
Math 4500/6500 Final Project 2013
Taco-Related Mountain Navigation Challenge

While eating a delicious fish taco at the “El Chato” taco truck (1013 S. La Brea, Los Angeles),
you overhear several shady characters discussing a desert location where they have buried a valu-
able taco-related item. They depart, presumably hoping to reclaim their treasure, and you (perhaps
exhibiting salsa-related poor decision-making) decide to try to beat them to the prize.

Downloading topo data from the National Map and National Elevation Dataset to your laptop
over your cellular data connection, you quickly parse, thin, rescale, and convert units, making a
Mathematica InterpolatingFunction describing the landscape between you and the trea-
sure, discovering that (in kilometers) you are at coordinates (9.57,10.23) and the treasure is at
(20.12,22.3).

This means that (horizontally), you are only 16.03 km from the goal. However, there is a for-
midable obstacle in your way: the San Gabriel mountain range. Use Mathematica’s minimization
functions to find the shortest overland route and win the race to the taco-treasure. The finder of the
shortest route will receive a valuable taco-themed prize, as well as 2013 bragging rights.

Posted alongside this writeup on the course webpage, you’ll find a Mathematica package file
named TerrainPackage.m, as well as a notebook named TerrainPackageTester.nb.
Download these and copy them into the same directory you’ll use for your notebook.

With the commands

1 AppendTo[$Path, NotebookDirectory[]]
2 << TerrainPackage‘

you should load the package and define two functions: z[x,y] and GradZ[x,y]. The z
function defines the landscape shown by

1

The GradZ function defines the gradient vector of the z function. In the function z[x,y], x,
y and the output are all in (consistent) units of km.

0.1. Defining the Path. To define the problem, you’ll need a way to describe a family of paths
from A = (9.57,10.23) to B = (20.12,22.3) in terms of some variables. There are lots
of ways to do this, but a very reasonable plan is to let the variables represent a series of waypoints
{x1,y1},{x2,y2},...,{xn,yn} which you will pass through on your journey.

Mathematica can save you a lot of time here with the Interpolation command, which
produces a special kind of function called an InterpolationFunction which interpolates
between various data values. For instance, the commands

1 f = Interpolation[{{1, 2}, {2, 3}, {3, 1.2}, {4, 1.12}}];
2 Plot[f[x], {x, 1, 4}, Filling -> Axis, AxesOrigin -> {0, 0},
3 PlotRange -> {{0, 5}, {0, 4}}]

gave me the plot

0 1 2 3 4 5
0

1

2

3

4

If we type f, Mathematica gives

1 InterpolatingFunction[{{1.,4.}},<>]

which tells us that the domain of the function is [1, 4]. We can ask for a value of the function
at, say, 17, and Mathematica will take a best guess based on the data it has. But it will give us a
warning that the results are probably worthless. Of course, this is because they probably are.

2

Problem 1. Write a Mathematica function which takes a set of waypoints {x1,y1}, ...,
{xn,yn} and returns a pair of InterpolatingFunction functions x and y so that

• The domain of x[t] and y[t] is [0, 1].
• x[0] = 9.57
• y[0] = 10.23
• x[1] = 20.12
• y[1] = 22.3.
• At t = i/(n+1), x[t] = xi, y[t] = yi (that is, the path (x(t), y(t)) passes through

all the waypoints).

Now define a “path” function
p(t) = (x(t), y(t))

0.2. Arclength and the space path. We now want to consider the length of various paths from
the taco stand to the treasure. For each set of waypoints, you can now define an entire path p(t)
which passes through all the waypoints on the way. We now need to define the objective function
to minimize in terms of these waypoints (that is, the length of the path).

The first thing to observe is that the path in space corresponding to the planar p(t) is

γ(t) = (x(t), y(t), z(x(t), y(t)).

The formula for the length of this parametrized curve in space is given by the integral

Length =

∫ 1

0

√
x′(t)2 + y′(t)2 +

(
d

dt
z(x(t), y(t))

)2

dt.

where I was a little bit careful in writing the derivative of the z coordinate with respect to t because
in this case it’s really a multivariable chain rule problem to figure out this derivative1.

We can differentiate and integrate an InterpolationFunction in Mathematica just like
any other function, but the results are new InterpolationFunction objects. We can evaluate
them, but we can’t see the formulae that are used to compute them. For instance, if we stick with
the example f we defined earlier, then f’ gives

1 InterpolatingFunction[{{1.,4.}},<>]

because the derivative is defined on the same domain as the original InterpolatingFunction
and

1 Plot[f’[x], {x, 1, 4}, Filling -> Axis, AxesOrigin -> {0, 0},
2 PlotRange -> {{0, 5}, {-3, 4}}]

yields the perfectly nice plot

1Hint: The gradient of the z function GradZ is involved in the computation. Which is why you have it.
3

1 2 3 4 5

-3

-2

-1

0

1

2

3

4

With this in hand, we are ready for the next

Problem 2. Write a Mathematica function called PathLength[x1_,y1_,x2_,y2_,x3_,y3_]
which does the following things:

• Constructs a path built from InterpolatingFunction objects x[t] and y[t] as
above which passes through the waypoints {x1,y1},{x2,y2},{x3,y3}.
• Defines a new function γ[t] which gives the 3-space path which follows x[t] and y[t]

across the landscape with height function z[x,y].
• Numerically computes the Length integral above (using NIntegrate) for this path. You

should set the AccuracyGoal low enough that this is fast2. You’re going to be calling
this function a lot of times.

This is the objective function for our problem, and the variables are x1,y1,x2,y2,x3,y3.
This is a six-dimensional optimization problem. Be a little bit careful that you don’t construct
the InterpolatingFunction defining the path inside the call to NIntegrate. If you do,
Mathematica will have to rebuild the interpolation every time it evaluates it, which will make this
whole process unbearably slow. If this takes more than a few hundredths of a second, you’re doing
it wrong.

0.3. Breaking out the minimization algorithm. The first thing to say here is that you are going
to learn to use Mathematica’s NMinimize function, which includes implementations of both
Nelder-Mead and Simulated Annealing which are better than anything you can write by hand.
You are not going to write your own optimization algorithm here. The second thing to say is that
documentation for NMinimize (at least in Mathematica 8) all seems to be hidden in the tutorial
“Numerical Nonlinear Global Optimization”. You’ll want to refer to that as we go.

2(stuff) // Timing will measure the time it takes to evaluate (stuff) in seconds
4

You want to call NMinimize on your PathLength function. There are two points to consider

• NMinimize actually3 requires you to set up an interval of reasonable values for each of
your input variables. You can certainly get cleverer with this, but the largest intervals which
would make sense would be [1, 25] for both the xi and yi variables since this is pretty close
to the entire domain of the z[x,y] function.
• NMinimize will try to evaluate your input PathLength function with symbolic inputs

before starting up. This will be a big disaster, since the internal NIntegrate is not going
to like trying to integrate an InterpolatingFunctionwhich doesn’t even really exist
yet.

Therefore, you have to surround your PathLength function with Hold in order to
prevent it being evaluated until there are actual numbers for the xi and yi.

An example of a similar call to NMinimize which actually works4 is

1 NMinimize[Hold[PathLength[x1,y1,x2,y2,x3,y3]],{{x1,-10,10},{y1
,-10,10},{x2,-10,10},{y2,-10,10},{x3,-10,10},{y3,-10,10}},
Method->{"SimulatedAnnealing"}, MaxIterations->500,
AccuracyGoal->2]

Here all the variables are limited to the rectangle [−10, 10] × [−10, 10] which is, of course,
completely inappropriate for your problem, but it gives you an example of how to set limits on
your variables. This runs in 30 seconds or so on my laptop, but with a much simpler z function.

Problem 3. Write a modified version of your PathLength function for testing which uses the
landscape height function z[x,y] = 0 (and GradZ[x,y] = {0,0}). This is the flat plane,
and the shortest path should be the straight line.

• Write a function PathPlot[x1_,y1_,x2_,y2_,x3_,y3_] which plots the path
given by the waypoints {x1,y1},{x2,y2},{x3,y3} .
• Run NMinimize on the modified version of the PathLength function.
• Debug the above until

a It runs.
b When you plug the resulting values into PathPlot, the path is a straight line.

Now return to the original PathLength function (which gives the length of the path through the
mountains) and try to NMinimize it using various settings.

It’s worth setting AccuracyGoal very low for NMinimize until you know what you’re do-
ing. Similarly, you can set MaxIterations very low. These should make the NMinimize
runs fast enough that you can see if things are working at all. I would strongly consider working
out an intermediate version of the PathLength function where the z[x,y] function is the sur-
face of a sphere or something and doing a 3d plot to make sure that the results look reasonable.

3though the documentation doesn’t mention it
4for me, using Mathematica 8 on my laptop

5

Also, I’d recommend reading through the entire tutorial and trying various other options (including
Nelder-Mead and the “DifferentialEvolution” minimizer as well) to see what works best.

0.4. Scaling Up. Of course, a path with only 3 waypoints is not going to be the optimum path
through the mountains, or anything particularly close to it. After all, we might have to make
many twists and turns in order to get to the treasure first, and the path with only 3 waypoints just
has a limited amount of turning it can do. On the other hand, more flexibility in the path means
adding more waypoints, and adding more waypoints means adding more variables, and adding
more variables means the computation will take more time.

One of the major obstacles to experimenting with different numbers of waypoints is that you
have to type lines like PathPlot[x1_,y1_,\dots,x20_,y20_] and it’s really painful and
error prone. Or do you? Here’s the principle:

Write interesting code which writes boring code for you.

It’s not actually that hard to use Mathematica’s string operation code to produce the text strings
needed to define all of this stuff in an automated way. But to convert a string called CodeString
to Mathematica code and evaluate that code in Mathematica requires only one line:

1 ToExpression[CodeString];

This is really spooky the first time you try it. But kind of awesome immediately afterwards. On
the other hand, if this terrifies you, you’re welcome to cut-and-paste, too. If you stick with the
debugging long enough, it should eventually work out.

Another principle to keep in mind is that if you optimize with, say, 10 waypoints, and you get a
pretty nice path but want to improve it by adding more waypoints, a really reasonable first guess
for the next run would be simply to distribute the new waypoints along the current best path, and
use that as an initial guess5 for NMinimize. The other thing you could do is simply use those
waypoints as starts and ends for 10 smaller optimization problems, and then stick all the resulting
paths back together at the end. This is probably going to require more coding, though.

Problem 4. Scale up to at least 10 waypoints, and find the best solution you can. You’ll probably
want to try various initial conditions with the hope of finding several different local minimum
solutions and then getting to choose the best one.

0.5. Turning in your work. I want you to turn in two Mathematica notebooks for this project.

a YourLastName work.nb
In this notebook, you should go through all the work above of building an objective

function and optimizing it with NMinimize. This should include a plot of your solution
and its length (as calculated by you).

5Yes, you can set the initial guess– the directions are in the tutorial.
6

b YourLastName solution.nb
This notebook should define a single function CodenameSolution[t]. For t be-

tween 0 and 1, this function should return a 2 element list {x, y} of coordinates, with
CodenameSolution[0] = {9.57,10.23}
CodenameSolution[1] = {20.12,22.3}.

This function should use Module for any internal variables and be completely self-contained,
since I’ll be cutting and pasting it into the class notebook. The results will be visible to the
class by Codename, so please choose an appropriate alias if you don’t want your solution
to be associated with your real name.

A great way to do this would be to take the InterpolatingFunction objects cor-
responding to your best path and print them out with6 // InputForm, then copy the
resulting glob of text into the solution notebook.

Unfortunately, I can’t extend the due date past midnight, December 3, 2013. But I’ll try to help
out as best I can between now and then.

6The x // y syntax in Mathematica means that you want to evaluate x and then pass the results to the filter y for
further processing. For instance, x // CForm gives you the result of x in a form which you could cut and paste into
a C program, while x // TeXForm gives the results in a form which you could cut and paste into a TeX document.
x // InputForm gives you a version which you could cut and paste back into Mathematica itself in a Code cell.
There’s a lot more about this in the documentation.

7

	0.1. Defining the Path
	0.2. Arclength and the space path
	0.3. Breaking out the minimization algorithm
	0.4. Scaling Up
	0.5. Turning in your work

