
Math 4500/6500 Homework #7

This homework assignment covers our notes on the Romberg integration algorithm and on adap-
tive integration. You are welcome to look at the code from the Mathematica notebooks, but when
the problems say “write a piece of code to” they mean “write your own code from scratch”, not
“modify the code in the notebook” or “find a piece of code on the web”. If you find the algebra
lengthy or irritating (which is pretty likely), you are encouraged to use Mathematica to do it.

1. Using the Romberg integration scheme, find R(1, 1) in the approximation

R(1, 1) ∼
∫ 1

0

e−(10x)2 dx

You can do the arithmetic in Mathematica.

2. Sometimes, you can change the accuracy of a numerical result by making a clever symbolic
transformation of the problem to be solved before feeding it to the computer. For instance,
we can modify an integral by u-substitution. First, use the substitution u = x2 to verify
that ∫ 1

0

ex

√
x
dx = 2

∫ 1

0

ex2

dx.

Which integral do you think is more likely to produce a more accurate result using the
Romberg integration scheme? Why? Use the Romberg integrator from the class demon-
stration notebooks to check your argument. Which form actually does produce better re-
sults with Romberg integration?

3. How many evaluations of the integrand are required to fill the Romberg array with n rows
and n columns?

4. Suppose that the function f(x) is smooth (it has continuous derivatives of any order). Find
a bound on the error in the R(n,m) term in the Romberg array∣∣∣∣∫ b

a

f(x) dx−R(n,m)

∣∣∣∣
in terms of h.

5. Use Mathematica to test the Romberg integration scheme on the terrible, horrible, no-good
very bad function

√
x, integrated from [0, 1]. How does the Romberg answer compare to

the true value of the integral? Why is the function terrible, horrible, no-good, and very bad?

6. Use Romberg integration to approximate π by proving that

8

∫ 1√
2

0

(√
1− x2 − x

)
dx = π

1



and computing the integral numerically. It will probably help to remember that π is the
area of the unit circle, and to prove the identity above by showing that the integral is really
a formula for this area.

7. (Challenge) Numerical integration is a great candidate for parallel computing. Use Mathe-
matica’s ParallelMap function to parallelize your implementation of the trapezoid rule
by splitting the domain of integration into pieces and computing the integral over each in
parallel. Give examples which show that your parallel implementation is faster.

8. (Challenge + Extra Credit) Really impress your professor and prepare for your future career
by repeating the above exercise on the GPU with OpenCLLink. Give timing examples
which show that the OpenCL implementation of the trapezoid rule is ridiculously fast com-
pared to both the straight Mathematica version and the ParallelMap version.

2


