Math 4510/6510 Homework \#4

1. Let A be an $m \times n$ matrix with $m \geq n$ and suppose A has full rank. Show that the equation

$$
\left(\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right)\binom{r}{x}=\binom{b}{0}
$$

has a solution where x minimizes $\|A x-b\|_{2}$.
2. Assuming as above that A is an $m \times n$ matrix with $m \geq n$ with full rank, what is the condition number of

$$
\left(\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right)
$$

in terms of the singular values of A ? (Hint: Use the SVD of A.)
3. Assuming as above that A is an $m \times n$ matrix with $m \geq n$ with full rank, find an explicit expression for the inverse of

$$
\left(\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right)
$$

as a block 2×2 matrix. (Hint: Use 2×2 block Gaussian elimination.)
4. (Bonus) Show how to use the QR decomposition of A to implement an iterative refinement algorithm to improve the accuracy of the solution for x in

$$
\left(\begin{array}{cc}
I & A \\
A^{T} & 0
\end{array}\right)\binom{r}{x}=\binom{b}{0}
$$

5. Suppose that A is an $m \times n$ matrix with SVD $A=U \Sigma V^{T}$. Compute the SVDs of the following matrices in terms of U, Σ, and V :
(1) $\left(A^{T} A\right)^{-1}$
(2) $\left(A^{T} A\right)^{-1} A^{T}$
(3) $A\left(A^{T} A\right)^{-1}$
(4) $A\left(A^{T} A\right)^{-1} A^{T}$
6. (Constrained Least Squares) Suppose we want to find x minimizing $\|A x-b\|_{2}$ subject to the linear constraint $C x=d$. Suppose that A is $m \times n, C$ is $p \times n$, and C has full rank. Suppose also that $p \leq n$ (so that we can guarantee that $C x=d$ has a solution) and $n \leq m+p$ (so that the system is not underdetermined).
(1) Show that if

$$
\binom{A}{C}
$$

has full column rank, then there is a unique solution.
(2) (Bonus) Show how to compute the solution x using two QR decompositions, some matrixvector multiplications, and some solutions of triangular system of linear equations. Hint: Look at the LAPACK routine sgglse.

