Math 4510/6510 Homework \#2

1. Find coefficients a, b, c, d, and e so that

$$
x(t+h)=a x(t)+b x(t-h)+h\left[c x^{\prime}(t+h)+d x^{\prime \prime}(t)+e x^{\prime \prime \prime}(t-h)\right]
$$

holds for polynomials $x(t)$ of as high a degree as possible.
2. Why do the coefficients in the Adams-Bashforth formulas add up to 1 ?
3. Determine the numerical value of

$$
2 \pi \int_{4}^{5} \frac{e^{x}}{x} d x
$$

in three ways: numerical integration, solving the ODE numerically, and integrating symbolically and evaluating the exact formula. Is it better to numerically integrate? Or numerically solve the ODE?
4. The second-order Adams-Bashforth-Moulton method is given by

$$
\begin{aligned}
& \tilde{x}(t+h)=x(t)+\frac{h}{2}[3 f(t, x(t))-f(t-h, x(t-h))] \\
& x(t+h)=x(t)+\frac{h}{2}[f(t+h, \tilde{x}(t+h))+f(t, x(t))]
\end{aligned}
$$

The approximate single-step error is

$$
\epsilon \simeq \frac{1}{6}|x(t+h)-\tilde{x}(t+h)|
$$

Using Mathematica, write and test an adaptive procedure for solving an ODE (you can pick the ODE) which uses this method and uses ϵ to monitor convergence and adjust step size accordingly.
5. Explain how to solve the system

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t) e^{t}+\sin t-t^{2} \\
x_{2}^{\prime}(t) & =\left[x_{2}(t)\right]^{2}-e^{t}+x_{2}(t) \\
x_{1}(1) & =2, \quad x_{2}(1)=4
\end{aligned}
$$

using only a solver for equations in the form $x^{\prime}(t)=f(t, x(t))$ for a single function $x(t)$.
6. Convert the differential equation

$$
\begin{aligned}
x^{\prime \prime \prime}(t) & =t+x+2 x^{\prime}+3 x^{\prime \prime} \\
x(1) & =3 \\
x^{\prime}(1) & =-7 \\
x^{\prime \prime}(1) & =4
\end{aligned}
$$

into a first-order system of ODE.
7. Solve Airy's equation:

$$
x^{\prime \prime}=t x, \quad x(0)=0.355028053887817, \quad x^{\prime}(0)=-0.258819403792807
$$

using your own code in Mathematica. You can check your code with $x(4.5)=0.0003302503$, which is correct.

