Math 4500/6500 Homework \#9

This homework assignment covers our notes on Simpson's Rule and one-variable minimization.

1. If $f(x)$ is unimodal and continuous on $[a, b]$, how many local maxima may $f(x)$ have on $[a, b]$? Prove it.
2. Carry out four steps of the Fibonacci search algorithm using $\epsilon=\frac{1}{4}$ to find:
(1) the minimum of $F(x)=2 x^{3}-9 x^{2}+12 x+2$ on $[0,3]$
(2) the minimum of $F(x)=2 x^{3}-9 x^{2}+12 x$ on $[0,2]$
3. Now use Brent's method for four steps on the same functions
(1) the minimum of $F(x)=2 x^{3}-9 x^{2}+12 x+2$ on $[0,3]$
(2) the minimum of $F(x)=2 x^{3}-9 x^{2}+12 x$ on [0, 2]
and compare the results.
4. We mentioned in class that finding the minimum of a function by trying to solve for points where $f^{\prime}(0)$ with a rootfinding code is likely to be a bad idea. Actually try this method on the function $f(x)=\cos ^{4} x$ (and compare to Brent's method) on the interval $[1,3]$.
