Math/Csci 4690/6690 : Elementary properties of the graph Laplacian

In this minihomework, we will prove some of the basic properties of the graph Laplacian. First, recall from the notes that

Definition. *The* boundary map for a graph G is the $v \times e$ matrix defined by

$$\partial(e_i) = \text{head}(e_i) - \text{tail}(e_i)$$

The graph Laplacian $L_{\mathbf{G}}$ for a graph \mathbf{G} is the symmetric $\mathbf{v} \times \mathbf{v}$ matrix defined by

$$L_{\mathbf{G}} := \partial \partial^T.$$

We proved in the notes that for any vector $v \in \mathbb{R}^{\mathbf{v}}$, we have

$$Q_{L_{\mathbf{G}}}(v) = \langle v, L_{\mathbf{G}} v \rangle = \sum_{i=1}^{\mathbf{e}} \left(v_{\text{head}(e_i)} - v_{\text{tail}(e_i)} \right)^2.$$

(10 points) Suppose that G and G' have the same vertices and edges v₁,..., v_v = v'₁,..., v'_{v'} and e₁,..., e_e = e'₁,..., e'_{e'}, but the orientations of the edges may not agree.
Prove that L_G = L_{G'}.

2. (10 points) Recall that

Definition. The degree matrix $D_{\mathbf{G}}$ is the diagonal matrix whose entries are the degrees of the vertices $v_1, \ldots, v_{\mathbf{v}}$, and the adjacency matrix $M_{\mathbf{G}}$ of \mathbf{G} is the symmetric matrix defined by

 $(M_{\mathbf{G}})_{ij} = \begin{cases} 1, & \text{if } v_i \text{ and } v_j \text{ are joined by an edge} \\ 0, & \text{if not.} \end{cases}$

Prove that $L_{\mathbf{G}} = D_{\mathbf{G}} - M_{\mathbf{G}}$.

- 3. (10 points) Let $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of the symmetric matrix $L_{\mathbf{G}}$.
 - (1) (5 points) Prove that $\lambda_1 = 0$ by finding a vector $v \in \mathbb{R}^{\mathbf{v}}$ so that $L_{\mathbf{G}} v = 0$.

(2) (5 points)

Definition. A set S of vertices of G is called a component of G if there are no edges joining vertices in S to vertices outside S. The largest set of disjoint components S_1, \ldots, S_d of G are called the connected components of G.

Prove that if G has d connected components, then $\lambda_1 = \lambda_2 = \ldots = \lambda_d = 0$. Hint: The S_i really partition G into d separate graphs G_1, \ldots, G_d .