MATH/CSCI 4690/6690 : Graph coloring and spectral theory

In this homework, we'll practice using our theorems about graph colorings and the spectrum of the adjacency matrix. To review, these are:

Definition. The adjacency matrix of a graph G, denoted M_{G} , is the symmetric matrix where

$$(\mathbf{M}_{\mathbf{G}})_{ij} = \begin{cases} 1, & \text{if } v_i \leftrightarrow v_j \text{ is an edge of } \mathbf{G} \\ 0 & \text{if not.} \end{cases}$$

We denote the eigenvalues of $M_{\mathbf{G}}$ by $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_{\mathbf{v}}$.

Theorem. If S is any subgraph of G, $d_{ave}(S)$ is the average degree of vertices in the subgraph, and d_{max} is the maximum degree of any vertex in G, then

$$\mathbf{d}_{ave}(S) \le \mu_1 \le \mathbf{d}_{\max}$$

Theorem. If G is connected and $\mu_1 = d_{max}$, then G is d_{max} -regular.¹ If G is d-regular, then $\mu_1 = d$.

Definition. A coloring of a graph is an assignment of colors to vertices so that every edge joins vertices of different colors. A graph is k-colorable if a coloring exists with k colors. The chromatic number $\chi(\mathbf{G})$ of a graph is the smallest k for which \mathbf{G} is k-colorable.

Theorem. For any graph \mathbf{G} , $\chi(\mathbf{G}) \leq \lfloor \mu_1 \rfloor + 1$.

Theorem. If $\mu_1 = -\mu_v$ then G is 2-colorable.² If G is 2-colorable, then the eigenvalues $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_v$ are symmetric around 0.

1. (20 points) Consider the graph

¹Every vertex has degree d.

²A graph which is 2-colorable is said to be *bipartite*.

(1) (10 points) Establish an upper bound on $\chi(\mathbf{G})$ by finding a coloring of \mathbf{G} with as few colors as possible.

(2) (10 points) Prove that your upper bound is actually equal to $\chi(\mathbf{G})$ by using our theorems to show that no coloring with fewer colors exists. (If you need eigenvalues of $M_{\mathbf{G}}$, it's expected that you'll use a computer to find them. This is an acceptable proof technique as long as you include screenshots.)

2. (10 points) Consider the graph

Find the best bounds on $\chi(\mathbf{G})$ that you can by explicitly finding colorings and using our theorems above. Can you compute $\chi(\mathbf{G})$ exactly?

3. (10 points) Consider the graph

Find as many eigenvalues of M_{G} as you can *without* using a computer; prove that each number you give is actually an eigenvalue of M_{G} either by substituting it into the characteristic polynomial and verifying that it is a root, or by giving the corresponding eigenvector.

Page 6