Math 4250/6250 Minihomework: The Shape Operator and Spheres

This minihomework accompanies the lecture notes on "The Gauss Map and the Second Fundamental Form".

- 1. (20 points) Suppose that we have a surface^{*a*} M on which the shape operator is a multiple of the identity. That is, for any \vec{v} in the tangent plane T_pM , we have $S_p(\vec{v}) = k(p)\vec{v}$ where k(p) is a scalar. We proved in the notes that if k(p) = 0, then the surface M is part of a plane. We're now going to prove that if $k(p) \neq 0$ (anywhere) then the surface M is part of a sphere.
 - (1) (10 points) The first task is to prove that k(p) is constant. Since $S_p(\vec{v}) = -D_{\vec{v}}n = k\vec{v}$, we can choose a C^{∞} regular parametrization X of S around p and write

$$\vec{n}_u = D_{\vec{x}_u} n = -S_p(\vec{x}_u) = -k\vec{x}_u$$

and

$$\vec{n}_v = D_{\vec{x}_v} n = -S_p(\vec{x}_v) = -k\vec{x}_v$$

Differentiate these equations to solve for the partial derivatives k_u and k_v . Then prove that k_u and k_v are zero.

(2) (10 points) Now consider the point $\vec{c}(u, v) = \vec{x}(u, v) + \frac{1}{k}\vec{n}(u, v)$. This point should be the center of the sphere. Prove that the location of this point doesn't depend on u and v by showing that the partials \vec{c}_u and \vec{c}_v are both zero.

One we've proved that \vec{c} is a constant point, we know that $\|\vec{x}(u,v) - \vec{c}\| = \frac{1}{k}$ and so have proved that the surface S is a sphere centered at \vec{c} with radius $\frac{1}{k}$.