
The Gauss Map
and

Second Fundamental Form



Dition. The normal map i: IRIR
-

is given by i*i
Dition. The css map iMes

maps each p in M to
the normal

vector to the tangentplane TPM.
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The Gauss map , normal map n I
and parametrication & are related by

F(u,v) =g(x(u,v)).

Lemma. The tangentplane TgS=TPM.
-

Proof. On the sphere, the normal

vector is equal to the position vector.

So TgipsS" is the plane normal to

(p). Bydefinition, this is TPM. I

Definition. The shape operator

Sp.TEM-TM is defined by

Si
=

- D5(p)



Proposition. The shape operator is
--

the (unique) linear map so
that

Sp(Xu) ==m, Sp(Xu)=-nr.

Proof. Differentiating [(u,)=g(X(u,vI),-

An =D(X(u,v)km =- Sj(ku)
Tr =D(X(u,v))kv =

- Sp(Xu)

by the chain rule.

Therefore, if in=aXntcr, nr= bn+de

Sp == (ab Icd
but what are a, b, c, and d?



Lemma. <Xu,u) =[Xu,u).
-

Proof. Since (Quin)=0, we have

0 =E(Xn,n)
=(Xav,n) + (Xu,nr)

Since (X,n)=0, we have

0 =E(Xvin)
=(unin) + (Xr,nn)

But Xuu=Yuu, so we can subtract

0 =(Xu,r) -[Xrcnu). I/



Definition. We define
Sin,Xu) Sin,X-)

Ip =(24) =- ISvia) (r,Xu)

Proposition. Sp =(Ip)*(Ip).

Roof. We know Si=2 ], so

-Ip Sp=(Exe]()(2)

-]/a byte
-[*]frn --p

#



Definition. If V is a vector space

and A. U-V is a linear map, and

↳--- is an inner producton V,

we define the adjoint of A
to be

the unique linear
mapA* so that

<AY,w)a =[Y,Awa
for alll , w in V.

We say A is self-adjointif A =A?

Example. V= RY S-,a =7,-s+d

[AY, w) =(Y,AT) for all , w
So A:AtIn this case,

A is self-adjoints A is symmetric



Example. V =IR, X-, -a defined by Q
=QT

(Av,wa:(A,Qu) = [,AQw]

= [,QQQ)

-, Q*AQwa
In this case,

At =Q
*AQ.

In this case, A is self-adjoint (>

A :At =QAQ
Or

QA=AQ.



Proposition.The shape operator is

self-adjoint with respect
to the Ip

inner product.

Proof.

<Sp(), w)Ip =(p)
*

p,w)
Ip

Ip=I

ELI)*Ip, Ipw),"
LA(AT*r

<IIp,w)
=,IIp)#=IE.*p
=, Ip*p) (,Spl)p E



(Weird) example. (Sheared cylinder)

Y(u,v) =(cosv, sinv, n+v)

Xu =(0,0,1)
=> E =1F =1G =2

Xr =(-sin v,cos v, Al

I = (-cosv, -sinv,0
-

Mu =(0,0,0)
=>l =0m =0 n =1

Fr =(sin v, -cosv,0)

So

Si =( 54:1]
=(-2)(81) = (8-1]

↳hapeoperator isself-adjoinfore
may

not be symmetric.



We now need a theorem.

Theorem. (Roman, Advanced Linear Algebra,Thm 17.1]

Suppose that V is an n-dimensional
vector space with inner product (-,-
and A: UTV is self-adjoint. Then I

a -> orthonormal basis . ...In for
V

so that AV;=XV; for real X1....,n.

These are called eigators and eigenvalues-

-

for the linear map A, andthis
theorem

is generalization of the "symmetric

implies diagonalizable"theorem from

linear algebra class.



Since Sp:TpM-TpM is self-adjoint,

Definition.The eigenvectors of Sp
-

are called the principal actions.
The eigenvalues (14 K2 are called

the principal tures.

↳ma. IfY:cost it sindz, then

<5, Sp(i)Ip=KICosO+Ksin2.
and hence K, Km are the max

andimin

value of[, p(u)]Ip over all (unit) V.

Prof. We compute

T, Sp(U) =[cosQ IsinQYn,
K1cosQ 1+ K2 SinQUz]

CFOIL anduse orthonormality)
IP

-

K.cosO+K2 sin.



Now that we have a handle on Sp,
we can start to interpret it

geometrically.

Theorem. If = TPM, then F,

span a plane
P through p. Let I

be the plane curve PM.
Then

the signed curvature of
a at p

K =
=

Sp



·Proof. Parametrize so that

a(t) =x(B(t)), 210) =p, I (0) =Y.

(where B: Rt IR,the n-v plane)

We now compute

k1(0) =(0)
<I'(0),(0))

Since I'CO)=Y and we have oriented

the plane by in, "o)t==g(col).

=,))
(,)

where : MIS is the Gauss map.
Now It) tM, so 'It) =TpM, so

((t), g(I(t))). = 0



Differentiating w.r.t. E,

0 =t((t),g(2(t)))
=(2"(t),g((t)) +(='(t),Dg((t)-(t)
Evaluating at 0,

("(0),n) =- (, Dg(p)v)
=(Y,Spl)) I

It follows that , kn are two
such curvatures.

Definition. The bilinear form p
(Y,w)

p=
(5, Sp(W) is called

Ip

the second mental form.






