Maxwell's Equations

Math 3510

$$
8.6 .3
$$

In the classical theory of electromagnetism there are 3 vector fields and 1 function. Fields

Function
$E=$ electric field $P=$ charge density
$B=m a g n e t i c$ field
J = current density
These are related by four equations:
Gauss' law:

$$
\operatorname{div} E=p
$$

(No magnetic monopoles): $\operatorname{div} B=0$
Faraday's law: $\quad \operatorname{corl} E=-\frac{\partial B}{\partial t}$
Ampere's law:
$\operatorname{corl} B=\frac{\partial E}{\partial t}+J$

We now want to understand electricity and magnetism from our new perspective.

Spacetime:
\mathbb{R}^{4} with coordinates x, y, z, t and volume form $d t n d x n d y n d z$
We will need a new dictionary.
Previously, we used

$$
\begin{aligned}
& \Lambda^{0}\left(\mathbb{R}^{3}\right) \cong \mathbb{R} \quad \operatorname{dim}\binom{3}{0}=1 \\
& \Lambda^{1}\left(\mathbb{R}^{3}\right) \cong \mathbb{R}^{3} \operatorname{dim}\binom{3}{1}=3 \\
& \Lambda^{2}\left(\mathbb{R}^{3}\right) \cong \mathbb{R}^{3} \operatorname{dim}\binom{3}{2}=3 \\
& \Lambda^{3}\left(\mathbb{R}^{3}\right) \cong \mathbb{R} \quad \operatorname{dim}\binom{3}{3}=1
\end{aligned}
$$

In spacetime we'll focus on

$$
\begin{aligned}
& \Lambda^{1}\left(\mathbb{R}^{4}\right) \cong \mathbb{R}^{4} \quad \operatorname{dim}\binom{4}{1}=4 \\
& \Lambda^{2}\left(\mathbb{R}^{4}\right) \cong \mathbb{R}^{6} \operatorname{dim}\binom{4}{2}=6 \\
& \Lambda^{3}\left(\mathbb{R}^{4}\right) \cong \mathbb{R}^{4} \quad \operatorname{dim}\binom{4}{3}=4
\end{aligned}
$$

We note that $: \Lambda^{2}\left(\mathbb{R}^{4}\right) \rightarrow \Lambda^{2}\left(\mathbb{R}^{4}\right)$ (and also $: \Lambda^{1}\left(\mathbb{R}^{4}\right) \rightarrow \Lambda^{3}\left(\mathbb{R}^{4}\right)$) We will need a new dictionary to understand the relationship between forms, fields, and functions,
"Bivector" fields

$$
\begin{array}{ll}
\text { 2-forms } & \text { "Bivector'f } \\
v_{1} d x \wedge d t & \omega_{1} d y \wedge d z \\
v_{2} d y \wedge d t+\omega_{2} d z \wedge d x & \vec{V}(\vec{x}, t) \\
v_{2} d z \wedge d t \quad \omega_{3} d x \wedge d y & \vec{W}(\vec{x}, t)
\end{array}
$$

Hodge star (modified for Lorentz metric)

$$
\begin{aligned}
& V_{1} d x \wedge d t \quad \omega_{1} d y \wedge d z \\
& v_{1} d x \wedge d t-v_{1} d y \wedge d z \\
& v_{2} d z \wedge d t+\omega_{2} d z \wedge d x=\omega_{3} d x \wedge d t-v_{2} d z \wedge d x \\
& \omega_{3} d x \wedge d y d y d t-v_{3} d x \wedge d y
\end{aligned}
$$

or

$$
-(\vec{V}(\vec{x}, t), \vec{w}(\vec{x}, t))=(\omega(\vec{x}, t),-V(\vec{x}, t))
$$

3-forms
field + function
$V_{1} d y \wedge d z \wedge d t$

$$
\begin{aligned}
W= & +V_{2} d z \wedge d x \wedge d t \\
& +v_{3} d x \wedge d y \wedge d t \\
& +f d x \wedge d y \wedge d z
\end{aligned}
$$

$$
(\vec{V}(\vec{x}, t), f(\vec{x}, t))
$$

1 -forms
field + function

$$
\begin{aligned}
& v_{1} d x \\
w= & v_{2} d y \\
& +v_{3} d z \\
& +f d t
\end{aligned}
$$

While

$$
\begin{aligned}
& v_{1} d y \wedge d z \wedge d t \quad-v_{1} d x \\
+ & v_{2} d z \wedge d x \wedge d t \\
+ & -v_{2} d x \\
+ & d x \wedge d y \wedge d t \\
+ & -v_{3} d z \\
+ & d x \wedge d y \wedge d z
\end{aligned}+f d t
$$

or

$$
\star(\vec{V}(\vec{x}), f(\vec{x}))=(-\vec{V}(\vec{x}), f(\vec{x}))
$$

Now d is kind of interesting:

$$
\begin{aligned}
& d\left(\begin{array}{l}
v_{1} d x \wedge d t \\
v_{2} d y \wedge d t+\omega_{2} d y \wedge d z \\
v_{3} d z \wedge d t \\
\omega_{3} d z \wedge d x \\
d x \wedge d y
\end{array}\right)= \\
& \left(\frac{\partial v_{3}}{\partial y}-\frac{\partial v_{2}}{\partial z}+\frac{\partial \omega_{1}}{\partial t}\right) d y \wedge d z \wedge d t \\
& +\left(\frac{\partial v_{1}}{\partial z}-\frac{\partial z_{3}}{\partial x}+\frac{\partial w_{2}}{\partial t}\right) d z \wedge d x \wedge d t \\
& + \\
& \left(\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}+\frac{\partial w_{3}}{\partial t}\right) d x \wedge d y \wedge d t
\end{aligned}
$$

$$
+\left(\frac{\partial w_{1}}{\partial x}+\frac{\partial \omega_{2}}{\partial y}+\frac{\partial \omega_{3}}{\partial z}\right) d x \wedge d y \wedge d z
$$

or

$$
\begin{aligned}
& d(\vec{V}(\vec{x}, t), \vec{\omega}(\vec{x}, \vec{t})) \\
& \quad=\left(\nabla \times \vec{V}(\vec{x}, t)+\frac{\partial}{\partial t} \vec{\omega}(\vec{x}, \vec{t}), \nabla \cdot \vec{w}(\vec{x}, t)\right)
\end{aligned}
$$

While

$$
\begin{aligned}
& v_{1} d y \wedge d z \wedge d t \\
& +v_{2} d z \wedge d x \wedge d t \\
d(& \left.+v_{3} d x \wedge d y \wedge d t\right)= \\
& +f d x \wedge d y \wedge d z \\
\left(\frac{\partial v_{1}}{\partial x}\right. & \left.+\frac{\partial v_{2}}{\partial y}+\frac{\partial v_{3}}{\partial z}-\frac{\partial f}{\partial t}\right) d x \wedge d y \wedge d z \wedge d t
\end{aligned}
$$ or

$$
d(\vec{V}(\vec{x}, t), f(\vec{x}, t))=\nabla \cdot V-\frac{\partial f}{\partial t}
$$

In classical physics, we had the electric field $\vec{E}(\vec{x}, t)$ and the magnetic field $\vec{B}(\vec{x}, t)$ Together, these are the "electromagnetic 2 -form" ω.
$\omega \longleftrightarrow(\vec{E}(\vec{x}, t), \vec{B}(\vec{x}, t))$

The first equation is

$$
d w=0 \longleftrightarrow \nabla \times E+\frac{d}{d t} B=0 \text { (Farodays Law) }
$$

$\nabla \cdot B=O$ (no magnetic monopoles)

The second object is the "current charge" 3-form, which describes the motion and density of electrons

The second equation is

$$
\begin{gathered}
d(\nrightarrow \omega)=P \leftrightarrow d(\vec{B}(\vec{x}, t),-\vec{E}(\vec{x}, t)) \\
\leftrightarrow \nabla \times \vec{B}-\frac{\partial}{\partial t} \vec{E}=\vec{J} \text { (Ampére's Law) } \\
-\nabla \cdot E=-\rho \quad \text { (Gauss' Law) }
\end{gathered}
$$

Now "to solve Maxwell's equations" means, basically,
"Given current flow (J) and charge density (ρ), find the corresponding electric and magnetic fields $(E, J), "$
or, in our new language,
"Given the 3 -form θ, find a 2 -form ω so that $d(\omega)=\theta$ and $d \omega=0$."
We will now outline how this may be done.

Since $d \omega=0$ on all of \mathbb{R}^{4}, \exists some 1 -form α so $d \alpha=\omega$.

Now α is not unique, since

$$
\begin{aligned}
d(\alpha+d f) & =d \alpha+d(d f)^{0} \\
& =\omega
\end{aligned}
$$

for any O-form f. So let's choose f craftily bey solving the PDE

$$
(d \not d) f=-d * \alpha
$$

and let $\beta=\alpha+d f$. Then

$$
\begin{aligned}
d \beta=\omega, d \beta \beta & =d \alpha+d \not d f \\
& =d \alpha-d \alpha \\
& =0 .
\end{aligned}
$$

This trick is called "choice of gauge".

Now suppose

$$
\beta=A_{1} d x+A_{2} d y+A_{3} d z+\varphi d t
$$

Then

$$
\begin{aligned}
\beta= & A_{1} d y \wedge d z \wedge d t \\
& A_{2} d z \wedge d x \wedge d t \\
& A_{3} d x \wedge d y \wedge d t \\
& -Q d x \wedge d y \wedge d z
\end{aligned}
$$

and

$$
\begin{aligned}
& 0=d \star \beta= \\
& =\left(\frac{\partial A_{1}}{\partial x}+\frac{\partial A_{2}}{\partial y}+\frac{\partial A_{3}}{\partial z}+\frac{\partial \varphi}{\partial t}\right) d x \wedge d y n d z \wedge d t \\
& \Rightarrow\left(\frac{\partial A_{1}}{\partial x}+\frac{\partial A_{2}}{\partial y}+\frac{\partial A_{3}}{\partial z}+\frac{\partial \varphi}{\partial t}\right)=0
\end{aligned}
$$

Further $\alpha \beta=\omega$, so

$$
\begin{aligned}
(d t d) \beta & =d * \omega \\
& =\theta
\end{aligned}
$$

So we have learned that we may define β to be the unique 1 -form so that

$$
(d d) \beta=\theta, d \beta=0
$$

and then obtain ω by computing $d \beta$. In more familiar terms, these equations become

$$
\left.\begin{array}{l}
\Delta A-\frac{\partial^{2} A}{\partial t^{2}}=-J \\
\Delta \varphi-\frac{\partial^{2} \varphi}{\partial t^{2}}=-\rho
\end{array}\right\} \text { wave equations }
$$

The field A is called the "vector potential" while φ is called the "scalar potential".

