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In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt
process is a method for orthonormalising a set of vectors in an inner product space, most
commonly the Euclidean space Rn. The Gram–Schmidt process takes a finite, linearly
independent set S = {v1, …, vk} for k ! n and generates an orthogonal set S! = {u1, …, uk}
that spans the same k-dimensional subspace of Rn as S.

The method is named for Jørgen Pedersen Gram and Erhard Schmidt[citation needed] but it
appeared earlier in the work of Laplace and Cauchy[citation needed]. In the theory of Lie
group decompositions it is generalized by the Iwasawa decomposition.

The application of the Gram–Schmidt process to the column vectors of a full column rank
matrix yields the QR decomposition (it is decomposed into an orthogonal and a triangular
matrix).
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The Gram–Schmidt process
We define the projection operator by



The first two steps of the Gram–Schmidt process

where ‹ v,u › denotes the inner product of the vectors v and u. This operator projects the
vector v orthogonally onto the line spanned by vector u.

The Gram–Schmidt process then works as follows:

The sequence u1, ..., uk is the
required system of orthogonal
vectors, and the normalized
vectors e1, ..., ek form an
orthonormal set. The
calculation of the sequence u1,
..., uk is known as Gram–
Schmidt orthogonalization,
while the calculation of the
sequence e1, ..., ek is known as
Gram–Schmidt
orthonormalization as the
vectors are normalized.

To check that these formulas yield an orthogonal sequence, first compute ‹ u1,u2 › by
substituting the above formula for u2: we get zero. Then use this to compute ‹ u1,u3 ›
again by substituting the formula for u3: we get zero. The general proof proceeds by
mathematical induction.



Geometrically, this method proceeds as follows: to compute ui, it projects vi orthogonally
onto the subspace U generated by u1, ..., ui!1, which is the same as the subspace generated
by v1, ..., vi!1. The vector ui is then defined to be the difference between vi and this
projection, guaranteed to be orthogonal to all of the vectors in the subspace U.

The Gram–Schmidt process also applies to a linearly independent countably infinite
sequence {vi}i. The result is an orthogonal (or orthonormal) sequence {ui}i such that for
natural number n: the algebraic span of v1, ..., vn is the same as that of u1, ..., un.

If the Gram–Schmidt process is applied to a linearly dependent sequence, it outputs the 0
vector on the ith step, assuming that vi is a linear combination of v1, ..., vi!1. If an
orthonormal basis is to be produced, then the algorithm should test for zero vectors in the
output and discard them because no multiple of a zero vector can have a length of 1. The
number of vectors output by the algorithm will then be the dimension of the space
spanned by the original inputs.

A variant of the Gram-Schmidt process using transfinite recursion applied to a (possibly
uncountably) infinite sequence of vectors (v")" < # yields a set of orthonormal vectors
(u")" < $ with  such that for any , the completion of the span of
{u%:% < min(",$)} is the same as that of {v%:% < "}. In particular, when applied to a
(algebraic) basis of a Hilbert space (or, more generally, a basis of any dense subspace), it
yields a (functional-analytic) orthonormal basis. Note that in the general case often the strict
inequality $ < # holds, even if the starting set was linearly independent, and the span of
(u")" < $ need not be a subspace of the span of (v")" < # (rather, it's a subspace of its
completion).

Example

Consider the following set of vectors in R2 (with the conventional inner product)

Now, perform Gram–Schmidt, to obtain an orthogonal set of vectors:



We check that the vectors u1 and u2 are indeed orthogonal:

noting that if the dot product of two vectors is 0 then they are orthogonal.

We can then normalize the vectors by dividing out their sizes as shown above:

Numerical stability
When this process is implemented on a computer, the vectors uk are often not quite
orthogonal, due to rounding errors. For the Gram–Schmidt process as described above
(sometimes referred to as "classical Gram–Schmidt") this loss of orthogonality is
particularly bad; therefore, it is said that the (classical) Gram–Schmidt process is
numerically unstable.

The Gram–Schmidt process can be stabilized by a small modification; this version is
sometimes referred to as modified Gram-Schmidt or MGS. This approach gives the same
result as the original formula in exact arithmetic and introduces smaller errors in finite-
precision arithmetic. Instead of computing the vector uk as

it is computed as



Each step finds a vector  orthogonal to . Thus  is also orthogonalized

against any errors introduced in computation of .

Algorithm
The following algorithm implements the stabilized Gram–Schmidt orthonormalization.
The vectors v1, …, vk are replaced by orthonormal vectors which span the same subspace.

for j from 1 to k do

for i from 1 to j ! 1 do

 (remove component in direction vi)

next i

 (normalize)

next j

The cost of this algorithm is asymptotically 2nk2 floating point operations, where n is the
dimensionality of the vectors (Golub & Van Loan 1996, §5.2.8).

Determinant formula
The result of the Gram–Schmidt process may be expressed in a non-recursive formula
using determinants.



where D 0=1 and, for j ! 1, D j is the Gram determinant

Note that the expression for uk is a "formal" determinant, i.e. the matrix contains both
scalars and vectors; the meaning of this expression is defined to be the result of a cofactor
expansion along the row of vectors.

The determinant formula for the Gram-Schmidt is computationally slower than the
recursive algorithms described above; it is mainly of theoretical interest.

Alternatives
Other orthogonalization algorithms use Householder transformations or Givens rotations.
The algorithms using Householder transformations are more stable than the stabilized
Gram–Schmidt process. On the other hand, the Gram–Schmidt process produces the jth
orthogonalized vector after the jth iteration, while orthogonalization using Householder
reflections produces all the vectors only at the end. This makes only the Gram–Schmidt
process applicable for iterative methods like the Arnoldi iteration.



Yet another alternative is motivated by the use of Cholesky decomposition for inverting
the matrix of the normal equations in linear least squares. Let  be a full column rank
matrix, which columns need to be orthogonalized. The matrix  is Hermitian and
positive definite, so it can be written as  using the Cholesky
decomposition. The lower triangular matrix  with strictly positive diagonal entries is
invertible. Then columns of the matrix  are orthonormal and span the
same subspace as the columns of the original matrix . The explicit use of the product 

 makes the algorithm unstable, especially if the product's condition number is large.
Nevertheless, this algorithm is used in practice and implemented in some software
packages because of its high efficiency and simplicity.

In Quantum Mechanics there are several orthogonalization schemes with characteristics
better suited for applications than the Gram-Schmidt one. The most important among them
are the Symmetric and the Canonical orthonormalization (see Solivérez & Gagliano).
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External links
Harvey Mudd College Math Tutorial on the Gram-Schmidt algorithm
(http://www.math.hmc.edu/calculus/tutorials/gramschmidt/gramschmidt.pdf)
Earliest known uses of some of the words of mathematics: G
(http://jeff560.tripod.com/g.html) The entry "Gram-Schmidt orthogonalization"
has some information and references on the origins of the method.
Demos: Gram Schmidt process in plane
(http://www.bigsigma.com/en/demo/gram-schmidt-plane) and Gram Schmidt
process in space (http://www.bigsigma.com/en/demo/gram-schmidt-space)
Gram-Schmidt orthogonalization applet
(http://www.math.ucla.edu/~tao/resource/general/115a.3.02f/GramSchmidt.html)
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