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1 Preliminary Results

We define a new curvature flow which deforms plane curves along their unit normal vectors at a rate
proportional to the local curvature, such that the total length of the curve cannot change:

X, = kN + G /nst) X (1)

where X is the parametrization of a plane curve with arc-length parameter s, x denotes signed
curvature, N is the indward-pointing unit normal, and L is the total length of the curve. Let T be
the parametrization of the unit tangent to the curve. As defined, our flow differs from that developed
by M. Gage, R. Hamilton, M. Grayson, and others in the addition of the second term in (1). We
shall proceed to show that the total length of the curve now remains fixed, and we shall explore
some of the initial results for the new flow, taking cues from Gage !. Henceforth, let the curve
parametrization be denoted X (¢,t), where ¢ is the curve parameter and ¢ is a ‘time’ parameter
distinguishing members of the family of curves generated during the deformation.

1.1 Length-Rescaling
Recall that the total length of a plane curve is given by

L:/ oxX dé (2)

99
Hence, the time derivative of the total length of a curve is given by
0X
L= [ |=—|d 3
o= [ 5|4 Q)

And we are therefore interested in the t-dependence of the integrand. Notice that:

M. Gage, An Isopermietric Inequality with Applications to Curve Shortening, Duke Mathematical Journal 50
(1983), 1225-1229.
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where we have made use of the Frenet formulas and the orthogonality of T" and N. If we now
integrate this result with respect to ¢, we obtain an expression for (3):

:(i/ﬁds)/’g d¢>— ‘Zz d¢——/ﬁ2d5—/m2ds:o

since ’%‘ d¢ = ds and [ ds along the whole curve is just the total length L.

t 56

Hence, we see that the total length of the curve does not change under this modified flow. Note,
however, that this is a condition which arises from integration and which will not hold locally.

1.2 Area

As Gage shows, we can use the support function p = — (X, N) to express the area enclosed by a
plane curve:

0X
9¢

Then, as before, we differentiate both sides with respect to t:

24, = /<,<;N+G/m2ds>x,1v>‘aéf deo — /(X,Nt)
e (3] -

To simplify this expression, we’ll need to focus on the N; term. To begin with, we differentiate (1)

24 = —/(X,N)’ de (4)
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Now we take the inner product of the terms in (5) with N, obtaining:

with respect to ¢, which we have already done in deriving an expression for

Ok
Xt(b %N - KZ




,Nt> - (6)
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and it therefore follows that

Returning to the time derivative of area, we can now write

—/<HN+(i/ﬂ2ds>X’N>\afid¢ [ il
fren (35 fm- 2[5
—27 — (]2;//@2&9) /(X,N>ds+/a—¢<X,T>d</>+/nz (X,N)ds

Now, we integrate the third term by parts in order to proceed. Move the derivative from 8; to the

inner product, so that f (X, T)d¢ = k(X,T) — [ kds — [ k% (X, N)ds, but the first term should
vanish since it will be the same at the endpoints. Furthermore, we recall that, around the closed
curve, [ kds = 2. Recalling also the relationship we stated earlier between the support function
and area, we now have:

Ay = =21 — G/ﬁds) /<X, N)ds = —27 + <i/li2d$> A (8)

as our final expression for the time derivative of area under the length-rescaled flow.

24,

1.3 Curvature

To obtain an expression for the time derivative of curvature, we begin by differentiating our expres-
sion for N; (7) with respect to ¢.
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This last term is
10,4 o0X
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and so we shall need an expression for T;. In (6) we showed that <(T ‘% ) , N > = g—g. By carrying
t

X | we find that
t
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Now (9) becomes
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Putting this into (9) and then dotting that entire expression with T yields

9%k |0X |7 ok |ox|?|oX 0X 0X
Yol bye + — | = — | = —|=—| k= || K¢ (12)
9¢? | 0¢ 99 | 0¢ ¢ |, 99 |, 99
which we can rewrite as
ox| ' o (ox|ox|! ox | 'ox
Kt = | — — | = |=— — = — | K (13)
99| 99 \ 09 | 0¢ o9 99 |,
and so plugging in the expression for %‘
¢
ox|™t o (o |ox|! s k[
Ht‘@(ﬁ &ﬁ(&b&é >+I€L/l€d8 (14)

Note that this differs from the time derivative of curvature for the ordinary curve-shortening flow
only in the last term. Without this term, Gage? remarks that one can use the maximum principle
to deduce that if curvature is initially everywhere positive, it will remain so under the flow.

1.4 The Isoperimetric Ratio

We are now ready to state a theorem.

Theorem 1 A family of C?, convex curves ¥(t) satisfying the evolution equation (1) for 0 <t < T
also satisfies
lim — =1
T dr A

Proof. We begin by computing the time derivative of the isoperimetric ratio using the time derivatives
of length and area. So:

L? LL, L? L?
(47rA)t T 21A 4rA? A= AmA? At (15)
and with (8) this becomes
L2 2 L [,
- _ 1
<4WA>t 242 zwA/“ ds (16)

2M. Gage, Curve Shortening Makes Convex Curves Circular, Invent. Math. 76 (1984), 357-364.



What can we say about the sign of this quantity? Setting the expression less than zero and rear-
ranging, we obtain the condition

L
2
/FE ds > (17)

Gage has shown in Lemma 3, page 359 of [2] that there is a nonnegative functional F'(y) which is
defined for all convex, C? curves + and which satisfies

</ ;«Pds) (1-F(y)) - w% >0 (18)

and F(y) = 0 when v is a circle. Hence, (17) must be satisfied for all convex, C? curves, and
therefore the time derivative of the isoperimetric ratio is always negative under the evolution (1)
unless the curve is a circle.

We conclude that the isoperimetric ratio for C?, convex curves is strictly decreasing until it
reaches the value 1, at which point the curve is a circle and the ratio no longer changes. ]

We shall now consider some results of a different nature for this length-rescaled flow. The notation
may change slightly in places in order to correspond more closely with the references we’ll be using.



2 The Chord Length to Arc Length Ratio for Open Curves
Undergoing Length-Rescaled Curvature Flow

Theorem 2 Let d andl denote the chord length and arc length, respectively, between any two points
p and q on an open curve, so that

d=[X(p,t) — X(g, )| (19)
and
z:/ % d¢ (20)

Then let X : T x[0,T] — R? be an embedded solution of the length-rescaled curvature flow (1), where
I # St so that | is smoothly defined on T x T'. Then the minimum of d/I on T is nondecreasing; it
is strictly increasing unless d/l =1 and T is a straight line segment.

Proof. This theorem, for ordinary curve-shortening flow, is due to G. Huisken®. We follow his
methods of proof, adapting them for the new flow. Furthermore, many of his calculations are
suppressed, and we shall here try to be very explicit.

Since d and [ are smooth functions off the diagonal of I' x T, it suffices to show that whenever their
ratio attains a spatial minimum for some pair of points (p,q) € I' x I at some time ¢y € [0,7T], we
have

dt \ I

Assume without loss of generality that p # ¢ and that if s is the arclength parameter at to then
s(p) > s(q) at tp. Then, by the assumption of a spatial minimum we have that the first and second
‘variations’ (for our purposes these will simply be directional derivatives) obey the following:

2 (9) ot 20 (21)

@ (§) =0 (22)

76 (§) 20 (23)

for vectors & € T,I'y, @ T,I'y,, the space of tangent vectors at p and ¢ at time .

It will be helpful to re-parametrize the curve locally around p and ¢ using arc-length parameters u
and v, respectively, so that the curve is described at time ty near these points by the parametrizations
X (u,tg) and X (v,tg). Then we shall need to define several vectors before continuing. Have e; and
eo denote the unit tangent vectors along the curve at p and g:

8X(u, to)
N T

3G. Huisken, A Distance Comparison Principle for Evolving Curves, Asian J. Math. 2 (1998), 127-134

(24)
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25
2 v (25)
Let w denote the unit vector in the direction from p to g:
X - X
" (v,1) (u,t) (26)
d
and then note that our first variation obeys a Leibniz rule
d o(d) d
ol -] =—=—-=d( 2
(§) =22 - 20 @)

so that we need only compute the variations of d and [ individually. In order to compute the first
variation of d, we shall need to first compute d,, d,, and d;. We pause now to do so. Let the
curvature vector K stand for kKIN in what follows.

(X (u,t) — X(v,t),e1)

dy, = = —(w,e1) (28)

dt ==

(u,t) + (i/nQdS) X (u,t) — R(v,t) — (i/nzds) X(v,t)>

= (—w,R(u,t) — R(v,t)) — (i /nst) (w, X (u,t) — X (v,t))
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= <wa "_{(U’t) - I‘_{(u,t)) + % /des

We now consider the vanishing of the first variation along e; and es. We first compute the first
variations of d and ! in these directions and then proceed to plug them into (27).

3(e1 ®0)(d) = Deyd = (€1, Vd) = dy, = —(w, 1) (30)
S(er @ 0)(1) = —1 (31)

5(0® €2)(d) = Deyd = (e2, Vd) = dyy = (w, e3) (32)
5(0® e2)(l) =1 (33)

and so, plugging these into (27), we get

5(er @ 0) (‘;) - % _fwe) (34)



d
5(0 % ) (> _lwe) d_ (35)
from which it follows that

(w,2) = fwre2) = § (36)

which we’ll want to keep in mind for future calculations.

Now we turn to the second variation, for which we can write

Here, we must now consider two cases.
2.0.1 Case 1: e; = e9

Here, we are essentially moving in the same direction along the curve at p and at ¢, and so all
variations of [ now vanish, and we need only consider the first term in equation (37). Computing
the second variation of d:

52(e1 @ e9)(d) = <H(d)< ' )( | >> = dy + 2y + duy (38)

where H (d) was the Hessian matrix of partial derivatives of d. Now, by differentiating (28) and (29)
and using (36), it should turn out that

1 d .

duu T pE (w, R(u,t)) (39)
1 d
= 7 4
d'U'U d l2 + <w7 K’(v7t)> ( 0)
d 1
w= 15— 5 41
Plugging these into (38) and then (37), we get
) A 1, B

5°(e1 @ e2) 7= 76 (e1 @ea)(d) = j<w,n(v,t) — R(u,t)) >0 (42)



2.0.2 Case 2: e; # ey

We shall now choose £ = e; © e so that

(5(61 &) 62)([) =-2 (43)

and

d(e1 © e2)(d) = —(w, e1 + ea) (44)

We perform calculations analogous to those in Case 1. We know from before, or can easily compute,
the following:

d(e1 © 62) (7) = 26; — %(w,q +e2)=0 (45)
(w,2) = fwre2) = § (16)
52 (f) = -6%(d) - 25(‘25(1) Zd(‘;(,l)) — %52(5) >0 (47)
Note that
(e1 +eg,e1 +e3) =ler +eal* = 2(er,er) = ler + e —2 (48)

which we shall need later on. Now, plugging equations (43) and (44) into equation (47) , we can
simplify that inequality to

d 1 4 d
82 (l) = 752(d) —plwertes) +85 20 (49)

Using (46), we simplify the middle term as follows

52 (‘;) = %52(51) - % (2?) + 8% = %52(@ >0 (50)

and so we need only compute §2(d), which will not be the same as in Case 1. There are two reasons
for this: for one, our variational vector is now (1, —1). Furthermore, we will get cross-terms when

we compute do,,, which is why we needed an expression for {(ej, es). In the first case, this was simply
1.

Now,
) 1 1
1) (61 © 62)(d) = H(d) -1 ) 1 = dyy — 2dyy + dyy (51)
and so we need to compute these second partials. Starting with d, = —(w, e1) and d, = (w, e3), we
have

Ay = _<wua €1> - <w7 'E(u’ t)> (52)



and so we need to compute w,:

1 X(v,t) — X (u,t)

Wy = —oer - pE dy =w ] (53)
With this in hand, and using (46), (52) becomes
1 d
= — R 4
duu d 12 <w7 K/(’U,, t)> (5 )
Following the same procedure, we can compute
1 d .
dyy = TR + (w, K(v, 1)) (55)
Lastly, using equation (48) we can compute
d 1 d 1 1
duv:_<wv761>:ﬁ_g<61762>:ﬁ_ﬁ|61+62|2+g (56)
Putting these three results back into (51), we should get
d 1 d 1
62(e1 © e2) <l) = a|61 +eg)? — 4l—3 + T(w, R(v,t) — R(u,t)) >0 (57)

But we shall show that the first two terms are, in fact, equal. For £ = e; © e3, wl|(e1 + e2), and so
we can use the fact that (w,e; + e2) = |e1 + ez| to rewrite the first term above:

1 5 1 s 1 /d d d
— = — = — — — = 4—
dl <w761 +€2> dl(<wael> + <w762>) dl (l + l 13 (58)
so the first two terms of (57) cancel and we're left with the same conclusion as in Case 1, as we

hoped:

~|

(w,R(v,t) — R(u,t)) >0 (59)

We are now ready to consider the time derivative of the original quantity of interest, d/I. With what
we already know, we can go ahead and write

a\ dy d, 1, . d [ , d
(l)t_l lQlt_l<w,m(v,t) m(u,t)>+lL/f€ ds 12115 (60)

In order to say more about this result we shall need to come up with an expression for l;. Remember:
while the total length of the curve does not change, we do not know what is happening locally, and
I refers only to the arc length between two particular points p and q. Recall, to begin with, that we

can express this time derivative as l; = f; ‘%—Zf’ d¢. From page 2, we have seen that we can express
t

10



the integrand here as (% Ik /<;2ds) ‘%—i‘ — K2 ’%’. Integrating this with respect to ¢, now from p to

q
Iy = i//’<;2cls—/ Kk2ds (61)
L P

Returning now to (60) with this result (which causes some cancellation), and using the results
obtained in (42) and (59), we see that:

q, we’ll see that

d 1 B 4 [9 d (9
<l)t = 7<z,u,/-£(v,t) — R(u,t)) + 12/p Kids > lz/p K2ds (62)

This last term is obviously greater than zero off the diagonal of I x T', where it is identically zero.

Hence,
q
<d> zi/ K2ds >0 (63)
1), =2,

and the theorem has been proven. O

11



3 The Chord Length to Arc Length Ratio for Closed Curves
Undergoing Length-Rescaled Curvature Flow

We use the same notation as in the proof of the theorem for open curves. However, we are now
going to want to define a new quantity since [ is no longer smoothly defined for closed curves. Let

81 x St x [0,T] — R be given by
L l
P = ;sin (2) (64)

where [ is the arc length between two points on the curve, as before, and L is the total length of the
curve.

Theorem 3 Let X : S x [0,T] — R? be a smooth solution of the length-rescaled curvature flow
(1). Then the minimum of d/v is nondecreasing; it is strictly increasing unless d/v =1 and X (S*)
is a round circle.

Proof. As before, the theorem and proof follow closely those of Gerhard Huisken. And, as before,
we shall attempt to be as explicit as possible in our computations.

So once again, it suffices to show that whenever d/1 attains a spatial minimum for some pair of
points (p,q) € S* x S* at some time tq € [0, 7], then

d (d
— (= to) >0 65
i (5) > (65)
Let s once again be the arclength parameter at ¢y, and assume 0 < s(p) < s(q) < %L(to), so that
l(p,q,to) = s(q) — s(p). We shall reprise Huisken’s ‘variational’ methods. So, by assumption:

5(¢) (Z) (g, t0) =0 (66)

d
#© (5) ot 20 (67)
for variations £ € TpStl0 &) TqSth. Let’s first consider, just as we did before, the variations £ =e; G0
and £ = 0 @ ez. Because our definitions of d and [ have not changed, we can use our previous
computations of the derivatives and variations in order to say that

6(e1 ®0)(d) = —(w, e1) (68)
(0 e)(d) = (w, ea) (69)
d(er ®0)(1) = -1 (70)

12



5(0® e)(1) =1 (71)

Then we can compute

3er ©0)(6) = (Vs ©0)0) = —cos (T ) (1)
306 e2)(6) = G990 ex)O) = cos (7 (7

Now, remembering that §(d/v) = od) _ -L.5(zp), we can plug in equations (68), (69), (72), and (73
P ¥
to show that

5(e1 @ 0) (Z) - _%e” + %5(1/;) ~0 (74)
5(0 @ e2) (Z) = <°J;;2> - %5(1/}) =0 (75)

from which it follows that
(w,e1) = (w,e2) = gcos (lg) (76)

which we shall want to keep in mind.

Now we consider the second variation, which satisfies
# (1) - ) 5(d)iw)
(G (G Y? VP Y2

And once more, we consider two cases.

3.0.3 Case 1: e; = e9

Choose £ = e; & es. Because variations of [ vanish in this case, all variations of ¢ will also vanish,

since we’ve seen that variations of | appear on differentiation of 1. Thus, we have reduced the
2

problem to computing 62(e; @ es) (i) = 57@0. We computed the numerator in the proof of the

P
theorem for open curves, so we conclude that

i@, R(v,1) — R(u, 1)) > 0 (78)

where again we’ve parametrized locally around p and ¢ using u and v, respectively.

13



3.0.4 Case 2: €1 # ey

Choose £ = e1 © eg. Variations of I no longer vanish; now §(I) = —2. So from (77) we now have
5?2 (%) = 5215)‘1) — 25(6%(@ + 2(1(51%))2 > 0. First we shall compute 62 (d) for this variation. Recall
that

52(61 S 62)(d) = duu - 2duv + dvv (79)

We’ll pause to compute these second partials, which are now different than in Case 1. Begin with
dy = —{w,e1) (80)

dy = (w, e2) (81)

To begin computing the second partials of these, we need to recall equation (76) and make appro-
priate substitutions. We should find that:

1 d 5 (I N
duu = E — ﬁ COS <L> — <W, K/(U,t)> (82)
1 d 5 [T S
dyy = 170 cos (L) + (w, R(v, 1)) (83)
d 5 (I 1
dyp = e cos (L) - E(el,@) (84)
Putting these into (79) and using the fact that 2(e1, e2) = |e1 + e2|? — 2, we have
9 1 9 d 5 (I . .
0%(e1 ©ea)(d) = ﬁlel + ea)” — 4@ cos” | 7 | + (w, R(v,t) — R(u,t)) (85)

Now, in this case, since w||(e1 + e2), we can rewrite the first term in the above as %(w, e1 + e2)? and
then use equation (76) so that (85) simplifies nicely to

62(e1 © ez)(d) = (w,R(v,t) — R(u,t)) (86)
Plugging this into (77), we get:
A\ L ) | d(Ew)?
# () = oo = w0 - 270 oSO 5 o (57)

Now, we know that d(e; © e3)(d) = —(w,e1 + e3) and §(e; © e2)(l) = —2, so we can go ahead and
plug these into (87), obtaining

d 1 4 I d I
2 (& _ L1, = = 4 [ a2 (Y s
5 (1/)) w(w,n(u,t) R(u,t)) 02 (w, e1 + e2) cos (L) —1—877[}3 cos (L) >0 (88)
but by simplifying the middle term with (76) we have the entire relation reducing to
52 <d> = Ll B, t) — R(u, 1)) > 0 (89)
w ’l/] b b b) -

14



and so we have the same result as in Case 1.

We are now ready to consider the time derivative of d/v. We can start, as before, by writing

G [CECE G Ly P2

We already have the time derivative of d from the proof of the theorem for open curves, but now we
need an expression for ¢;. We shall also need to recall the expression for /; from the other proof.

Wy = %cos <lg> (Z) I, = cos <lz> (é/ﬂst/pqnzds) (91)

We’re then able to rewrite (90) as

(Z)t - <w K(v,t) — &(u, 1)) + % Kids — ECQS (lw) (é/l’iQdS—/pq /@2ds>
> L1/)/ 2ds—f—cos(lg) (/pqn2ds—i/m2ds)
= 1/12 <¢/ k2ds + %cos <lg> /pq k2ds — %cos <lg> /nzds)

We are interested in saying something about the sign of this expression. So, we can ignore the 2%,
which is of course positive, and restrict our attention to the content inside the parentheses. Note
that we can rewrite this portion as

% <1f — cos (T)) /m2ds + %cos (?) /pq Kk*ds (92)

Although until now we’ve done things in some generality with an L term, we now point out that
we initially stated the theorem for curves of length 27. Also, it is useful to return to the explicit
definition of ¥. Using these two substitutions gives

o) (@) [t w

Returning once again to our initial assumptions, we had said that I(p, q,t9) < Lt,/2, so I < m and
we know that the rightmost term in (93) is positive. We will now show that the leftmost term is
positive as well. Let £ =1/2. Then the portion in parentheses becomes

(d) _ ilﬁt = l(um%’(v,t) — R(u,t)) + 4 K2ds — *wt (90)

1 sin(z) — cos(z) = cos(x) (313 tan(z) — 1) -1 cos(x)(tan(x) — ) (94)

T T

For the same reason that we could say the rightmost term in (93) was positive, we can say now that
1 cos(z) is positive. So we are left to decide whether or not tan(z) — z is positive. That this is true

between 0 and 7/2 is easily verifiable. For example, simply examine the Taylor expansion for the

15



range in which we are interested; for |z| < 7/2: tan(x) = x + “"—; + % +.... Hence, we’ve shown that

each of the terms in (93) is positive, and therefore > 0, as we wanted to show. This completes

d
V)
the proof of the theorem. O
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