) =

1
l
〈ω,~κ(v, t)− ~κ(u, t)〉 ≥ 0 (42)
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2.0.2 Case 2: e1 6= e2

We shall now choose ξ = e1 	 e2 so that

δ(e1 	 e2)(l) = −2 (43)

and

δ(e1 	 e2)(d) = −〈ω, e1 + e2〉 (44)

We perform calculations analogous to those in Case 1. We know from before, or can easily compute,
the following:

δ(e1 	 e2)
(
d

l

)
= 2

d

l
− 1
l
〈ω, e1 + e2〉 = 0 (45)

〈ω, e1〉 = 〈ω, e2〉 =
d

l
(46)

δ2
(
d

l

)
=

1
l
δ2(d)− 2δ(d)δ(l)

l2
+

2d(δ(l))2

l3
− d

l2
δ2(l) ≥ 0 (47)

Note that

〈e1 + e2, e1 + e2〉 = |e1 + e2|2 ⇒ 2〈e1, e2〉 = |e1 + e2|2 − 2 (48)

which we shall need later on. Now, plugging equations (43) and (44) into equation (47) , we can
simplify that inequality to

δ2
(
d

l

)
=

1
l
δ2(d)− 4

l2
〈ω, e1 + e2〉+ 8

d

l3
≥ 0 (49)

Using (46), we simplify the middle term as follows

δ2
(
d

l

)
=

1
l
δ2(d)− 4

l2

(
2
d

l

)
+ 8

d

l3
=

1
l
δ2(d) ≥ 0 (50)

and so we need only compute δ2(d), which will not be the same as in Case 1. There are two reasons
for this: for one, our variational vector is now (1,−1). Furthermore, we will get cross-terms when
we compute duv, which is why we needed an expression for 〈e1, e2〉. In the first case, this was simply
1.

Now,

δ2(e1 	 e2)(d) =
〈
H(d)

(
1
−1

)
,

(
1
−1

)〉
= duu − 2duv + dvv (51)

and so we need to compute these second partials. Starting with du = −〈ω, e1〉 and dv = 〈ω, e2〉, we
have

duu = −〈ωu, e1〉 − 〈ω,~κ(u, t)〉 (52)
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and so we need to compute ωu:

ωu = −1
d
e1 −

X(v, t)−X(u, t)
d2

du = ω
〈ω, e1〉
d
− e1

d
(53)

With this in hand, and using (46), (52) becomes

duu =
1
d
− d

l2
− 〈ω,~κ(u, t)〉 (54)

Following the same procedure, we can compute

dvv =
1
d
− d

l2
+ 〈ω,~κ(v, t)〉 (55)

Lastly, using equation (48) we can compute

duv = −〈ωv, e1〉 =
d

l2
− 1
d
〈e1, e2〉 =

d

l2
− 1

2d
|e1 + e2|2 +

1
d

(56)

Putting these three results back into (51), we should get

δ2(e1 	 e2)
(
d

l

)
=

1
dl
|e1 + e2|2 − 4

d

l3
+

1
l
〈ω,~κ(v, t)− ~κ(u, t)〉 ≥ 0 (57)

But we shall show that the first two terms are, in fact, equal. For ξ = e1 	 e2, ω||(e1 + e2), and so
we can use the fact that 〈ω, e1 + e2〉 = |e1 + e2| to rewrite the first term above:

1
dl
〈ω, e1 + e2〉2 =

1
dl

(〈ω, e1〉+ 〈ω, e2〉)2 =
1
dl

(
d

l
+
d

l

)
= 4

d

l3
(58)

so the first two terms of (57) cancel and we’re left with the same conclusion as in Case 1, as we
hoped:

1
l
〈ω,~κ(v, t)− ~κ(u, t)〉 ≥ 0 (59)

We are now ready to consider the time derivative of the original quantity of interest, d/l. With what
we already know, we can go ahead and write(

d

l

)
t

=
dt
l
− d

l2
lt =

1
l
〈ω,~κ(v, t)− ~κ(u, t)〉+

d

lL

∫
κ2ds− d

l2
lt (60)

In order to say more about this result we shall need to come up with an expression for lt. Remember:
while the total length of the curve does not change, we do not know what is happening locally, and
l refers only to the arc length between two particular points p and q. Recall, to begin with, that we
can express this time derivative as lt =

∫ q
p

∣∣∣∂X∂φ ∣∣∣
t
dφ. From page 2, we have seen that we can express
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the integrand here as
(

1
L

∫
κ2ds

) ∣∣∣∂X∂φ ∣∣∣− κ2
∣∣∣∂X∂φ ∣∣∣. Integrating this with respect to φ, now from p to

q, we’ll see that

lt =
l

L

∫
κ2ds−

∫ q

p

κ2ds (61)

Returning now to (60) with this result (which causes some cancellation), and using the results
obtained in (42) and (59), we see that:(

d

l

)
t

=
1
l
〈ω,~κ(v, t)− ~κ(u, t)〉+

d

l2

∫ q

p

κ2ds ≥ d

l2

∫ q

p

κ2ds (62)

This last term is obviously greater than zero off the diagonal of Γ × Γ, where it is identically zero.
Hence, (

d

l

)
t

≥ d

l2

∫ q

p

κ2ds ≥ 0 (63)

and the theorem has been proven. �
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3 The Chord Length to Arc Length Ratio for Closed Curves
Undergoing Length-Rescaled Curvature Flow

We use the same notation as in the proof of the theorem for open curves. However, we are now
going to want to define a new quantity since l is no longer smoothly defined for closed curves. Let
ψ : S1 × S1 × [0, T ]→ R be given by

ψ ≡ L

π
sin
(
lπ

L

)
(64)

where l is the arc length between two points on the curve, as before, and L is the total length of the
curve.

Theorem 3 Let X : S1 × [0, T ] → R2 be a smooth solution of the length-rescaled curvature flow
(1).Then the minimum of d/ψ is nondecreasing; it is strictly increasing unless d/ψ ≡ 1 and X(S1)
is a round circle.

Proof. As before, the theorem and proof follow closely those of Gerhard Huisken. And, as before,
we shall attempt to be as explicit as possible in our computations.

So once again, it suffices to show that whenever d/ψ attains a spatial minimum for some pair of
points (p, q) ∈ S1 × S1 at some time t0 ∈ [0, T ], then

d

dt

(
d

ψ

)
(p, q, t0) ≥ 0 (65)

Let s once again be the arclength parameter at t0, and assume 0 ≤ s(p) ≤ s(q) ≤ 1
2L(t0), so that

l(p, q, t0) = s(q)− s(p). We shall reprise Huisken’s ‘variational’ methods. So, by assumption:

δ(ξ)
(
d

ψ

)
(p, q, t0) = 0 (66)

δ2(ξ)
(
d

ψ

)
(p, q, t0) ≥ 0 (67)

for variations ξ ∈ TpS1
t0 ⊕ TqS

1
t0 . Let’s first consider, just as we did before, the variations ξ = e1 ⊕ 0

and ξ = 0 ⊕ e2. Because our definitions of d and l have not changed, we can use our previous
computations of the derivatives and variations in order to say that

δ(e1 ⊕ 0)(d) = −〈ω, e1〉 (68)

δ(0⊕ e2)(d) = 〈ω, e2〉 (69)

δ(e1 ⊕ 0)(l) = −1 (70)
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δ(0⊕ e2)(l) = 1 (71)

Then we can compute

δ(e1 ⊕ 0)(ψ) =
d

dl
(ψ)δ(e1 ⊕ 0)(l) = − cos

(
lπ

L

)
(72)

δ(0⊕ e2)(ψ) =
d

dl
(ψ)δ(0⊕ e2)(l) = cos

(
lπ

L

)
(73)

Now, remembering that δ(d/ψ) = δ(d)
ψ −

d
ψ2 δ(ψ), we can plug in equations (68), (69), (72), and (73)

to show that

δ(e1 ⊕ 0)
(
d

ψ

)
=
−〈ω, e1〉

ψ
+

d

ψ2
δ(ψ) = 0 (74)

δ(0⊕ e2)
(
d

ψ

)
=
〈ω, e2〉
ψ

− d

ψ2
δ(ψ) = 0 (75)

from which it follows that

〈ω, e1〉 = 〈ω, e2〉 =
d

ψ
cos
(
lπ

L

)
(76)

which we shall want to keep in mind.

Now we consider the second variation, which satisfies

δ2
(
d

ψ

)
=
δ2(d)
ψ
− 2

δ(d)δ(ψ)
ψ2

+ 2
d(δ(ψ))2

ψ3
− d

ψ2
δ2(ψ) ≥ 0 (77)

And once more, we consider two cases.

3.0.3 Case 1: e1 = e2

Choose ξ = e1 ⊕ e2. Because variations of l vanish in this case, all variations of ψ will also vanish,
since we’ve seen that variations of l appear on differentiation of ψ. Thus, we have reduced the
problem to computing δ2(e1 ⊕ e2)

(
d
ψ

)
= δ2(d)

ψ . We computed the numerator in the proof of the
theorem for open curves, so we conclude that

1
ψ
〈ω,~κ(v, t)− ~κ(u, t)〉 ≥ 0 (78)

where again we’ve parametrized locally around p and q using u and v, respectively.
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3.0.4 Case 2: e1 6= e2

Choose ξ = e1 	 e2. Variations of l no longer vanish; now δ(l) = −2. So from (77) we now have
δ2
(
d
ψ

)
= δ2(d)

ψ − 2 δ(d)δ(ψ)
ψ2 + 2d(δ(ψ))2

ψ3 ≥ 0. First we shall compute δ2(d) for this variation. Recall
that

δ2(e1 	 e2)(d) = duu − 2duv + dvv (79)

We’ll pause to compute these second partials, which are now different than in Case 1. Begin with

du = −〈ω, e1〉 (80)

dv = 〈ω, e2〉 (81)

To begin computing the second partials of these, we need to recall equation (76) and make appro-
priate substitutions. We should find that:

duu =
1
d
− d

ψ2
cos2

(
lπ

L

)
− 〈ω,~κ(u, t)〉 (82)

dvv =
1
d
− d

ψ2
cos2

(
lπ

L

)
+ 〈ω,~κ(v, t)〉 (83)

duv =
d

ψ2
cos2

(
lπ

L

)
− 1
d
〈e1, e2〉 (84)

Putting these into (79) and using the fact that 2〈e1, e2〉 = |e1 + e2|2 − 2, we have

δ2(e1 	 e2)(d) =
1
d
|e1 + e2|2 − 4

d

ψ2
cos2

(
lπ

L

)
+ 〈ω,~κ(v, t)− ~κ(u, t)〉 (85)

Now, in this case, since ω||(e1 + e2), we can rewrite the first term in the above as 1
d 〈ω, e1 + e2〉2 and

then use equation (76) so that (85) simplifies nicely to

δ2(e1 	 e2)(d) = 〈ω,~κ(v, t)− ~κ(u, t)〉 (86)

Plugging this into (77), we get:

δ2
(
d

ψ

)
=

1
ψ
〈ω,~κ(v, t)− ~κ(u, t)〉 − 2

δ(d)δ(ψ)
ψ2

+ 2
d(δ(ψ))2

ψ2
≥ 0 (87)

Now, we know that δ(e1 	 e2)(d) = −〈ω, e1 + e2〉 and δ(e1 	 e2)(l) = −2, so we can go ahead and
plug these into (87), obtaining

δ2
(
d

ψ

)
=

1
ψ
〈ω,~κ(v, t)− ~κ(u, t)〉 − 4

ψ2
〈ω, e1 + e2〉 cos

(
lπ

L

)
+ 8

d

ψ3
cos2

(
lπ

L

)
≥ 0 (88)

but by simplifying the middle term with (76) we have the entire relation reducing to

δ2
(
d

ψ

)
=

1
ψ
〈ω,~κ(v, t)− ~κ(u, t)〉 ≥ 0 (89)
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and so we have the same result as in Case 1.

We are now ready to consider the time derivative of d/ψ. We can start, as before, by writing(
d

ψ

)
t

=
dt
ψ
− d

ψ2
ψt =

1
ψ
〈ω,~κ(v, t)− ~κ(u, t)〉+

d

Lψ

∫
κ2ds− d

ψ2
ψt (90)

We already have the time derivative of d from the proof of the theorem for open curves, but now we
need an expression for ψt. We shall also need to recall the expression for lt from the other proof.

ψt =
L

π
cos
(
lπ

L

)(π
L

)
lt = cos

(
lπ

L

)(
l

L

∫
κ2ds−

∫ q

p

κ2ds

)
(91)

We’re then able to rewrite (90) as

(
d

ψ

)
t

=
1
ψ
〈ω,~κ(v, t)− ~κ(u, t)〉+

d

Lψ

∫
κ2ds− d

ψ2
cos
(
lπ

L

)(
l

L

∫
κ2ds−

∫ q

p

κ2ds

)
≥ d

Lψ

∫
κ2ds+

d

ψ2
cos
(
lπ

L

)(∫ q

p

κ2ds− l

L

∫
κ2ds

)
=

dl

ψ2

(
ψ

lL

∫
κ2ds+

1
l

cos
(
lπ

L

)∫ q

p

κ2ds− 1
L

cos
(
lπ

L

)∫
κ2ds

)
We are interested in saying something about the sign of this expression. So, we can ignore the dl

ψ2 ,
which is of course positive, and restrict our attention to the content inside the parentheses. Note
that we can rewrite this portion as

1
L

(
ψ

l
− cos

(
lπ

L

))∫
κ2ds+

1
l

cos
(
lπ

L

)∫ q

p

κ2ds (92)

Although until now we’ve done things in some generality with an L term, we now point out that
we initially stated the theorem for curves of length 2π. Also, it is useful to return to the explicit
definition of ψ. Using these two substitutions gives

1
L

(
2
l

sin
(
l

2

)
− cos

(
l

2

))∫
κ2ds+

1
l

cos
(
l

2

)∫ q

p

κ2ds (93)

Returning once again to our initial assumptions, we had said that l(p, q, t0) < Lt0/2, so l < π and
we know that the rightmost term in (93) is positive. We will now show that the leftmost term is
positive as well. Let x ≡ l/2. Then the portion in parentheses becomes

1
x

sin(x)− cos(x) = cos(x)
(

1
x

tan(x)− 1
)

=
1
x

cos(x)(tan(x)− x) (94)

For the same reason that we could say the rightmost term in (93) was positive, we can say now that
1
x cos(x) is positive. So we are left to decide whether or not tan(x)− x is positive. That this is true
between 0 and π/2 is easily verifiable. For example, simply examine the Taylor expansion for the
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range in which we are interested; for |x| < π/2: tan(x) = x+ x3

3 + 2x5

15 + .... Hence, we’ve shown that

each of the terms in (93) is positive, and therefore
(
d
ψ

)
t
≥ 0, as we wanted to show. This completes

the proof of the theorem. �
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