Math/Csci 4690/6690 : Linear Algebra of Eigenvalues and Eigenvectors

In this minihomework, we recall some facts about eigenvectors and eigenvalues that you (hope-fully) covered in your linear algebra class.

1. (10 points) Suppose that M is a matrix, and let u and v be vectors so that

$$Mu = \lambda u$$
 and $Mv = \mu v$.

Prove that if M is symmetric and $\mu \neq \lambda$ then $\langle u, v \rangle = 0$. Note: Make sure you use the fact that M is symmetric– the statement is false otherwise! 2. (20 points)

Definition. An $n \times n$ matrix Q is orthogonal if $Q^T = Q^{-1}$.

We note that this means that $QQ^T = Q^TQ = I_n$.

It is a fact that an orthogonal 2×2 matrix is a rotation or reflection, and an orthogonal 3×3 matrix is a rotation around some axis, possibly composed with a reflection in the plane normal to the axis of rotation.

For these reasons, we think of $n \times n$ orthogonal matrices as generalized "rotations", even though they may not have a single axis and angle¹.

(1) (10 points) Prove that if Q is orthogonal, then $\langle u, v \rangle = \langle Qu, Qv \rangle$. In particular, we have $\langle u, v \rangle = 0 \iff \langle Qu, Qv \rangle = 0$. This is why we call these matrices "orthogonal": they carry pairs of orthogonal vectors to pairs of orthogonal vectors.

¹For example, an orthogonal matrix could act on $\mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2$ by rotating the two copies of \mathbb{R}^2 by two different angles.

(2) (10 points) Show that if $Mv = \lambda v$ and Q is any orthogonal matrix then if $Mv = \lambda v$, we have $(QMQ^T)(Qv) = \lambda(Qv)$. That is, an orthogonal transformation of a matrix just rotates the eigenvectors; it doesn't change the eigenvalues.

3. (15 points) A permutation of a vector $v = (v_1, \ldots, v_n)$ is a rearrangement of its coordinates. For example (v_2, v_1, v_3) is a permutation of (v_1, v_2, v_3) , as is (v_3, v_2, v_1) . We can represent a permutation by a bijective function

$$\pi\colon \{1,\ldots,n\}\to\{1,\ldots,n\}$$

We can write the action of a permutation on a vector as a matrix:

$$(\Pi)_{ij} = \begin{cases} 1, & \text{if } \pi(i) = j, \\ 0, & \text{otherwise} \end{cases}$$

For instance, the permutation $\pi(1,2,3) = (2,1,3)$ is encoded by the matrix

$$\Pi = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

as we can see by taking the product

$$\Pi v = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} v_2 \\ v_1 \\ v_3 \end{pmatrix}$$

(1) (10 points) Prove that permutation matrices are orthogonal matrices.

(2) (5 points) Use the result above and the result of problem 1 to show that if Π is a permutation matrix and $Mv = \lambda v$, we have

$$(\Pi M \Pi^T)(\Pi v) = \lambda(\Pi v)$$

That is, permuting the coordinates of a matrix just permutes the coordinates of the eigenvectors; it doesn't change the eigenvalues.

4. (15 points)

Definition. Two $n \times n$ matrices A and B are similar if there is an invertible matrix X so that $X^{-1}AX = B$.

Prove that if A and B are similar, then A and B have the same eigenvalues.

5. (15 points) (The Spectral Decomposition Theorem) Suppose that M is an $n \times n$ symmetric matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ and that v_1, \ldots, v_n are a set of orthonormal column eigenvectors. Let V be the (orthogonal) matrix whose *i*-th column is v_i . Prove

 $V^T M V = \Lambda$, where $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$,

the diagonal $n \times n$ matrix with $\lambda_1, \ldots, \lambda_n$ on the diagonal².

²Note that this theorem implies that

$$M = V\Lambda V^T = \sum_i \lambda_i v_i v_i^T$$

where the $n \times n$ matrix $v_i v_i^T$ is the "outer product" of the column vector v_i with itself. (The "inner product" or dot product is the 1×1 matrix $v_i^T v_i$.) This description of M will often be helpful when M is the diffusion operator or graph Laplacian!

6. (15 points)

Definition. The trace of an $n \times n$ matrix M is given by the sum of diagonal entries:

$$\operatorname{tr} M := \sum M_{ii}$$

It is a helpful fact that for any pair of matrices,

$$\operatorname{tr} AB = \operatorname{tr} BA.$$

Use this fact and the previous exercise to show that if M is a symmetric $n \times n$ matrix and $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of M, then

$$\operatorname{tr} M = \lambda_1 + \dots + \lambda_n.$$