MATH/CSCI 4690/6690 : Graph comparison and the Loewner order

In this homework, we'll practice comparing graphs according the Loewner order. It's worth thinking for a moment about how weird and cool this is. It's not at all obvious that there should be any way to define even a partial order on graphs with which you could ${ }^{11}$ make statements like

1. (10 points) Recall that we have

Definition. If A is a symmetric $n \times n$ matrix, we say that $A \succcurlyeq 0$ if A is a positive semidefinite matrix ${ }^{2}$ If B is another $n \times n$ symmetric matrix, we say $A \succcurlyeq B \Longleftrightarrow A-B \succcurlyeq 0$.

Suppose that A, B and C are symmetric $n \times n$ matrices.
(1) (5 points) Prove that

$$
A \succcurlyeq B \text { and } B \succcurlyeq C \Longrightarrow A \succcurlyeq C
$$

[^0](2) (5 points) Prove that
$$
A \succcurlyeq B \Longrightarrow A+C \succcurlyeq B+C
$$

Page 2
2. (10 points) Here are two definitions of tree graphs.

Definition. The complete binary tree T_{d} of depth $d+1$ is the graph whose vertices are the strings S of length $0 \leq \operatorname{len} S \leq d$ of digits $b_{1} \cdots b_{\operatorname{len}(S)}$, where each digit b_{i} is either 1 or 0 . If $b_{1} \cdots b_{k}$ is a vertex with $k<d$ digits, it is incident to the edges

$$
b_{1} \cdots b_{k} \longmapsto b_{1} \cdots b_{k} 1 \quad \text { and } \quad b_{1} \cdots b_{k} \cdots b_{1} \cdots b_{k} 0
$$

The string of length 0 is a special vertex called the root r of the tree. We have

$$
r \multimap 0 \text { and } r \multimap 1 .
$$

Definition. The graph \mathcal{T}_{d} has $2^{d+1}-1$ vertices $1, \ldots, 2^{d+1}-1$, where vertex i is incident to the edges

$$
i \multimap 2 i \quad \text { and } \quad i \multimap 2 i+1
$$

Prove that T_{d} is isomorphic to \mathcal{T}_{d} by finding an explicit bijection between the vertices of T_{d} (binary strings) and the vertices of \mathcal{T}_{d} (integers), and proving that your bijection of vertices induces a bijection between the edges of T_{d} and the edges of \mathcal{T}_{d}.

Page 4
3. (10 points) Let \vec{v} be any vector with $\langle\vec{v}, \overrightarrow{1}\rangle=0$, and t be any real number. Show that

$$
\|\vec{v}\| \leq\|\vec{v}+t \overrightarrow{1}\|
$$

4. (10 points) The Kirchhoff index of a graph G is the sum of the reciprocals of the (nonzero) eigenvalues of the graph Laplacian:

$$
K_{\mathbf{G}}=\frac{1}{\lambda_{2}}+\cdots+\frac{1}{\lambda_{\mathbf{v}}}
$$

Suppose that \mathbf{G} is a connected graph, and \mathbf{H} is a connected graph obtained from \mathbf{G} by deleting vertices. Prove that $K_{\mathbf{H}}<K_{\mathbf{G}}$.
Hint: Think "eigenvalue interlacing".
5. (10 points) The Kirchhoff index of a graph \mathbf{G} is the sum of the reciprocals of the (nonzero) eigenvalues of the graph Laplacian:

$$
K_{\mathbf{G}}=\frac{1}{\lambda_{2}}+\cdots+\frac{1}{\lambda_{\mathbf{v}}}
$$

Suppose that \mathbf{G} is a connected graph, and \mathbf{H} is a connected subgraph ${ }^{3}$ of \mathbf{G}. Prove that $K_{\mathbf{G}}<K_{\mathbf{H}}{ }_{4}^{4}$

Hint: Think "Loewner ordering".
\square

[^1]
[^0]: ${ }^{1}$ Actually, I just picked the graphs in this figure randomly. So I'm not claiming that they are Loewner-comparable.
 ${ }^{2}$ Remember, a matrix is P.S.D. if every eigenvalue of A is ≥ 0.

[^1]: ${ }^{3}$ Remember that a subgraph is obtained by deleting edges, but not vertices, of a graph.
 ${ }^{4}$ The ordering and the inequality are NOT misprints. You're really proving the opposite inequality from the previous question. Weird, right?

