MATH 2260

Midterm Exam II
April 16, 2015

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Please complete all questions in the space provided. Draw a box around your final answer. You may use the backs of the pages for extra space, or ask me for more paper if needed. Work carefully, and neatly: part of your grade will be based on how well your work is presented.

Try to complete the problems you find easier before going back to the harder ones. Good luck!

QUESTION	VALUE	SCORE
1	10	
2	10	
3	15	
4	10	
5	10	
6	10	
7	10	
8	10	
TOTAL	85	

1. ($\mathbf{1 0}$ points) What is the difference between a sequence and a series?
2. (10 points) Does the series

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n}
$$

converge or diverge? Use any test you like to justify your answer. If you can't get a test to work, a correct guess is worth 2 points, and a guess supported by a few sentences describing your thought process may be worth as many as 4 points.
3. ($\mathbf{1 5}$ points) Consider the power series

$$
f(x)=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

This problem has three parts:

1. Write out the first 5 nonzero terms of the series (3 points).
2. Find the values of x for which the series converges (6 points).
3. Find a formula (in terms of x) for $f(x)$ which is valid when the series converges (6 points).
4. (10 points) Consider the (convergent) alternating series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=L
$$

This problem has three parts:

- (3 points) Write out the first 5 terms of the series.
- (6 points) Find n so that the partial sum s_{n} of the series is within 0.1 of L. Explain why your n works. Compute s_{n}.
(problem 5 continues on the next page)
(problem 5, continued)
- (6 points) Find an exact formula for L using the theory of Taylor series. Verify, using your calculator, that the partial sum you computed above is actually within 0.1 of L.

5. (10 points) Find the fourth order Taylor polynomial $T_{4}(x)$ for $f(x)=e^{x} \sin x$ centered at 0 .
6. (10 points) It turns out to be the case that

$$
\arcsin (x)=x+\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+\ldots
$$

for x near zero. This question has two parts:

1. (5 points) Find the first three (nonzero) terms of the Taylor series for $\int \arcsin (x) d x$.
2. (5 points) Give the best numerical estimate you can for $\int_{0}^{\frac{1}{2}} \arcsin (x) d x$ as a sum of fractions.
3. (5 points) Discuss the error in your estimate above. How would you bound it?
4. (10 points) Does the series

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}}
$$

converge or diverge? Use any method you like, but thinking is better than calculating. If you can't get a test to work, a correct guess is worth 2 points, and a guess supported by a few sentences describing your thought process may be worth as many as 4 points.

8. (10 points) Bonus question

Suppose that the probability that a new MacBook air is free from manufacturing defects is p and the probability that it is defective is $q=1-p$. The probability $g(n)$ that the n-th MacBook is the first defective one is

$$
g(n)=p^{n-1} q .
$$

The expected number of MacBooks inspected between defective MacBooks is

$$
E=\sum_{n=1}^{\infty} n g(n)=\sum_{n=1}^{\infty} n p^{n-1} q
$$

Use the theory of Taylor series to evaluate this sum (the answer will be in terms of p and q). Hint: Consider the Taylor series for $\frac{1}{(1-x)^{2}}$.
(more space to think about the bonus question)

