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Fiber Bundles

A ‘short exact sequence of spaces’ A↩ X→X/A gives rise to a long exact se-

quence of homology groups, but not to a long exact sequence of homotopy groups due

to the failure of excision. However, there is a different sort of ‘short exact sequence of

spaces’ that does give a long exact sequence of homotopy groups. This sort of short

exact sequence F "→ E p"""""→ B , called a fiber bundle, is distinguished from the type

A↩X→X/A in that it has more homogeneity: All the subspaces p−1(b) ⊂ E , which

are called fibers, are homeomorphic. For example, E could be the product F×B with

p :E→B the projection. General fiber bundles can be thought of as twisted products.

Familiar examples are the Möbius band, which is a twisted annulus with line segments

as fibers, and the Klein bottle, which is a twisted torus with circles as fibers.

The topological homogeneity of all the fibers of a fiber bundle is rather like the

algebraic homogeneity in a short exact sequence of groups 0→K "→ G p"""""→ H→0

where the ‘fibers’ p−1(h) are the cosets of K in G . In a few fiber bundles F→E→B
the space E is actually a group, F is a subgroup (though seldom a normal subgroup),

and B is the space of left or right cosets. One of the nicest such examples is the Hopf

bundle S1→S3→S2 where S3 is the group of quaternions of unit norm and S1 is

the subgroup of unit complex numbers. For this bundle, the long exact sequence of

homotopy groups takes the form

··· "→πi(S
1) "→πi(S

3) "→πi(S
2) "→πi−1(S

1) "→πi−1(S
3) "→···

In particular, the exact sequence gives an isomorphism π2(S
2) ≈ π1(S

1) since the

two adjacent terms π2(S
3) and π1(S

3) are zero by cellular approximation. Thus we

have a direct homotopy-theoretic proof that π2(S
2) ≈ Z . Also, since πi(S

1) = 0 for

i > 1 by Proposition 4.1, the exact sequence implies that there are isomorphisms

πi(S
3) ≈ πi(S2) for all i ≥ 3, so in particular π3(S

2) ≈ π3(S
3) , and by Corollary 4.25

the latter group is Z .

After these preliminary remarks, let us begin by defining the property that leads

to a long exact sequence of homotopy groups. A map p :E→B is said to have the

homotopy lifting property with respect to a space X if, given a homotopy gt :X→B
and a map g̃0 :X→E lifting g0 , so pg̃0 = g0 , then there exists a homotopy g̃t :X→E
lifting gt . From a formal point of view, this can be regarded as a special case of the

lift extension property for a pair (Z,A) , which asserts that every map Z→B has a

lift Z→E extending a given lift defined on the subspace A ⊂ Z . The case (Z,A) =
(X×I, X×{0}) is the homotopy lifting property.

A fibration is a map p :E→B having the homotopy lifting property with respect

to all spaces X . For example, a projection B×F→B is a fibration since we can choose

lifts of the form g̃t(x) = (gt(x),h(x)) where g̃0(x) = (g0(x),h(x)) .
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Theorem 4.41. Suppose p :E→B has the homotopy lifting property with respect to

disks Dk for all k ≥ 0 . Choose basepoints b0 ∈ B and x0 ∈ F = p−1(b0) . Then

the map p∗ :πn(E, F, x0)→πn(B, b0) is an isomorphism for all n ≥ 1 . Hence if B is

path-connected, there is a long exact sequence

···→πn(F,x0)→πn(E,x0)
p∗"""""→πn(B, b0)→πn−1(F,x0)→ ···→π0(E,x0)→0

The proof will use a relative form of the homotopy lifting property. The map

p :E→B is said to have the homotopy lifting property for a pair (X,A) if each ho-

motopy ft :X→B lifts to a homotopy g̃t :X→E starting with a given lift g̃0 and

extending a given lift g̃t :A→E . In other words, the homotopy lifting property for

(X,A) is the lift extension property for (X×I, X×{0}∪A×I) .
The homotopy lifting property for Dk is equivalent to the homotopy lifting prop-

erty for (Dk, ∂Dk) since the pairs (Dk×I,Dk×{0}) and (Dk×I,Dk×{0}∪∂Dk×I) are

homeomorphic. This implies that the homotopy lifting property for disks is equiva-

lent to the homotopy lifting property for all CW pairs (X,A) . For by induction over

the skeleta of X it suffices to construct a lifting g̃t one cell of X −A at a time. Com-

posing with the characteristic map Φ :Dk→X of a cell then gives a reduction to the

case (X,A) = (Dk, ∂Dk) . A map p :E→B satisfying the homotopy lifting property

for disks is sometimes called a Serre fibration.

Proof: First we show that p∗ is onto. Represent an element of πn(B, b0) by a map

f : (In, ∂In)→(B, b0) . The constant map to x0 provides a lift of f to E over the sub-

space Jn−1 ⊂ In , so the relative homotopy lifting property for (In−1, ∂In−1) extends

this to a lift f̃ : In→E , and this lift satisfies f̃ (∂In) ⊂ F since f(∂In) = b0 . Then f̃
represents an element of πn(E, F, x0) with p∗([f̃ ]) = [f ] since pf̃ = f .

Injectivity of p∗ is similar. Given f̃0, f̃1 : (In, ∂In, Jn−1)→(E, F, x0) such that

p∗([f̃0]) = p∗([f̃1]) , let G : (In×I, ∂In×I)→(B, b0) be a homotopy from pf̃0 to pf̃1 .

We have a partial lift G̃ given by f̃0 on In×{0} , f̃1 on In×{1} , and the constant map

to x0 on Jn−1×I . After permuting the last two coordinates of In×I , the relative ho-

motopy lifting property gives an extension of this partial lift to a full lift G̃ : In×I→E .

This is a homotopy f̃t : (In, ∂In, Jn−1)→(E, F, x0) from f̃0 to f̃1 . So p∗ is injective.

For the last statement of the theorem we plug πn(B, b0) in for πn(E, F, x0) in the

long exact sequence for the pair (E, F) . The map πn(E,x0)→πn(E, F, x0) in the ex-

act sequence then becomes the composition πn(E,x0)→πn(E, F, x0)
p∗"""""→πn(B, b0) ,

which is just p∗ :πn(E,x0)→πn(B, b0) . The 0 at the end of the sequence, surjectivity

of π0(F,x0)→π0(E,x0) , comes from the hypothesis that B is path-connected since

a path in E from an arbitrary point x ∈ E to F can be obtained by lifting a path in B
from p(x) to b0 . *+

A fiber bundle structure on a space E , with fiber F , consists of a projection

map p :E→B such that each point of B has a neighborhood U for which there is a
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homeomorphism h :p−1(U)→U×F making the diagram at −−−−→−−−−→

−−−−→

U

U

U F( )p h

p

×! 1

the right commute, where the unlabeled map is projection

onto the first factor. Commutativity of the diagram means

that h carries each fiber Fb = p−1(b) homeomorphically

onto the copy {b}×F of F . Thus the fibers Fb are arranged locally as in the product

B×F , though not necessarily globally. An h as above is called a local trivialization

of the bundle. Since the first coordinate of h is just p , h is determined by its second

coordinate, a map p−1(U)→F which is a homeomorphism on each fiber Fb .

The fiber bundle structure is determined by the projection map p :E→B , but to

indicate what the fiber is we sometimes write a fiber bundle as F→E→B , a ‘short

exact sequence of spaces.’ The space B is called the base space of the bundle, and E
is the total space.

Example 4.42. A fiber bundle with fiber a discrete space is a covering space. Con-

versely, a covering space whose fibers all have the same cardinality, for example a

covering space over a connected base space, is a fiber bundle with discrete fiber.

Example 4.43. One of the simplest nontrivial fiber bundles is the Möbius band, which

is a bundle over S1 with fiber an interval. Specifically, take E to be the quotient of

I×[−1,1] under the identifications (0, v) ∼ (1,−v) , with p :E→S1 induced by the

projection I×[−1,1]→I , so the fiber is [−1,1] . Glueing two copies of E together

by the identity map between their boundary circles produces a Klein bottle, a bundle

over S1 with fiber S1 .

Example 4.44. Projective spaces yield interesting fiber bundles. In the real case we

have the familiar covering spaces Sn→RPn with fiber S0 . Over the complex num-

bers the analog of this is a fiber bundle S1→S2n+1→CPn . Here S2n+1 is the unit

sphere in Cn+1 and CPn is viewed as the quotient space of S2n+1 under the equiv-

alence relation (z0, ··· , zn) ∼ λ(z0, ··· , zn) for λ ∈ S1 , the unit circle in C . The

projection p :S2n+1→CPn sends (z0, ··· , zn) to its equivalence class [z0, ··· , zn] ,
so the fibers are copies of S1 . To see that the local triviality condition for fiber bun-

dles is satisfied, let Ui ⊂ CPn be the open set of equivalence classes [z0, ··· , zn]
with zi ≠ 0. Define hi :p−1(Ui)→Ui×S1 by hi(z0, ··· , zn) = ([z0, ··· , zn], zi/|zi|) .
This takes fibers to fibers, and is a homeomorphism since its inverse is the map

([z0, ··· , zn],λ)$ λ|zi|z−1
i (z0, ··· , zn) , as one checks by calculation.

The construction of the bundle S1→S2n+1→CPn also works when n = ∞ , so

there is a fiber bundle S1→S∞→CP∞ .

Example 4.45. The case n = 1 is particularly interesting since CP1 = S2 and the

bundle becomes S1→S3→S2 with fiber, total space, and base all spheres. This is

known as the Hopf bundle, and is of low enough dimension to be seen explicitly. The

projection S3→S2 can be taken to be (z0, z1)$ z0/z1 ∈ C ∪ {∞} = S2 . In polar

coordinates we have p(r0e
iθ0 , r1e

iθ1) = (r0/r1)e
i(θ0−θ1) where r 2

0 + r 2
1 = 1. For a
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fixed ratio ρ = r0/r1 ∈ (0,∞) the angles θ0 and θ1 vary independently over S1 , so

the points (r0e
iθ0 , r1e

iθ1) form a torus Tρ ⊂ S3 . Letting ρ vary, these disjoint tori

Tρ fill up S3 , if we include the limiting cases T0 and T∞ where the radii r0 and r1

are zero, making the tori T0 and T∞ degenerate to circles. These two circles are the

unit circles in the two C factors of C2 , so under stereographic projection of S3 from

the point (0,1) onto R3 they correspond to the unit circle in the xy plane and the

z axis. The concentric tori Tρ are then arranged as in the following figure.

Each torus Tρ is a union of circle fibers, the pairs (θ0,θ1) with θ0 − θ1 constant.

These fiber circles have slope 1 on the torus, winding around once longitudinally and

once meridionally. With respect to the ambient space it might be more accurate to say

they have slope ρ . As ρ goes to 0 or ∞ the fiber circles approach the circles T0 and

T∞ , which are also fibers. The figure shows four of the tori decomposed into fibers.

Example 4.46. Replacing the field C by the quaternions H , the same constructions

yield fiber bundles S3→S4n+3→HPn over quaternionic projective spaces HPn . Here

the fiber S3 is the unit quaternions, and S4n+3 is the unit sphere in Hn+1 . Taking

n = 1 gives a second Hopf bundle S3→S7→S4 = HP1 .

Example 4.47. Another Hopf bundle S7→S15→S8 can be defined using the octonion

algebra O . Elements of O are pairs of quaternions (a1, a2) with multiplication given

by (a1, a2)(b1, b2) = (a1b1 − b2a2, a2b1 + b2a1) . Regarding S15 as the unit sphere

in the 16 dimensional vector space O2 , the projection map p :S15→S8 = O∪ {∞} is

(z0, z1)$z0z
−1
1 , just as for the other Hopf bundles, but because O is not associative,

a little care is needed to show this is a fiber bundle with fiber S7 , the unit octonions.

Let U0 and U1 be the complements of ∞ and 0 in the base space O ∪ {∞} . Define

hi :p−1(Ui)→Ui×S7 and gi :Ui×S7→p−1(Ui) by

h0(z0, z1) = (z0z
−1
1 , z1/|z1|), g0(z,w) = (zw,w)/|(zw,w)|

h1(z0, z1) = (z0z
−1
1 , z0/|z0|), g1(z,w) = (w, z−1w)/|(w, z−1w)|
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If one assumes the known fact that any subalgebra of O generated by two elements

is associative, then it is a simple matter to check that gi and hi are inverse home-

omorphisms, so we have a fiber bundle S7→S15→S8 . Actually, the calculation that

gi and hi are inverses needs only the following more elementary facts about octo-

nions z,w , where the conjugate z of z = (a1, a2) is defined by the expected formula

z = (a1,−a2) :

(1) rz = zr for all r ∈ R and z ∈ O , where R ⊂ O as the pairs (r ,0) .
(2) |z|2 = zz = zz , hence z−1 = z/|z|2 .

(3) |zw| = |z||w| .
(4) zw = w z , hence (zw)−1 = w−1z−1 .

(5) z(zw) = (zz)w and (zw)w = z(ww) , hence z(z−1w) = w and (zw)w−1 = z .

These facts can be checked by somewhat tedious direct calculation. More elegant

derivations can be found in Chapter 8 of [Ebbinghaus 1991].

There is an octonion projective plane OP2 obtained by attaching a cell e16 to S8

via the Hopf map S15→S8 , just as CP2 and HP2 are obtained from the other Hopf

maps. However, there is no octonion analog of RPn , CPn , and HPn for n > 2 since

associativity of multiplication is needed for the relation (z0, ··· , zn) ∼ λ(z0, ··· , zn)
to be an equivalence relation.

There are no fiber bundles with fiber, total space, and base space spheres of other

dimensions than in these Hopf bundle examples. This is discussed in an exercise for

§4.D, which reduces the question to the famous ‘Hopf invariant one’ problem.

Proposition 4.48. A fiber bundle p :E→B has the homotopy lifting property with

respect to all CW pairs (X,A) .

A theorem of Huebsch and Hurewicz proved in §2.7 of [Spanier 1966] says that

fiber bundles over paracompact base spaces are fibrations, having the homotopy lift-

ing property with respect to all spaces. This stronger result is not often needed in

algebraic topology, however.

Proof: As noted earlier, the homotopy lifting property for CW pairs is equivalent

to the homotopy lifting property for disks, or equivalently, cubes. Let G : In×I→B ,

G(x, t) = gt(x) , be a homotopy we wish to lift, starting with a given lift g̃0 of g0 .

Choose an open cover {Uα} of B with local trivializations hα :p−1(Uα)→Uα×F . Us-

ing compactness of In×I , we may subdivide In into small cubes C and I into intervals

Ij = [tj, tj+1] so that each product C×Ij is mapped by G into a single Uα . We may

assume by induction on n that g̃t has already been constructed over ∂C for each of

the subcubes C . To extend this g̃t over a cube C we may proceed in stages, construct-

ing g̃t for t in each successive interval Ij . This in effect reduces us to the case that

no subdivision of In×I is necessary, so G maps all of In×I to a single Uα . Then we

have G̃(In×{0} ∪ ∂In×I) ⊂ p−1(Uα) , and composing G̃ with the local trivialization
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hα reduces us to the case of a product bundle Uα×F . In this case the first coordinate

of a lift g̃t is just the given gt , so only the second coordinate needs to be constructed.

This can be obtained as a composition In×I→In×{0} ∪ ∂In×I→F where the first

map is a retraction and the second map is what we are given. *+

Example 4.49. Applying this theorem to a covering space p :E→B with E and B
path-connected, and discrete fiber F , the resulting long exact sequence of homotopy

groups yields Proposition 4.1 that p∗ :πn(E)→πn(B) is an isomorphism for n ≥ 2.

We also obtain a short exact sequence 0→π1(E)→π1(B)→π0(F)→0, consistent

with the covering space theory facts that p∗ :π1(E)→π1(B) is injective and that the

fiber F can be identified, via path-lifting, with the set of cosets of p∗π1(E) in π1(B) .

Example 4.50. From the bundle S1→S∞→CP∞ we obtain πi(CP∞) ≈ πi−1(S
1) for

all i since S∞ is contractible. Thus CP∞ is a K(Z,2) . In similar fashion the bundle

S3→S∞→HP∞ gives πi(HP∞) ≈ πi−1(S
3) for all i , but these homotopy groups are

far more complicated than for CP∞ and S1 . In particular, HP∞ is not a K(Z,4) .

Example 4.51. The long exact sequence for the Hopf bundle S1→S3→S2 gives iso-

morphisms π2(S
2) ≈ π1(S

1) and πn(S
3) ≈ πn(S

2) for all n ≥ 3. Taking n = 3, we

see that π3(S
2) is infinite cyclic, generated by the Hopf map S3→S2 .

From this example and the preceding one we see that S2 and S3×CP∞ are simply-

connected CW complexes with isomorphic homotopy groups, though they are not

homotopy equivalent since they have quite different homology groups.

Example 4.52: Whitehead Products. Let us compute π3(
∨
αS

2
α) , showing that it is

free abelian with basis consisting of the Hopf maps S3→S2
α ⊂

∨
αS

2
α together with the

attaching maps S3→S2
α ∨ S2

β ⊂
∨
αS

2
α of the cells e2

α×e2
β in the products S2

α×S2
β for

all unordered pairs α ≠ β .

Suppose first that there are only finitely many summands S2
α . For a finite prod-

uct
∏
αXα of path-connected spaces, the map πn(

∨
αXα)→πn(

∏
αXα) induced by

inclusion is surjective since the group πn(
∏
αXα) ≈

⊕
απn(Xα) is generated by the

subgroups πn(Xα) . Thus the long exact sequence of homotopy groups for the pair

(
∏
αXα,

∨
αXα) breaks up into short exact sequences

0 "→πn+1(
∏
αXα,

∨
αXα) "→πn(

∨
αXα) "→πn(

∏
αXα) "→0

These short exact sequences split since the inclusions Xα↩
∨
αXα induce maps

πn(Xα)→πn(
∨
αXα) and hence a splitting homomorphism

⊕
απn(Xα)→πn(

∨
αXα) .

Taking Xα = S2
α and n = 3, we get an isomorphism

π3(
∨
αS

2
α) ≈ π4(

∏
αS

2
α,
∨
αS

2
α) ⊕

(⊕
απ3(S

2
α)
)

The factor
⊕

απ3(S
2
α) is free with basis the Hopf maps S3→S2

α by the preceding ex-

ample. For the other factor we have π4(
∏
αS

2
α,
∨
αS

2
α) ≈ π4(

∏
αS

2
α/
∨
αS

2
α) by Proposi-

tion 4.28. The quotient
∏
αS

2
α/
∨
αS

2
α has 5 skeleton a wedge of spheres S4

αβ for α ≠ β ,
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so π4(
∏
αS

2
α/
∨
αS

2
α) ≈ π4(

∨
αβS

4
αβ) is free with basis the inclusions S4

αβ↩
∨
αβS

4
αβ .

Hence π4(
∏
αS

2
α,
∨
αS

2
α) is free with basis the characteristic maps of the 4 cells e2

α×e2
β .

Via the injection ∂ :π4(
∏
αS

2
α,
∨
αS

2
α)→π3(

∨
αS

2
α) this means that the attaching maps

of the cells e2
α×e2

β form a basis for the summand Im ∂ of π3(
∨
αS

2
α) . This finishes the

proof for the case of finitely many summands S2
α . The case of infinitely many S2

α ’s

follows immediately since any map S3→∨
αS

2
α has compact image, lying in a finite

union of summands, and similarly for any homotopy between such maps.

The maps S3→S2
α ∨ S2

β in this example are expressible in terms of a product in

homotopy groups called the Whitehead product, defined as follows. Given basepoint-

preserving maps f :Sk→X and g :S(→X , let [f , g] :Sk+(−1→X be the composition

Sk+(−1 "→Sk ∨ S( f∨g""""""""""""→X where the first map is the attaching map of the (k+ () cell

of Sk×S( with its usual CW structure. Since homotopies of f or g give rise to ho-

motopies of [f , g] , we have a well-defined product πk(X)×π((X)→πk+(−1(X) . The

notation [f , g] is used since for k = ( = 1 this is just the commutator product in

π1(X) . It is an exercise to show that when k = 1 and ( > 1, [f , g] is the difference

between g and its image under the π1 action of f .

In these terms the map S3→S2
α ∨ S2

β in the preceding example is the Whitehead

product [iα, iβ] of the two inclusions of S2 into S2
α ∨ S2

β . Another example of a

Whitehead product we have encountered previously is [11,11] :S2n−1→Sn , which is

the attaching map of the 2n cell of the space J(Sn) considered in §3.2.

The calculation of π3(
∨
αS

2
α) is the first nontrivial case of a more general theo-

rem of Hilton calculating all the homotopy groups of any wedge sum of spheres in

terms of homotopy groups of spheres, using Whitehead products. A further general-

ization by Milnor extends this to wedge sums of suspensions of arbitrary connected

CW complexes. See [Whitehead 1978] for an exposition of these results and further

information on Whitehead products.

Example 4.53: Stiefel and Grassmann Manifolds. The fiber bundles with total space

a sphere and base space a projective space considered above are the cases n = 1 of

families of fiber bundles in each of the real, complex, and quaternionic cases:

O(n) "→Vn(Rk) "→Gn(R
k) O(n) "→Vn(R

∞) "→Gn(R
∞)

U(n) "→Vn(Ck) "→Gn(C
k) U(n) "→Vn(C

∞) "→Gn(C
∞)

Sp(n) "→Vn(Hk) "→Gn(H
k) Sp(n) "→Vn(H

∞) "→Gn(H
∞)

Taking the real case first, the Stiefel manifold Vn(R
k) is the space of n frames in Rk ,

that is, n tuples of orthonormal vectors in Rk . This is topologized as a subspace of

the product of n copies of the unit sphere in Rk . The Grassmann manifold Gn(R
k)

is the space of n dimensional vector subspaces of Rk . There is a natural surjection

p :Vn(R
k)→Gn(R

k) sending an n frame to the subspace it spans, and Gn(R
k) is

topologized as a quotient space of Vn(R
k) via this projection. The fibers of the map
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p are the spaces of n frames in a fixed n plane in Rk and so are homeomorphic

to Vn(R
n) . An n frame in Rn is the same as an orthogonal n×n matrix, regarding

the columns of the matrix as an n frame, so the fiber can also be described as the

orthogonal group O(n) . There is no difficulty in allowing k =∞ in these definitions,

and in fact Vn(R
∞) =

⋃
k Vn(R

k) and Gn(R
∞) =

⋃
k Gn(R

k) .
The complex and quaternionic Stiefel manifolds and Grassmann manifolds are

defined in the same way using the usual Hermitian inner products in Ck and Hk . The

unitary group U(n) consists of n×n matrices whose columns form orthonormal

bases for Cn , and the symplectic group Sp(n) is the quaternionic analog of this.

We should explain why the various projection maps Vn→Gn are fiber bundles.

Let us take the real case for concreteness, though the argument is the same in all cases.

If we fix an n plane P ∈ Gn(Rk) and choose an orthonormal basis for P , then we ob-

tain continuously varying orthonormal bases for all n planes P ′ in a neighborhood

U of P by projecting the basis for P orthogonally onto P ′ to obtain a nonorthonor-

mal basis for P ′ , then applying the Gram–Schmidt process to this basis to make it

orthonormal. The formulas for the Gram–Schmidt process show that it is continuous.

Having orthonormal bases for all n planes in U , we can use these to identify these

n planes with Rn , hence n frames in these n planes are identified with n frames in

Rn , and so p−1(U) is identified with U×Vn(Rn) . This argument works for k =∞ as

well as for finite k .

In the case n = 1 the total spaces V1 are spheres, which are highly connected,

and the same is true in general:

Vn(R
k) is (k−n− 1) connected.

Vn(C
k) is (2k− 2n) connected.

Vn(H
k) is (4k− 4n+ 2) connected.

Vn(R
∞) , Vn(C

∞) , and Vn(H
∞) are contractible.

The first three statements will be proved in the next example. For the last statement

the argument is the same in the three cases, so let us consider the real case. Define a

homotopy ht :R∞→R∞ by ht(x1, x2, ···) = (1−t)(x1, x2, ···)+t(0, x1, x2, ···) . This

is linear for each t , and its kernel is easily checked to be trivial. So if we apply ht to an

n frame we get an n tuple of independent vectors, which can be made orthonormal

by the Gram–Schmidt formulas. Thus we have a deformation retraction, in the weak

sense, of Vn(R
∞) onto the subspace of n frames with first coordinate zero. Iterating

this n times, we deform into the subspace of n frames with first n coordinates zero.

For such an n frame (v1, ··· , vn) define a homotopy (1−t)(v1, ··· , vn)+t(e1, ··· , en)
where ei is the ith standard basis vector in R∞ . This homotopy preserves linear

independence, so after again applying Gram–Schmidt we have a deformation through

n frames, which finishes the construction of a contraction of Vn(R
∞) .

Since Vn(R
∞) is contractible, we obtain isomorphisms πiO(n) ≈ πi+1Gn(R

∞)
for all i and n , and similarly in the complex and quaternionic cases.
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Example 4.54. For m < n ≤ k there are fiber bundles

Vn−m(R
k−m) "→Vn(R

k) p"""""→Vm(R
k)

where the projection p sends an n frame onto the m frame formed by its first m
vectors, so the fiber consists of (n−m) frames in the (k−m) plane orthogonal to a

given m frame. Local trivializations can be constructed as follows. For an m frame F ,

choose an orthonormal basis for the (k−m) plane orthogonal to F . This determines

orthonormal bases for the (k − m) planes orthogonal to all nearby m frames by

orthogonal projection and Gram–Schmidt, as in the preceding example. This allows

us to identify these (k−m) planes with Rk−m , and in particular the fibers near p−1(F)
are identified with Vn−m(R

k−m) , giving a local trivialization.

There are analogous bundles in the complex and quaternionic cases as well, with

local triviality shown in the same way.

Restricting to the case m = 1, we have bundles Vn−1(R
k−1)→Vn(R

k)→Sk−1

whose associated long exact sequence of homotopy groups allows us deduce that

Vn(R
k) is (k−n−1) connected by induction on n . In the complex and quaternionic

cases the same argument yields the other connectivity statements in the preceding

example.

Taking k = n we obtain fiber bundles O(k −m)→O(k)→Vm(R
k) . The fibers

are in fact just the cosets αO(k −m) for α ∈ O(k) , where O(k −m) is regarded

as the subgroup of O(k) fixing the first m standard basis vectors. So we see that

Vm(R
k) is identifiable with the coset space O(k)/O(k −m) , or in other words the

orbit space for the free action of O(k−m) on O(k) by right-multiplication. In similar

fashion one can see that Gm(R
k) is the coset space O(k)/

(
O(m)×O(k−m)

)
where

the subgroup O(m)×O(k −m) ⊂ O(k) consists of the orthogonal transformations

taking the m plane spanned by the first m standard basis vectors to itself. The

corresponding observations apply also in the complex and quaternionic cases, with

the unitary and symplectic groups.

Example 4.55: Bott Periodicity. Specializing the preceding example by taking m = 1

and k = n we obtain bundles

O(n− 1) "→O(n) p"""""→Sn−1

U(n− 1) "→U(n) p"""""→S2n−1

Sp(n− 1) "→Sp(n) p"""""→S4n−1

The map p can be described as evaluation of an orthogonal, unitary, or symplectic

transformation on a fixed unit vector. These bundles show that computing homotopy

groups of O(n) , U(n) , and Sp(n) should be at least as difficult as computing homo-

topy groups of spheres. For example, if one knew the homotopy groups of O(n) and

O(n−1) , then from the long exact sequence of homotopy groups for the first bundle

one could say quite a bit about the homotopy groups of Sn−1 .
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The bundles above imply a very interesting stability property. In the real case, the

inclusion O(n−1)↩O(n) induces an isomorphism on πi for i < n−2, from the long

exact sequence of the first bundle. Hence the groups πiO(n) are independent of n if

n is sufficiently large, and the same is true for the groups πiU(n) and πiSp(n) via the

other two bundles. One of the most surprising results in all of algebraic topology is the

Bott Periodicity Theorem which asserts that these stable groups repeat periodically,

with a period of eight for O and Sp and a period of two for U . Their values are given

in the following table:

i mod 8 0 1 2 3 4 5 6 7
πiO(n) Z2 Z2 0 Z 0 0 0 Z
πiU(n) 0 Z 0 Z 0 Z 0 Z
πiSp(n) 0 0 0 Z Z2 Z2 0 Z

Stable Homotopy Groups

We showed in Corollary 4.24 that for an n connected CW complex X , the sus-

pension map πi(X)→πi+1(SX) is an isomorphism for i < 2n+ 1. In particular this

holds for i ≤ n so SX is (n + 1) connected. This implies that in the sequence of

iterated suspensions

πi(X) "→πi+1(SX) "→πi+2(S
2X) "→···

all maps are eventually isomorphisms, even without any connectivity assumption on

X itself. The resulting stable homotopy group is denoted π si (X) .
An especially interesting case is the group π si (S

0) , which equals πi+n(S
n) for

n > i + 1. This stable homotopy group is often abbreviated to π si and called the

stable i stem. It is a theorem of Serre which we prove in [SSAT] that π si is always

finite for i > 0.

These stable homotopy groups of spheres are among the most fundamental ob-

jects in topology, and much effort has gone into their calculation. At the present time,

complete calculations are known only for i up to around 60 or so. Here is a table for

i ≤ 19, taken from [Toda 1962]:

π i

i
s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−
−−−−−
−−

0 0 0

10 2 3 4 5 6 7 8 9 10 11 12

2Z Z 2Z 24Z

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−1413 15 16 17 18 19

3Z

2Z 2Z 2Z240Z ×

2Z 2Z× 8Z 2Z×2Z 2Z× 2Z 2Z× 2Z× 2Z×480Z 2Z× 264Z 2Z×

2Z 6Z 504Z2Z× 2Z×

Patterns in this apparent chaos begin to emerge only when one projects π si onto its

p components, the quotient groups obtained by factoring out all elements of order

relatively prime to the prime p . For i > 0 the p component pπ
s
i is of course iso-

morphic to the subgroup of π si consisting of elements of order a power of p , but the

quotient viewpoint is in some ways preferable.


