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Abstract
Accurate estimations of geometric properties of a smooth curve
from its discrete approximation are important for many computer
graphics and computer vision applications. To assess and improve
the quality of such an approximation, we assume that the curve is
known in general form. Then we can represent the curve by a Tay-
lor series expansion and compare its geometric properties with the
corresponding discrete approximations. In turn we can either prove
convergence of these approximations towards the true properties as
the edge lengths tend to zero, or we can get hints on how to elimi-
nate the error. In this paper, we propose and study discrete schemes
for estimating tangent and normal vectors as well as for estimat-
ing curvature and torsion of a smooth 3D curve approximated by
a polyline. Thereby we make some interesting findings about con-
nections between (smooth) classical curves and certain estimation
schemes for polylines.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling;

Keywords: error analysis, discrete approximation, tangent vector,
normal vector, Frenet frame, curvature, torsion, polyline

1 Introduction
Reliable approximations of differential properties of a curve form
the basis of many algorithms in computer graphics and computer vi-
sion. Curvature, for example, can be used to define the smoothness
of a curve. Furthermore, the understanding of discrete normals and
curvatures of curves is a precondition for the even more important –
and more difficult – task of understanding discrete normals and cur-
vatures of a surface. In this sense, our work also lies the foundation
for reliable estimates of normals and curvatures on meshes.
The problem of estimating differential properties of discrete ap-
proximations has already been treated in the classical literature of
differential geometry [Sauer 1970]. But in that context, the speed
of convergence was not an issue, and often very simple approxima-
tions were used, yielding, for example, only linear approximations
for the tangent vector. Today, one common way to obtain tangent
and normal vectors at a vertex of a polyline is to compute it as a
weighted average of the incident edges (or as a weighted average
of the edge normals, respectively). Various weights have been pro-
posed for that purpose. The perhaps most popular schemes are uni-
form weighting, weighting by edge lengths, and weighting by in-
verse edge lengths. It was shown in [Anoshkina et al. 2002] that the
last of these methods yields the best results for planar curves. But
this result holds not necessarily for space curves, in particular there
exists no unique edge normal from which the (uniquely defined)
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Figure 1: A space curve.

curve normal can be computed. For the estimation of curvature and
torsion, various methods have been suggested by Boutin [2000].
With our approach, we yield simpler formulae which, nevertheless,
exhibit at least the same accuracy.
There are basically two ways to evaluate the quality of any of these
methods. On the one hand, they can be applied to a specific polyline
interpolating an analytical curve, and the result can be compared
to the exact tangent vector (or any other approximated geometric
property) at the corresponding point. On the other hand, an asymp-
totic analysis can be applied. In this case, the analytical curve is
given in general form, usually represented by a Taylor series ex-
pansion. Then the outcome of the discrete approximation can again
be compared to the real tangent vector. Both methods have advan-
tages and drawbacks. The first one cannot state general results, but
only for certain test curves. The second method holds for all (an-
alytical) curves and can give clues for design and improvement of
the approximations. But it is only helpful for dense polylines where
dense is not well-defined. It has successfully been applied for pla-
nar curves [Anoshkina et al. 2002]; for space curves, pioneering
work has been done in [Boutin 2000].
In real world applications, all these computations have often to be
done in the presence of noise. In this paper, we assume that all
points lie exactly on a smooth curve since the definitions for dif-
ferential properties are valid only in that case. Though we make
this assumption for the development of our discrete approximation
formulae, this does not mean that our work is useless for real data.
The estimation error of every approximation scheme is composed
of a systematic error inherent in the utilized approximation scheme
and of an error introduced by noise. The goal of this paper is to
minimize the former.
The main focus of this paper is developing a mathematical appa-
ratus for the asymptotic analysis of arbitrary curves, and applying
it to derive new, asymptotically correct estimations for tangents,
normals, curvatures, and torsions of space curves. A uniform eval-
uation for existing approaches and our newly proposed approxima-
tions is given. In particular, we prove the convergence of our ap-
proximations and can show their optimality in many cases. To esti-
mate torsion, which is a third derivative, we need at least four points
for the approximation, but we consider also estimations using five
points to obtain better results. The case of planar curves [Anoshkina
et al. 2002] is consistently included.

2 Approximation of space curves
Let a smooth curve r be interpolated by the five points P−2, P−1, P0,
P1, and P2, with the corresponding edges

−−−→
PiPi+1 denoted by c, d, e,

and f, and their lengths denoted by c, d, e, and f , see Figure 1.
Then these edges can be expressed by their Taylor expansions in
the coordinate system given by the Frenet frame of r with tangent t,
normal n, and binormal b = t×n. Let further κ denote the curva-
ture at P0 and τ denote the torsion at the same point. For the exact



expansions have a look at Appendix A.
First, we use inverse edge lengths as weights for the edges:
2.1 Theorem (tangent vector). The tangent of the circle passing
through P−1, P0 and P1 is a second order approximation of the real
tangent of the curve r:

t̃B
de

d + e

( d
d2 +

e
e2

)

= t
(

1−
de
8

κ2 +
d2e−de2

12
κκ ′ +O(d,e)4

)

+n
(de

6
κ ′−

d2e−de2

24
(κ ′′−κτ2)+O(d,e)4

)
(1)

+b
(
−

de
6

κτ +
d2e−de2

24
(2κ ′τ +κτ ′)+O(d,e)4

)
.

This estimation is optimal among all three-point approximations
of the tangent in the sense that the quadratic term in the normal
component cannot be different from the one that shows up here.
Also, this is the only linear combination of d and e that yields a
second order approximation.
Proof. The equation can directly be derived from the Taylor ex-
pansions in Appendix A. If there were curves with other quadratic
terms we could gain a tangent estimation and in turn an estimation
of the normal for planar curves of the same accuracy, but this is not
possible, see [Anoshkina et al. 2002].
The last statement of the proposition can easily be derived using the
Taylor expansions of d and e from Appendix A. �

Note that in the planar case knowledge of tangent and normal is
equivalent. Therefore, every tangent formula can be used to com-
pute normals of plane curves. In 3D, the computation of normals is
more difficult, however, because the oscillating plane is unknown.
It can be done after estimating the binormals which determine that
plane. A more direct approach is to compute the curvature vector,
for example using finite differences.
2.2 Theorem (curvature vector). The finite difference approach
yields a linear approximation of the true curvature vector, and thus
of the true normal vector. If all edges have equal length, the con-
vergence is even quadratic.

k̄B
2

d + e

(e
e
−

d
d

)

= t
(d − e

4
κ2 −

d2 −de+ e2

6
κκ ′ +O(d,e)3

)
,

+n
(

κ −
d − e

3
κ ′ +

d2 −de+ e2

12
(κ ′′−κτ2)+O(d,e)3

)

+b
(d − e

3
κτ −

d2 −de+ e2

12
(2κ ′τ +κτ ′)+O(d,e)3

)
.

(2)

Furthermore, this is the only linear combination of d and e, that
yields a (at least) linear approximation of the real normal vector.
Proof. Again all claims can directly be proven from the Taylor ex-
pansions given in Appendix A. �

From the curvature vector, we gain the curvature as the norm. An-
other possibility is to estimate the curvature by angle approxima-
tion. That approach is based on the definition of curvature as the
rate of angular change of the tangent vector along the curve.
2.3 Theorem (curvature). Let ϕ be the angle between d and e,
see Figure 1. Curvature, estimated using the discrete curvature
vector (2) or angle approximation, respectively, converges linearly
towards the true curvature. If all edges have equal length, the con-
vergence is even quadratic.

κ̄ B ‖k̄‖ = κ +
e−d

3
κ ′ +

d2 −de+ e2

12
κ ′′

−
d2 +de+ e2

36
κτ2 +

d2 −2de+ e2

32
κ3 +O(d,e)3

,

κ̂ B
2ϕ

d + e
= κ +

e−d
3

κ ′ +
d2 −de+ e2

12
(κ ′′ +

κ3

2
)

−
d2 +de+ e2

36
κτ2 +O(d,e)3

.

These estimations are optimal among all three-point approxima-
tions in the sense that the linear terms cannot be different from the
ones that show up here.
Proof. Again the equations can be derived from Appendix A and
optimality can be reduced to the planar case [Anoshkina et al.
2002]. �

Yet another way to estimate the curvature is as the inverse of the
radius of the circle passing through P−1, P0 and P1. This has been
done in [Boutin 2000] and yields

κ̃ = κ +
e−d

3
κ ′ +

d2 −de+ e2

12
κ ′′−

d2 +de+ e2

36
κτ2 +O(d,e)3

.

Since sinϕ equals ϕ up to quadratic error, we can compute an ap-
proximation for κ as 2‖d× e‖

de(d + e)
≈ κ̂

without significant loss of accuracy.
Also note that for d = e the expansion of the angle approximation
becomes

κ̂ = κ +
e2

12
(κ ′′ +

κ3

2
−κτ2)+O(e4),

see Appendix A, and here the quadratic term vanishes for a spe-
cial class of curves called elastica, characterized by minimizing the
bending energy ∫

κ2ds −→ min

while fixing end points. They were first introduced by Euler [1744]
and have applications in computer graphics as well as in computer
vision today [Cerda et al. 2004; Mumford 1994; Horn 1983].
2.4 Theorem (Euler’s elastica). The curvature estimation κ̂ con-
verges of fourth order for elastica if all edges have equal length.
In fact, the lower order error terms vanish for an even broader class
of curves, see Appendix B for a derivation.
Binormals bi at Pi can be estimated by the normal of the plane de-
fined by three consecutive points, Pi−1, Pi, and Pi+1, for example
b0 = d×e

‖d×e‖ . Now we apply the method of angle approximation
to these binormals to compute the torsion τ̂e (located at the edge
e) from the angle ηe between b0 and b1, ‖b1 ×b0‖ = sinηe. But
instead of taking the norm of the cross product, which is compu-
tationally rather expensive, and even worse, always yields positive
values, whereas torsion is a signed property, we use the fact from
the Frenet equations that db

ds = τn. Therefore, b1 ×b0 should ap-
proximately be orthogonal to n and is thus approximately aligned
with t, and we define η̂e B 〈b1 ×b0, t̃〉 where t̃ denotes the tangent
approximation from equation (1). In fact η̂e = ηe +O(d,e, f )3 (be-
cause ηe depends linearly on d, e and f , and sinηe approximates
ηe up to second order). We define analogously η̂d from b−1 and b0
and get (see Appendix A for the Taylor expansion of η̂e)
2.5 Theorem (torsion, four points). Using four of the five points
P−2, P−1, P0, P1, and P2, torsion can be approximated linearly as
follows:

τ̂d B
3η̂d

c+d + e
= τ −

c− e
6

κ ′

κ
τ −

c+2d − e
4

τ ′ +O(c,d,e)2
,

τ̂e B
3η̂e

d + e+ f
= τ +

f −d
6

κ ′

κ
τ −

d −2e− f
4

τ ′ +O(d,e, f )2
.

It is interesting to compare the above estimation τ̂e with the results
from Boutin [2000], who uses the same four points. Let g be the
distance ‖

−−→
P0P2‖. Then

τ̃1 = τ +
d − e+3g

6
κ ′

κ
τ +

e−d +g
4

τ ′ +O(d,e, f )2

and τ̃2 = τ +
d + e+g

6
κ ′

κ
τ +

e−d +g
4

τ ′ +O(d,e, f )2
.



Our approximation is more symmetric in the sense that the first lin-
ear error term vanishes if all edge lengths are equal. By estimating
torsion using the angle between b−1 and b1, we can even get an
expression completely without linear terms if d = e and c = f .
A better way to obtain such a symmetric expression is to take the
(unique) weighted average of τ̂d and τ̂e such that the term involving
τ ′ vanishes completely and the term involving κ ′

κ τ vanishes for d =
e and c = f :

τ̂ B
1

c+d + e+ f

(
( f +2e−d)τd +(c+2d − e)τe

)

= τ −
ce− e2 +d2 −d f
3(c+d + e+ f )

κ ′

κ
τ +O(c,d,e, f )2

.

It can be further improved by estimating κ ′

κ τ and eliminating the
corresponding error term. In that way, we can get a five-point ap-
proximation of the torsion at P0 that converges quadratically for ar-
bitrary edge lengths. For this purpose, we approximate curvatures
at P−1 and P1 from the angles ϕ−1 between c and d, and ϕ1 between
e and f:

κ−1 B
2ϕ−1

c+d
= κ −

c+2d
3

κ ′ +O(c,d)2

and κ1 B
2ϕ1

e+ f
= κ +

f +2e
3

κ ′ +O(e, f )2
.

From this, we get five-point estimates for curvature

κ5 B
1

c+2(d + e)+ f
((2e+ f )κ−1 +(c+2d)κ1)

= κ +O(c,d,e, f )2
,

for its derivative (also suggested in [Boutin 2000])

κ ′
5 B

3
c+2(d + e)+ f

(κ1 −κ−1) = κ ′ +O(c,d,e, f ),

and finally
2.6 Theorem (torsion, five points). Five points are sufficient to
obtain a second order approximation for torsion:

τ5 B τ̂ +
ce−d f +d2 − e2

3(c+d + e+ f )
κ ′

5
κ5

τ̂ = τ +O(c,d,e, f )2
.

Here, τ̂ , κ5, and κ ′
5 are defined as above.

3 Conclusion
We have presented a mathematical framework to evaluate and de-
velop approximation schemes to estimate differential properties of
discrete curves. Its application yielded several formulae to estimate
curvature, torsion, and the Frenet frame of a space curve, such that
they converge towards their smooth counterparts as edge lengths
tend to zero. Furthermore, we proved the optimality of our esti-
mates in many cases. Thus, we provided a useful toolbox for the
analysis of polylines in three-dimensional space.
In the future, we plan to extend our research to the asymptotic prop-
erties of estimations of normals and curvatures of meshes, and cur-
vature and torsion of curves on surfaces. Also, we want to examine
the influence of noise on normal and curvature estimations.
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A Taylor series expansion of space curves

In this appendix, we conduct an asymptotic analysis of an arbitrary
curve r(s), with r(si) = Pi, s0 = 0, interpolated by a polyline as
in Figure 1. Our treatment is based on the work of Anoshkina et
al. [2002], but we have to take into account the higher complexity
of three-dimensional space; in particular, the notion of torsion has
no meaning for planar curves.
We assume without loss of generality that the curve is parameter-
ized by arc length. This facilitates the problem to express discrete
properties in geometrical meaningful terms like curvature and tor-
sion by using Taylor series along with the well known Frenet equa-
tions [do Carmo 1976; Koenderink 1990]

dt
ds

= κn,

db
ds

= τn,

dn
ds

= −κt− τb, (3)

where t, n and b are the unit tangent, the unit normal and the unit
binormal vector, respectively, and κ and τ are curvature and torsion,
respectively. (We omit the position s since the equations hold for
all (fixed) s and we are interested only in the case s = 0, anyway.)
Differentiating the curve r(s) then yields

r′ = t, r′′ = t′ = κn, r′′′ = (κn)′ = κ ′n−κ2t−κτb,

r(4) = −3κκ ′t+(κ ′′−κ3 −κτ2)n− (2κ ′τ +κτ ′)b,

r(5) = (κ4 +κ2τ2 −4κκ ′′−3(κ ′)2)t

− (6κ2κ ′ +3κττ ′ +3κ ′τ2 −κ ′′′)n

+(κ3τ +κτ3 −κτ ′′−3κ ′τ ′−3κ ′′τ)b,

and so on. Now we can use Taylor expansion to express the edge
e =

−−→
P0P1 = r(s1)−r(0) in the local canonical form [Kreyszig 1959;

Sauer 1970]:

e = s1r′ +
s2

1
2

r′′ +
s3

1
6

r′′′ +
s4

1
24

r(4) +
s5

1
120

r(5) +O(s6
1)

= t
(

s1 −
s3

1
6

κ2 −
s4

1
8

κκ ′

+
s5

1
120

(
κ4 +κ2τ2 −4κκ ′′−3(κ ′)2)+O(s6

1)
)

+n
( s2

1
2

κ +
s3

1
6

κ ′ +
s4

1
24

(κ ′′−κ3 −κτ2)

−
s5

1
120

(6κ2κ ′ +3κττ ′ +3κ ′τ2 −κ ′′′)+O(s6
1)

)

+b
(
−

s3
1
6

κτ −
s4

1
24

(2κ ′τ +κτ ′)

+
s5

1
120

(κ3τ +κτ3 −κτ ′′−3κ ′τ ′−3κ ′′τ)+O(s6
1)

)
.

In the next step, we express e only in terms of its length e without
using the possibly unknown geodesic length s1. Since (t,n,b) is an



orthonormal basis, we can compute e in terms of s1 by

‖e‖2 = s2
1 −

s4
1

12
κ2 −

s5
1

12
κκ ′

+
s6

1
360

(κ4 +κ2τ2 −9κκ ′′−8(κ ′)2)+O(s7
1),

eB ‖e‖ = s1 −
s3

1
24

κ2 −
s4

1
24

κκ ′

+
s5

1
5760

(3κ4 +8κ2τ2 −72κκ ′′−64(κ ′)2)+O(s6
1).

After inverting the Taylor series for e, we obtain

s1 = e+
e3

24
κ2 +

e4

24
κκ ′

+
e5

5760
(27κ4 −8κ2τ2 +72κκ ′′ +64(κ ′)2)+O(e6).

Substituting the expansion of s1 into the formula for e and dividing
by e yields

e
e

= t
(

1−
e2

8
κ2 −

e3

12
κκ ′

−
e4

1152
(
9κ4 −8κ2τ2 +24κκ ′′ +16(κ ′)2)+O(e5)

)

+n
( e

2
κ +

e2

6
κ ′ +

e3

24
(κ ′′−κτ2)

+
e4

240
(3κ2κ ′−6κττ ′−6κ ′τ2 +2κ ′′′)+O(e5)

)

+b
(
−

e2

6
κτ −

e3

24
(2κ ′τ +κτ ′)

−
e4

240
(3κ3τ −2κτ3 +2κτ ′′ +6κ ′τ ′ +6κ ′′τ)+O(e5)

)
.

In a similar fashion, we obtain f
f from the difference of two Taylor

expansions, f = r(s1 +(s2 − s1))− r(s1), and in the same way we
get the expressions for d

d and c
c .

Using these series, we can compute the cross product of d
d and e

e :
d
d
×

e
e

= t
(d2e+de2

12
κ2τ +O(d,e)4

)

+n
(e2 −d2

6
κτ +

d3 + e3

24
(2κ ′τ +κτ ′)+O(d,e)4

)

+b
(d + e

2
κ +

e2 −d2

6
κ ′

+
d3 + e3

24
(κ ′′−κτ2)−

d2e+de2

16
κ3 +O(d,e)4

)
.

Note that the quadratic terms vanish for d = e. The same is true for
fourth order terms:

d
d
×

e
e

d=e
= t

(e3

6
κ2τ +O(e5)

)

+n
( e3

12
(2κ ′τ +κτ ′)+O(e5)

)

+b
(

eκ +
e3

12
(κ ′′−κτ2)−

e3

8
κ3 +O(e5)

)
.

Since the norm of the above vector equals sinϕ , we obtain

sinϕ =
d + e

2
κ −

d2 − e2

6
κ ′ +

(d − e)(d2 − e2)

36
κτ2

+
d3 + e3

24
(κ ′′−κτ2)−

d2e+de2

16
κ3 +O(d,e)4

,

ϕ =
d + e

2
κ −

d2 − e2

6
κ ′ +

d3 + e3

48
(κ3 −

2
3

κτ2 +2κ ′′)

−
d2e+de2

36
κτ2 +O(d,e)4

,

and for d = e

ϕ d=e
= eκ +

e3

24
(2κ ′′ +κ3 −2κτ2)+O(e5).

We can also compute the normalized binormal at P0 by

b0 B
d× e
‖d× e‖

=
d
d × e

e
sinϕ

= t
(de

6
κτ +O(d,e)3

)

+n
(e−d

3
τ +

d2 −de+ e2

12
τ ′ +

d2 +de+ e2

18
κ ′

κ
τ +O(d,e)3

)

+b
(

1−
(d − e)2

18
τ2 +O(d,e)3

)
.

The terms for the binormals b−1 at P−1 and b1 at P1 are similar.
With those in turn, we can estimate the angle between two consec-
utive binormals as

η̂e = 〈b1 ×b0, t̃〉 =
d + e+ f

3
τ −

d2 +de− e f − f 2

18
κ ′

κ
τ

−
d2 −de−2e2 −3e f − f 2

12
τ ′ +O(d,e, f )3

where t̃ is the tangent approximation from equation (1).

B Euler’s elastica for space curves
In this section, we will derive necessary conditions for a space curve
r(s) to be an elastica, that means∫

κ2ds −→ min,

while fixing position and tangent of the two end points. Hereby,
we follow the treatment given in [Belyaev et al. 1999] and [Mum-
ford 1994] for elastica in the plane. Nevertheless, the situation for
elastica in the three-dimensional space is more complex.
We consider a small perturbation of r(s)

r̂(s)B r(s)+ ε
(
h(s)n+ k(s)b

)

where r(s) is an elastica parameterized by arc length s, h(s) and
k(s) are real functions with compact support, and ε is a real number.
Using the Frenet equations we get

dr̂
ds

= t+ ε
(
−hκt+(h′ + kτ)n+(k′−hτ)b

)
.

Let r̂(ŝ) be a parameterization of r̂ by arc length. Then

dŝ =
∥∥∥

dr̂
ds

∥∥∥ds = (1− εhκ +O(ε2))ds.

Therefore, we have

t̂ =
dr̂
dŝ

=
dr̂
ds

ds
dŝ

= t+ ε
(
(h′ + kτ)n+(k′−hτ)b

)
+O(ε2),

κ̂n̂ =
d t̂
dŝ

=
d t̂
ds

ds
dŝ

= κn+ ε(−h′κ − kκτ)t+ ε(h(κ2 − τ2)+h′′ + kτ ′ +2k′τ)n

+ ε(−hτ ′−2h′τ − kτ2 + k′′)b+O(ε2),

and

κ̂2 = ‖κ̂n̂‖2 = κ2 +2εκ
(
h(κ2 − τ2)+h′′ + kτ ′ +2k′τ

)
+O(ε2).

Now we can compute, using integration by parts:
∫

κ̂2dŝ =
∫

κ2dŝ

+ ε
∫

h(2κ3 +2κ ′′−2κτ2)−2k(κτ ′ +2κ ′τ)dŝ+O(ε2)

=
∫

κ2ds+ε
∫

h(κ3 +2κ ′′−2κτ2)−2k(κτ ′+2κ ′τ)ds+O(ε2).

Because h(s) and k(s) are arbitrary functions with compact support
and the integral

∫
κ2ds is minimal for r(s), this shows:

κ ′′ +
κ3

2
−κτ2 = 0 and κ ′τ +

κτ ′

2
= 0.


