Math 4250/6250 Minihomework: The Shape Operator and Spheres

This minihomework accompanies the lecture notes on "The Gauss Map and the Second Fundamental Form".

1. (20 points) Suppose that we have a surface ${ }^{a} d M$ on which the shape operator is a multiple of the identity. That is, for any \vec{v} in the tangent plane $T_{p} M$, we have $S_{p}(\vec{v})=k(p) \vec{v}$ where $k(p)$ is a scalar. We proved in the notes that if $k(p)=0$, then the surface M is part of a plane. We're now going to prove that if $k(p) \neq 0$ (anywhere) then the surface M is part of a sphere.
(1) (10 points) The first task is to prove that $k(p)$ is constant. Since $S_{p}(\vec{v})=-D_{\vec{v}} n=k \vec{v}$, we can choose a C^{∞} regular parametrization X of S around p and write

$$
\vec{n}_{u}=D_{\vec{x}_{u}} n=-S_{p}\left(\vec{x}_{u}\right)=-k \vec{x}_{u}
$$

and

$$
\vec{n}_{v}=D_{\vec{x}_{v}} n=-S_{p}\left(\vec{x}_{v}\right)=-k \vec{x}_{v} .
$$

Differentiate these equations to solve for the partial derivatives k_{u} and k_{v}. Then prove that k_{u} and k_{v} are zero.

[^0]

Page 2
(2) (10 points) Now consider the point $\vec{c}(u, v)=\vec{x}(u, v)+\frac{1}{k} \vec{n}(u, v)$. This point should be the center of the sphere. Prove that the location of this point doesn't depend on u and v by showing that the partials \vec{c}_{u} and \vec{c}_{v} are both zero.
One we've proved that \vec{c} is a constant point, we know that $\|\vec{x}(u, v)-\vec{c}\|=\frac{1}{k}$ and so have proved that the surface S is a sphere centered at \vec{c} with radius $\frac{1}{k}$.

[^0]: ${ }^{a}$ As usual, we're assuming that our surface is smooth- that is, it has a parametrization $X: U \rightarrow S$ of a neighborhood of each point $p \in S$ which is a C^{∞} map.

