Math 6500 Minihomework: Bernoulli numbers and polynomials

This minihomework covers our notes on the advanced error analysis of the trapezoid rule. We'll make a lot of use of the two formulae:

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{j=0}^{\infty} B_{j} \frac{t^{j}}{j!} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{t\left(e^{x t}-1\right)}{e^{t}-1}=\sum_{j=0}^{\infty} B_{j}(x) \frac{t^{j}}{j!} . \tag{2}
\end{equation*}
$$

1. In the demonstration, we saw that the Bernoulli numbers and polynomials were related by the identity

$$
B_{i}=-\int_{0}^{1} B_{i}(x) d x
$$

for $i>1$. We are now going to prove this in several steps.
a. Integrate both sides of (2) with respect to x from 0 to 1 to get a new series where the coefficients are integrals of $B_{j}(x)$.
b. Prove using (1) that these integrals are actually the Bernoulli numbers B_{j}, except at $j=0$.
2. In the notes, we gave as an exercise the task of proving that

$$
\frac{d}{d x} B_{j}(x)=j B_{j-1}(x), \quad \text { for } j \geq 4, j \text { even }
$$

and

$$
\frac{d}{d x} B_{j}(x)=j\left(B_{j-1}(x)+B_{j-1}\right) \quad \text { for } j \geq 3, j \text { odd }
$$

Prove both of these formulae. Hint: Experiment with differentiating both sides of (2) with respect to x.

