Math 4510/6510 Homework \#3

1. Prove the following statements. Let P_{1}, P_{2}, P be $n \times n$ permutation matrices and X be any $n \times n$ matrix:
(1) $P X$ is the same as X with rows permuted. $X P$ is the same as X with columns permuted.
(2) $P^{-1}=P^{T}$.
(3) $\operatorname{det}(P)= \pm 1$.
(4) $P_{1} P_{2}$ is also a permutation matrix.
2. Write Mathematica programs to find the LU decomposition of a matrix with complete pivoting and with partial pivoting according to the algorithm presented in class. (Hint: No fair using the LUDecomposition routine directly, but you should certainly use it to check your results.) The implementation notes on pages 41-44 of Demmel may be helpful.
3. Write a Mathematica program which does forward and back substitution. Solve the 5×5 linear system:

$$
\left(\begin{array}{rrrrr}
-\frac{3}{10} & \frac{1}{10} & \frac{27}{10} & \frac{4}{5} & -\frac{4}{5} \\
-\frac{21}{10} & -2 & \frac{3}{5} & \frac{13}{10} & 1 \\
-\frac{11}{10} & \frac{2}{5} & \frac{1}{5} & -\frac{1}{10} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{10} & \frac{3}{10} & -\frac{1}{5} & \frac{7}{10} \\
\frac{1}{5} & \frac{1}{5} & -\frac{3}{10} & -\frac{13}{10} & \frac{9}{5}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{r}
\frac{2}{5} \\
\frac{7}{10} \\
\frac{8}{5} \\
-\frac{7}{10} \\
1
\end{array}\right)
$$

using your partial pivoting and complete pivoting codes from question 2 and the Mathematica LUDecomposition function. Verify that your answers are close to the correct solution of

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{r}
-\frac{241690}{24437} \\
-\frac{308143}{24437} \\
\frac{63503}{24437} \\
-\frac{608283}{24437} \\
-\frac{354063}{24437}
\end{array}\right)
$$

Find the number of correct digits in each (floating point) solution (note that you'll have to multiply the matrix above by 1.0 in order to get Mathematica to do the computation in machine arithmetic). Which method is best: partial pivoting, complete pivoting, or Mathematica's LUDecomposition?
4. Compare the speed of your programs on small random matrices ($50 \times 50,100 \times 100$ and 500×500 matrices) with each other and with the LUDecomposition routine built into Mathematica. The Timing command will be helpful here.
5. Suppose a and b are column vectors. Consider the $n \times n$ matrix $a b^{T}$. Prove that this matrix has rank one. Then prove that any rank one matrix A can be written in this form for some a and b.
6. Suppose that A is upper triangular. Prove that the determinant of A is the product of the diagonal entries.
7. Prove that if a dot product is computed in floating point arithmetic then

$$
\mathrm{fl}\left(\sum_{i=1}^{d} x_{i} y_{i}\right)=\sum_{i=1}^{d} x_{i} y_{i}\left(1+\delta_{i}\right) \text { with }\left|\delta_{i}\right| \leq d \epsilon
$$

where ϵ is the machine epsilon for the floating point system used.
8. Suppose two matrices A and B have nonnegative entries and $a_{i j} \leq b_{i j}$ for all i, j in $1 \ldots n$. Prove that $\|A\| \leq\|B\|$ (in the 2 -norm).

