Math 4500/6500 Minihomework: The trapezoid rule

This homework assignment covers our notes on the trapezoid rule and its error analysis.

1. Prove that if $\lambda_{i} \geq 0$ and $\sum_{i=1}^{n} \lambda_{i}=1$, then for any sequence of numbers x_{1}, \ldots, x_{n} we have

$$
\min \left\{x_{i}\right\} \leq \sum_{i=1}^{n} \lambda_{i} x_{i} \leq \max \left\{x_{i}\right\}
$$

2. Suppose that $f(x)$ is a concave down function, meaning that the graph of $f(x)$ lies above the chord connecting any two points on the graph. Prove that the trapezoid rule underestimates the integral of $f(x)$ over any interval.
3. We saw in the demonstration that the trapezoid rule works astonishingly well for the integral $\int_{0}^{4 \pi} e^{\sin x} d x$. Compare the results from integrating via the trapezoid rule with 5,10 , and 15 intervals with the results produced by Mathematica's built-in NIntegrate method. Which is better?
