MATH/CSCI 4690/6690 : Graph comparison and the Loewner order

In this homework, we'll practice comparing graphs according the Loewner order. It's worth thinking for a moment about how weird and cool this is. It's not at all obvious that there should be any way to define even a partial order on graphs with which you could¹ make statements like

1. (10 points) Recall that we have

Definition. If A is a symmetric $n \times n$ matrix, we say that $A \succeq 0$ if A is a positive semidefinite matrix² If B is another $n \times n$ symmetric matrix, we say $A \succeq B \iff A - B \succeq 0$.

Suppose that A, B and C are symmetric $n \times n$ matrices.

(1) (5 points) Prove that

$$A \succcurlyeq B$$
 and $B \succcurlyeq C \implies A \succcurlyeq C$.

(2) (5 points) Prove that

$$A \succcurlyeq B \implies A + C \succcurlyeq B + C$$

2. (10 points) Here are two definitions of tree graphs.

Definition. The complete binary tree T_d of depth d + 1 is the graph whose vertices are the strings S of length $0 \le \text{len } S \le d$ of digits $b_1 \cdots b_{\text{len}(S)}$, where each digit b_i is either 1 or 0. If $b_1 \cdots b_k$ is a vertex with k < d digits, it is incident to the edges

 $b_1 \cdots b_k \leftrightarrow b_1 \cdots b_k 1$ and $b_1 \cdots b_k \leftrightarrow b_1 \cdots b_k 0$

The string of length 0 is a special vertex called the root r of the tree. We have

$$r \bullet 0$$
 and $r \bullet 1$.

Definition. The graph \mathcal{T}_d has $2^{d+1} - 1$ vertices $1, \ldots, 2^{d+1} - 1$, where vertex *i* is incident to the edges

$$i \bullet 2i$$
 and $i \bullet 2i + 1$

Prove that T_d is isomorphic to \mathcal{T}_d by finding an explicit bijection between the vertices of T_d (binary strings) and the vertices of \mathcal{T}_d (integers), and proving that your bijection of vertices induces a bijection between the edges of T_d and the edges of \mathcal{T}_d .

Page 4

3. (10 points) Let \vec{v} be any vector with $\langle \vec{v}, \vec{1} \rangle = 0$, and t be any real number. Show that $\|\vec{v}\| \le \|\vec{v} + t\vec{1}\|$

4. (10 points) The *Kirchhoff index* of a graph G is the sum of the reciprocals of the (nonzero) eigenvalues of the graph Laplacian:

$$K_{\mathbf{G}} = \frac{1}{\lambda_2} + \dots + \frac{1}{\lambda_{\mathbf{v}}}$$

Suppose that G is a connected graph, and H is a connected graph obtained from G by deleting vertices. Prove that $K_{\rm H} < K_{\rm G}$.

Hint: Think "eigenvalue interlacing".

5. (10 points) The *Kirchhoff index* of a graph G is the sum of the reciprocals of the (nonzero) eigenvalues of the graph Laplacian:

$$K_{\mathbf{G}} = \frac{1}{\lambda_2} + \dots + \frac{1}{\lambda_{\mathbf{v}}}$$

Suppose that G is a connected graph, and H is a connected subgraph³ of G. Prove that $K_{G} < K_{H}$.⁴

Hint: Think "Loewner ordering".

³Remember that a subgraph is obtained by deleting edges, but not vertices, of a graph.

⁴The ordering and the inequality are NOT misprints. You're really proving the *opposite* inequality from the previous question. Weird, right?