Math/Csci 4690/6690 : Elementary properties of the graph Laplacian

In this minihomework, we will prove some of the basic properties of the graph Laplacian. First, recall from the notes that

Definition. The boundary map for a graph \mathbf{G} is the $\mathbf{v} \times \mathbf{e}$ matrix defined by

$$
\partial\left(e_{i}\right)=\operatorname{head}\left(e_{i}\right)-\operatorname{tail}\left(e_{i}\right)
$$

The graph Laplacian $\mathrm{L}_{\mathbf{G}}$ for a graph \mathbf{G} is the symmetric $\mathbf{v} \times \mathbf{v}$ matrix defined by

$$
\mathrm{L}_{\mathbf{G}}:=\partial \partial^{T}
$$

We proved in the notes that for any vector $v \in \mathbb{R}^{\mathbf{v}}$, we have

$$
\mathrm{Q}_{\mathrm{L}_{\mathbf{G}}}(v)=\left\langle v, \mathrm{~L}_{\mathbf{G}} v\right\rangle=\sum_{i=1}^{\mathbf{e}}\left(v_{\text {head }\left(e_{i}\right)}-v_{\text {tail }\left(e_{i}\right)}\right)^{2} .
$$

1. (10 points) Suppose that \mathbf{G} and \mathbf{G}^{\prime} have the same vertices and edges $v_{1}, \ldots, v_{\mathbf{v}}=v_{1}^{\prime}, \ldots, v_{\mathbf{v}^{\prime}}^{\prime}$ and $e_{1}, \ldots, e_{\mathbf{e}}=e_{1}^{\prime}, \ldots, e_{\mathbf{e}^{\prime}}^{\prime}$, but the orientations of the edges may not agree.
Prove that $\mathrm{L}_{\mathrm{G}}=\mathrm{L}_{\mathrm{G}^{\prime}}$.

2. (10 points) Recall that

Definition. The degree matrix $D_{\mathbf{G}}$ is the diagonal matrix whose entries are the degrees of the vertices $v_{1}, \ldots, v_{\mathbf{v}}$, and the adjacency matrix $M_{\mathbf{G}}$ of \mathbf{G} is the symmetric matrix defined by

$$
\left(M_{\mathbf{G}}\right)_{i j}= \begin{cases}1, & \text { if } v_{i} \text { and } v_{j} \text { are joined by an edge } \\ 0, & \text { if not. }\end{cases}
$$

Prove that $\mathrm{L}_{\mathbf{G}}=D_{\mathbf{G}}-M_{\mathbf{G}}$.
\square
3. (10 points) Let $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of the symmetric matrix L_{G}. (1) (5 points) Prove that $\lambda_{1}=0$ by finding a vector $v \in \mathbb{R}^{\mathbf{v}}$ so that $\mathrm{L}_{\mathbf{G}} v=0$.
(2) (5 points)

Definition. A set \mathcal{S} of vertices of G is called a component of G if there are no edges joining vertices in \mathcal{S} to vertices outside \mathcal{S}. The largest set of disjoint components $\mathcal{S}_{1}, \ldots, \mathcal{S}_{d}$ of \mathbf{G} are called the connected components of \mathbf{G}.
Prove that if \mathbf{G} has d connected components, then $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{d}=0$.
Hint: The \mathcal{S}_{i} really partition \mathbf{G} into d separate graphs $\mathbf{G}_{1}, \ldots, \mathbf{G}_{d}$.

