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Crossing Number
Distortion

Ropelength and Tight Knots

Main question

Every field has a main question:

Open Question (Main Question of Topological Knot Theory)

What are the isotopy classes of knots and links?

Open Question (Main Question of Global Differential Geometry)
What is the relationship between the topology and (sectional,
scalar, Ricci) curvature of a manifold?

Open Question (Main Question of Geometric Knot Theory)
What is the relationship between the topology and geometry of
knots?
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Two Main Strands of Inquiry

Strand 1 (Knot Invariants defined by minima)
Given a geometric invariant of curves, define a topological
invariant of knots by minimizing over all curves in a knot type.
How are these invariants related?

Examples: Crossing number, bridge number, total curvature,
distortion, braid index, Möbius energy, ropelength.

Strand 2 (Restricted Knot Theories)
Restrict attention to curves obeying additional geometric
hypotheses. Is every knot type realizable in this class? What
are the isotopy types among curves in this class?

Examples: Regular (nonvanishing curvature) isotopy,
Legendrian and transverse knots, braid theory, polygonal knots,
plumber’s knots.
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An example: crossing number

Definition
The crossing number of a knot or link is the minimum number
of crossings in any projection of any configuration of the knot.

. . . that’s why I hate crossing number. (attributed to
J.H. Conway)

1 The unique knot of minimum crossing number is the
unknot.

2 For any N, there only finitely many knot types with crossing
number < N.
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Desirable Properties of Geometric Knot Invariants

Definition
A geometric knot invariant MG([K ]) is a knot invariant defined
by minimizing a geometric invariant G(K ) of curves over all
curves K in a knot type [K ].

Definition
A geometric knot invariant MG([K ]) is

basic if the minimum of MG([K ]) over all knot types is
achieved uniquely for the unknot.
strong if for each N there are only finitely many knot types
with MG([K ]) < N.
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An old and hard open question: distortion

We now give another geometric curve invariant.

Definition
The distortion of a curve γ is given by

Dist(γ) = max
p,q∈γ

distance from p to q on γ
distance from p to q in space

.

The corresponding geometric knot invariant is denoted MDist.

Open Question (Gromov, 1983)
Is there is a universal upper bound on MDist for all knots?

A popular question in the 80’s, but pretty hard.
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What is known about distortion?

Theorem (Kusner and Sullivan 1999, Denne and Sullivan 2009)

MDist is basic. The minimum distortion of an unknot is π/2 (the
round circle) while the distortion of a nontrivial tame knot is at
least 5π/3.

Theorem (Gromov 1978, O’Hara 1992)
MDist is not strong. (There are infinite families of prime knots
with distortion bounded above.)
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Figure 1. A wild knot, the connect sum of infinitely many tre-
foils, can be built with distortion less than 10.7 by repeating scaled
copies of a low-distortion open trefoil. To ensure that the distor-
tion will be realized within one trefoil, we merely need to make
the copies sufficiently small compared to the overall loop of the
knot and sufficiently distant from each other. This knot is smooth
except at the one point p0.

Our main new technical tool is Corollary 2.6, which guarantees the existence of
a shortest essential secant. While this is obvious for smooth or polygonal knots,
we are not free to make any such assumption about the geometry of knots of
low distortion. Thus it is important that Corollary 2.6 holds merely under the
topological assumption of tameness.

With these two tools, the intuition behind our main result is clear. Let ab be
a shortest essential secant for a nontrivial tame knot and scale the knot so that
|a − b| = 1. We prove the knot has distortion δ ≥ 5π/3 by showing that each of
the two arcs γ between a and b has length at least 5π/3. Indeed, for γ to become
essential, by Theorem 1.1 it must wrap around some other point 0 of the knot. If
x0 is essential for all points x ∈ γ, then γ stays outside the unit ball around 0,
and thus must wrap around 5/6 of a circle, as in Figure 7 (left). The other cases,
where some x0 is inessential, take longer to analyze but turn out to need even more
length.

Note that a wild knot, even if its distortion is low, can have arbitrarily short
essential arcs, as in the example of Figure 1. For this technical reason, our main
theorem applies only to tame knots, even though we expect wild knots must have
even greater distortion. Every wild knot has infinite total curvature, and thus infi-
nite bridge number and infinite crossing number. Thus it is initially surprising how
many wild knots can be built with finite distortion. Even some standard examples
with uncountably many wild points (on a Cantor set) can be constructed with finite
distortion. An interesting question is whether there is some (necessarily wild) knot
type which requires infinite distortion. (A knot requiring infinite length would be
an example.) Perhaps a knot with no tame points would have this property, or per-
haps even the knot described by J.W. Alexander [Ale24] (and later by G.Ya. Zuev,
see [Sos02, p. 12]), whose wild set is Antoine’s necklace.

Our bound δ ≥ 5π/3 is of course not sharp, but numerical simulations [Mul06]
have found a trefoil knot with distortion less than 7.16, so we are not too far off.
We expect the true minimum distortion for a trefoil is closer to that upper bound
than to our lower bound. A sharp bound (characterizing that minimum value)
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Conjecture: No upper bound on distortion for knots

To prove it:

1 Find a “sufficiently weak” knot invariant I that approaches
infinity on (n,n − 1) torus knots. (Bridge number, crossing
number, genus, etc are all ruled out already.)

2 Bound distortion below in terms of I.

Definition
The hull number of a knot type [K ] is the maximum N such that
any curve K in [K ] has some point p so that any plane through
p cuts K at least 2N times.

Theorem (Izmestiev 2006)

The hull number of a (p,q) torus knot is at least (1/4) min(p,q).
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A geometric invariant of curves: Reach

Definition (Federer 1959)
The reach of a space curve is the largest ε so that any point in
an ε-neighborhood of the curve has a unique nearest neighbor
on the curve.

Idea
reach(K ) (also called thickness) is controlled by curvature
maxima (kinks) and self-distance minima (struts).
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Ropelength

Definition
The ropelength of K is given by Rop(K ) = Len(K )/ reach(K ).

Theorem (with Kusner, Sullivan 2002, Gonzalez, De la Llave
2003, Gonzalez, Maddocks, Schuricht, Von der Mosel 2002)
Ropelength minimizers (called tight knots) exist in each knot
and link type and are C1,1.

Open Question
What is the smoothness of a tight knot? Current examples
suggest that such a knot is piecewise smooth but not C2.
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Examples: Why only piecewise smooth?

Theorem (with Fu, Kusner, Sullivan, Wrinkle 2009, cf.
Gonzalez, Maddocks 2000, Schuricht, Von der Mosel 2003)
Any open interval of a tight knot either: contains an endpoint of
a strut, has curvature 1 almost everywhere, or is a straight line
segment.
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The Tight Hopf Link and Trefoil Knot

The Hopf Link 22
1 The Trefoil Knot 31

Rop([22
1]) = 8π 31.32 ≤ Rop([31]) ≤ 32.743175

with Kusner, Sullivan 2002 Denne, Diao and Sullivan 2006
Baranska, Przybyl, Pieranski 2008
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Lower Bounds on Ropelength

Theorem (Diao 2006)

Rop(K ) ≥ 1
2

(
17.334 +

√
17.3342 + 64π Cr(K )

)
.

Corollary
Ropelength is basic and strong.

Proof.
The ropelength of a tight unknot is 4π = 12.566, less than any
knot of higher crossing number. All knots with Rop < N have

Cr <
0.000125

π
N(500N − 8667).
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More consequences of this Cr / Rop bound.

Corollary
Hopf link (Rop = 25.1327) is the tightest nontrivial link.

Proof.
Evaluating the formula in a few cases,
Cr(K ) 3 4 5 . . . 10 11
Rop(K ) ≥ 23.698 25.286 26.735 . . . 32.704 33.73

So only Rop(31) could be lower than Rop(21). But DDS show
Rop(31) ≥ 31.32 > 25.137.

Open Question
Is the trefoil (Rop ' 32.74) the tightest knot?
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Ropelength and Crossing Number vs Data

Open Question
Find effective Rop bounds for simple (< 10 crossing) knots.

 20
 30
 40
 50
 60
 70
 80
 90

 2 3 4 5 6 7 8 9
Cr

Rop

Cr Rop Links
3 32.74 31
4 [40.01,42.09] 42

1, 41
5 [47.20,49.77] 51, 52

1
6 [50.57,58.1] 63

3, 63
2

7 [55.53,66.33] 72
7, 72

6
8 [60.58,77.83] 83

7, 83
4

9 [66.06,85.47] 92
49, 94

1
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Ropelength and Crossing Number

Theorem (Buck, Simon 1999, Diao, Ernst, Yu 2003)

There exist constants so c1 Cr3/4(K ) ≤ Rop(K ) ≤ c2 Cr3/2(K ).

Proof (sketch) of 3/4 power lower bound.

Scale the knot so reach(K ) = 1. Then Rop(K ) = Len(K ).

Cr(K ) ≤ ACr(K ) =
1

4π

∫∫ |K ′(s)× K ′(t) · (K (s)− K (t))|
|K (s)− K (t)|3

ds dt

≤ 1
4π

∫∫
1

|K (s)− K (t)|2
ds dt .

Now we estimate this integral above in terms of Len(K ).
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Proof (sketch) of 3/4 power lower bound

We start by estimating∫
d(s,t)>2

1

|K (s)− K (t)|2
ds

where d(s, t) is the arclength distance along K . Our example
plots will come from this 949 knot:
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Proof (sketch) of 3/4 power lower bound

Here is a graph of the inverse square distance from K (0) to
K (s) for the 949 knot above:
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Proof (sketch) of 3/4 power lower bound

Without changing the integral, we can take a monotone
rearrangement of the function:

10 20 30 40 50 60 70
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0.20
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Proof (sketch) of 3/4 power lower bound

A (possibly disconnected) section of tube of total arclength s
has volume πs. If that section of tube is within distance r of the
origin, then this tube is all packed in the sphere of radius r + 1,
which has volume (4/3)π(r + 1)3. Assuming r > 2,

πs <
4
3
π (r + 1)3 < 4.5r3,

we can rearrange to get

2.73 s−
2
3 >

1
r2 .

Cantarella Geometric Knot Theory



Crossing Number
Distortion

Ropelength and Tight Knots

Proof (sketch) of 3/4 power lower bound

This estimate shows that our rearranged distance function is
less than 2.73 s−2/3 (when 1/r2 < 0.25):

10 20 30 40 50 60 70
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0.4
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0.8
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Proof (sketch) of 3/4 power lower bound

Integrating over [0,Len(K )], we get∫
d(s,t)>2

1

|K (s)− K (t)|2
ds <

∫ Rop(K )

0
2.77 s−2/3 ds

< 8.177 Rop(K )1/3.

and so

Cr(K ) ≤ 1
4π

∫∫
1

|K (s)− K (t)|2
ds dt < 0.651 Rop(K )4/3.

and taking care of the pairs d(s, t) < 2 with another argument,

1.38 Cr3/4 +(lower order terms) ≤ Rop(K ).
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Open Question: What’s the best bound of this type?

The actual bound of Buck and Simon is

Theorem (Buck and Simon 1999)

Rop(K ) ≥ 2.205 Cr(K )3/4

One can easily improve the argument above to

Rop(K ) ≥ 2.5357 Cr(K )3/4 + (lower order terms)

but the lower order terms are significant.

Open Question

What is the largest c1 so that c1 Cr(K )3/4 ≤ Rop(K ) for all K ?
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A remark

Theorem (Diao 2006)

Rop(K ) ≥ 1
2

(
17.334 +

√
17.3342 + 64π Cr(K )

)
.

is also proved by bounding

Cr(K ) ≤ ACr(K ) =
1

4π

∫∫ |K ′(s)× K ′(t) · (K (s)− K (t))|
|K (s)− K (t)|3

ds dt

≤ 1
4π

∫∫
1

|K (s)− K (t)|2
ds dt .

but in Diao’s proof the lower order terms dominate the bound.
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Proof (sketch) of 3/2 power upper bound

We must find an algorithm for constructing “short” embeddings
of knots, such as this one: 214,385,281
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Proof (sketch) of 3/2 power upper bound

Start by converting it to a planar 4-regular graph:
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Proof (sketch) of 3/2 power upper bound

We can arrange for such graphs to always be Hamiltonian (by
adding extra verts if needed):
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Proof (sketch) of 3/2 power upper bound

The edges not on the Hamiltonian circuit are either “inner” or
“outer” edges.
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Proof (sketch) of 3/2 power upper bound

Now we can start the embedding. First, number the vertices to
help us keep track:
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Proof (sketch) of 3/2 power upper bound

We can lay out the Hamiltonian circuit in a compact manner on
a
√

Cr×
√

Cr grid in the xy plane with length ∼ Cr.
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Proof (sketch) of 3/2 power upper bound

The “outer edges” are embedded above the xy plane. They
have length ∼

√
Cr, and there are at most Cr of them.
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Proof (sketch) of 3/2 power upper bound

The “inner edges” are embedded below the xy plane. They
also have length ∼

√
Cr, and there are at most Cr of them.
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Ropelength and Tight Knots

Proof (sketch) of 3/2 power upper bound

This gives a total ropelength ∼ Cr3/2 (modulo plenty of details).
The actual upper bound is

Rop(K ) ≤ 272 Cr(K )3/2 + 168 Cr(K ) + 44
√

Cr(K ) + 22.

Diao et. al. have implemented this algorithm, producing:
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Ropelength and Tight Knots

The asymptotic relationship between Rop and Cr

Theorem (with Kusner, Sullivan 1998, Diao, Ernst 1998)
There are examples of infinite families of knots with
Rop(Kn) ∼ Crp(Kn) for every p between 3/4 and 1.

Example for p = 3/4.

In a solid torus of radii r and R “cabled” with unit tubes forming
an (n,n − 1) torus knot, r ∼ √n and R ∼ r .

Rop ∼ nR ∼ n3/2, Cr = n(n − 2) ∼ n2, Rop ∼ Cr3/4 .
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Ropelength and Tight Knots

An example family of links with Rop(L) = a Cr(L) + b

Theorem (with Kusner, Sullivan 2002)
The minimum ropelength of a chain Ln of n links is

Rop(Ln) = (4π + 4)n − 8.
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Ropelength and Tight Knots

An example family of links with Rop(L) = a Cr(L) + b

Theorem (with Kusner, Sullivan 2002)
The minimum ropelength of a chain Ln of n links is

Rop(Ln) = (4π + 4)n − 8.

The inner “stadium curves” have length 4π + 4 while the end
rings have length 4π. Proof discussed later.
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Ropelength and Tight Knots

Open Questions: Ropelength and Crossing Number

1 Is there any family of links with Rop(Ln) ∼ Cr(Ln)
p for

p > 1?
2 Can you find an upper bound so that Rop(K ) ≤ c2 Cr(K )p

for p < 3/2? The graph embedding literature suggests that
a better bound should be possible.

3 The example family with Rop(Ln) ∼ Cr(Ln)
3/4 was very

nonalternating. Is it true that Rop(Ln) ≥ c Cr(Ln) for
alternating knots?

4 The simple chain of 3 links has ropelength 12π + 4. It is a
connect sum of two Hopf links, each with ropelength 8π. Is
is always true that

Rop(K1#K2) ≤ Rop(K1) + Rop(K2)− (4π − 4)?
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Ropelength and Tight Knots

Thank you for coming!

Slides on the web at:

http://www.jasoncantarella.com/

under “Courses” and “Geometric Knot Theory”.

Topics for Lecture 2:
1 Ropelength bounds in terms of other knot invariants.
2 Computation of approximate ropelength minimizers.
3 Gordian unknots and local minima for ropelength.
4 Geometry of tight knots.
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