
MATH/CSCI 4690/6690 : Eigenvalues and eigenvectors of example graphs.

In this homework, we’ll work out some computations of eigenvalues and eigenvectors which
support our notes on the zoo of graphs. The purpose of our work is to practice the techniques we’ve
built up for analyzing eigenvalues and eigenvectors of graphs.

1. (10 points) Suppose that we have two vertices a and b of degree 1 in a graph G which are
both joined to a common vertex c, as in the picture below:

Prove that the vector x⃗ = δ(a) − δ(b)a is an eigenvector of LG with eigenvalue 1.

Hint: We know that
LG(x⃗)(v) = ∑

w with vqw

x⃗(v) − x⃗(w).

aThat is, the vector with x⃗(a) = +1, x⃗(b) = −1, and x⃗(−) = 0 for all other vertices.
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2. (20 points) Suppose Sv is the star graph with v verticesb and

x⃗(vi) = {−(v − 1), if i = 1,

1, otherwise

as shown in

-5

1 1

1

1

1

We proved in the notes that x⃗ is an eigenvector of Sv.

(1) (10 points) Prove that x⃗ has eigenvalue v by computing the Rayleigh quotient

⟨x⃗, x⃗⟩Sv

⟨x⃗, x⃗⟩

bRecall that this is the v vertex graph with edges are v1 q v2, v1 q v3, . . . , v1 q vv.
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(2) (10 points) Now use

LG(x⃗)(v) = ∑
w with vqw

(x⃗(v) − x⃗(w)).

to show directly both that x⃗ is an eigenvector and that its eigenvalue is v.
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3. (10 points) Consider the path graphs G and H

w1 w2 w3 w4 v1 v2 v3

Definition. The graph product of graphs G and H with vertex sets VG and VH is the graph
G ×H with vertex set

VG×H = {(a, b) ∣ a ∈ VG ∧ c
b ∈ VH}

and edge set

EG×H = {(a, b)q (â, b̂) ∣ (aq â ∧ b = b̂) ∨ (a = â ∧ bq b̂)} (1)

Prove that the graph product of the path graphs above is the grid graph G ×H

by labeling each vertex of the grid graph with the corresponding pair of vertices in G and H
and identifying each edge of the grid graph with an element of the set EG×H given in (1).

cThe symbol ∧ is the “logical and”, while ∨ is the “logical or”. We’ll use both to simplify our definitions.
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4. (20 points) Recall that

Definition. The hypercube Hd of dimension d is the graph with vertex setd

VHd
= {0, 1}d = {(b1, . . . , bd) ∣ bi = 0 ∨ bi = 1}

where

EHd
{(b1, . . . , bd)q (c1, . . . , cd)∣ bi ≠ ci for exactly one i ∈ {1, . . . , d}}

Prove that the 2
d eigenvectors of LHd

may each be identified with a string y = (y1, . . . , yd) ∈
{0, 1}n so that at each vertex x = (x1, . . . , xd) ∈ VHd

,

ψ⃗y(x) = (−1)∑ yixi

Hint: Proceed by induction on d. Use the fact that Hd = Hd−1 × H1 and prove that the
eigenvector ψ(y1,...,yd−1) of Hd−1 leads to the eigenvectors ψ(y1,...,yd−1,0) and ψ(y1,...,yd−1,1) of Hd.

dNotice that Hd has the same vertices as the complete binary tree Td, but a very different edge set!
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5. (60 points)

Definition. If A is an m× n matrix and B is a p× q matrix, the Kronecker product A⊗B of
A and B is the mp × nq block matrix given by

A⊗B =

⎛
⎜⎜
⎝

a11B ⋯ an1B
⋮ ⋱ ⋮

a1mB ⋯ amnB

⎞
⎟⎟
⎠

This definition is precise, but it doesn’t give much motivation for the Kronecker product. So
to see where this comes from, let’s consider two different ways to combine vector spaces:

Definition. Given finite-dimensional vector spaces V and W with dimensions m and n and
bases v⃗1, . . . , v⃗m and w⃗1, . . . , w⃗n, we define the direct product of the vector spaces (also called
the Cartesian product or simply the product):

V ×W = the m + n dimensional vector space with basis v⃗1, . . . , v⃗m, w⃗1, . . . , w⃗n

Equivalently, we can write

V ×W ∶= {(v⃗, w⃗) ∣ v⃗ ∈ V ∧ w⃗ ∈ W}

with the scalar multiplication and sum operations

λ(v⃗, w⃗) = (λv⃗, λw⃗)
(v⃗, w⃗) + (p⃗, q⃗) = (v⃗ + p⃗, w⃗ + q⃗)

We can also write a vector in V ×W as an (m + n) × 1 column vector

(v⃗, w⃗) = [ v⃗
w⃗
]

If we have linear maps A∶ V1 → V2 and B∶ W1 → W2, we can define A × B∶ V1 ×W2 →

V2 ×W2 by (A ×B)(v⃗, w⃗) = (Av⃗,Bw⃗). As a matrix,

A ×B = [A 0
0 B

]

so that

[A 0
0 B

] [ v⃗
w⃗
] = [Av⃗

Bw⃗
]
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Another option for combining vector spaces is

Definition. Given finite-dimensional real vector spaces V and W with dimensions m and n
and bases v⃗1, . . . , v⃗m and w⃗1, . . . , w⃗n, we define the tensor product of the vector spaces:

V ⊗W = the mn dimensional vector space with corresponding basis
v⃗1 ⊗ w⃗1, v⃗1 ⊗ w⃗2, . . . , v⃗1 ⊗ w⃗n, v⃗2 ⊗ w⃗1, . . . , v⃗i ⊗ w⃗j, . . . , v⃗m ⊗ w⃗n.

Note that the ordering of the corresponding basis for V ⊗W is part of the definition.

Here the notation means v⃗i⊗ w⃗j means “the new basis element obtained by pairing v⃗i and w⃗j”
and nothing more.

Proposition. Given finite-dimensional (real)e vector spaces V and W with dimensions m and
n and bases v⃗1, . . . , v⃗m and w⃗1, . . . , w⃗n, let ∆(i, j) be the matrix with 1 in the i, j position and
zeros elsewhere. The linear map defined by v⃗i ⊗ w⃗j ↦ ∆(i, j) is an isomorphism between the
tensor product V⃗ ⊗ W⃗ and the vector spacef

Matm×n of (real) m × n matrices.g

Since we have this proposition, it is often useful to blur the distinction between V⃗ ⊗ W⃗ and
Matm×n when writing about tensor products, in the same way that we often blur the distinction
between an m-dimensional real vector space V and Rm because V is isomorphic to Rm as a
vector space and it’s easier to discuss m-tuples of real numbers than arbitrary linear combina-
tions of m basis vectors. With this convention (V ⊗W ≅ Matm×n) established,

Definition. There is a bilinear map V ×W → V ⊗W given by

(v⃗, w⃗)↦ v⃗w⃗
T
∶= v⃗ ⊗ w⃗

where we use the m × n matrix v⃗w⃗T to define the element v⃗ ⊗ w⃗ of V ⊗W .

Of course, we expect from counting dimensions that the map V × W → V ⊗ W can’t be
surjective, since dim(V ×W ) = m+ n and dim(V ⊗W ) = mn, and it’s true that the “pure”
or “simple” or “rank-one” tensors v⃗ ⊗ w⃗ are only a small parth of the vector space V ⊗W .

eFrom now on, I’m just going to assume that we’re discussing real vector spaces and matrices.
f It’s not hard to convince yourself that matrices can be added and scalar-multiplied, so they must be a vector space.
gYou won’t go far wrong by thinking “a tensor product of two vector spaces is a vector space of matrices”.
hIf you want to know which elements of V ⊗W are simple tensors, here’s a short form of that story. First, it’s a

common mistake to assume that the simple tensors are a linear subspace of V ⊗W (they aren’t) and be confused by
the fact that there’s a basis for V ⊗W composed of simple tensors (true) but not every element of V ⊗W is a simple
tensor (also true). Try to avoid this.

Definition. An element A of V ⊗W is called a simple tensor or rank one tensor if it can be written as v⃗⊗ w⃗ for some
v⃗ ∈ V and w⃗ ∈W .

Definition. The tensor rank k of an element A ∈ V ⊗W is the smallest number of rank one tensors a⃗i⊗ b⃗i in V ⊗W
so that A = a⃗1 ⊗ b⃗1 +⋯+ a⃗k ⊗ b⃗k.

Proposition. If A ∈ V ⊗W , the tensor rank of A is equal to the rank of the corresponding matrix [A] ∈ Matm×n.

This proposition tells us exactly how to understand the simple tensors in V ⊗W : they are the rank-1 matrices in
Matm×n(R).
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Now we get to the Kronecker product.

Definition. If we have linear maps A∶ V1 → V2 and B∶ W1 → W2, we can define a corre-
sponding linear map A⊗B∶ V1 ⊗W1 → V2 ⊗W2 in two (equivalent) ways:

1. Map simple tensors to simple tensors by

(A⊗B)(v⃗ ⊗ w⃗) = (Av⃗)⊗ (Bw⃗)

and “extend the definition to higher-rank tensors by linearity”.i

2. If dimVi = mi and dimWi = ni, define the map (A⊗B)∶ Matm1×n1
→ Matm2×n2

by

X ∈ Matm1×n1
↦ AXB

T
∈ Matm2×n2

Now A ⊗ B is a linear map from an m1n1-dimensional vector space V1 ⊗ W1 to an m2n2-
dimensional vector space V2 ⊗ W2, so we must be able to represent it as an m2n2 × m1n1

matrix. In fact

Proposition. Suppose V1, V2 are vector spaces with dimensions m1 and m2, and W1,W2 are
vector spaces with dimensions n1 and n2. Further, suppose we have chosen bases for V1 and
V2 and W1 and W2, and we have corresponding standard bases for V1 ⊗W1 and V2 ⊗W2.

If A∶ V1 → V2 and B∶ W1 → W2 are linear maps written as m2 ×m1 and n2 × n1 matrices
with respect to our bases, then the linear map A ⊗ B∶ V1 ⊗W1 → V2 ⊗W2 is written as an
m2n2 ×m1n1 matrixj by the Kronecker product A⊗B of the matrices A and B.

iHere the casual use of “extend to higher-rank tensors by linearity” should make your blood run cold. Not even all
of the simple tensors are linearly independent from one another. So it’s definitely possible to define a map on simple
tensors which can’t be linear in the first place, much less have a linear extension to the entire tensor product. The
second definition is intended to reassure you that this operation is, in fact, well-defined.

jWith respect to the corresponding bases on V1 ⊗W1 and V2 ⊗W2, remembering the ordering on these bases.
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(1) (10 points) Make sure that you understand the definition by writing outA⊗B andB⊗A
where

A = (1 2
3 4

) B = (6
7
)

Does A⊗B = B ⊗ A?
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(2) (20 points)
Proposition. The Kronecker product is bilinear (over matrix addition and scalar multi-
plication) and associative

A⊗ (B + C) = A⊗B + A⊗ C

(A +B)⊗ C = A⊗ C +B ⊗ C

(λA)⊗B = A⊗ (λB) = λ(A⊗B)
(A⊗B)⊗ C = A⊗ (B ⊗ C)

The matrix operations of transpose and inverse distribute over the Kronecker product

(A⊗B)−1 = A−1 ⊗B
−1

(A⊗B)T = (AT )⊗ (BT )

Proposition. If A,B,C,D are matrices so that the matrix products AC and BD existk

then
(A⊗B)(C ⊗D) = (AC)⊗ (BD).

This is called the “mixed product property”.

Use these properties to prove the following:

Proposition. SupposeA is an n×nmatrix with eigenvectors α⃗1, . . . , α⃗n and correspond-
ing eigenvalues λ1, . . . , λn and B is an m ×m matrix with eigenvectors β⃗1, . . . , β⃗m and
eigenvalues µ1, . . . , µm. Thinking of the eigenvectors as column matrices, prove that the
eigenvectors of A⊗B are in the form α⃗i ⊗ β⃗j with corresponding eigenvalues λiµj .

kMatrices of the correct sizes to be multiplied are called conformable.
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(3) (10 points)
Definition. Suppose that A and B are square matrices of size n × n and m ×m and Ik
denotes the k × k identity matrix. The Kronecker sum A⊕B is defined by

A⊕B = A⊗ Im + In ⊗B

Prove the following:

Proposition. SupposeA is an n×nmatrix with eigenvectors α⃗1, . . . , α⃗n and correspond-
ing eigenvalues λ1, . . . , λn and B is an m ×m matrix with eigenvectors β⃗1, . . . , β⃗m and
eigenvalues µ1, . . . , µm. The eigenvectors of A ⊕ B are in the form α⃗i ⊗ β⃗i with corre-
sponding eigenvalues λi + µj .
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(4) (10 points) If G and G
′ are graphs, prove directly that there is a basis for the vertex space

RvG×G′ in which the graph Laplacian LG×H is given by the Kronecker sum:

LG×G′ = LG ⊕ LG′ .

Hint: LG∶ R
vG → RvG and LG∶ R

v
′
G → Rv

′
G; as matrices they are written with respect

to the bases v1, . . . , vvG
for RvG and v′1, . . . , v

′
v′G

for Rv
′
G .

The Kronecker sum matrix LG ⊕ LG′∶ RvG+v
′
G → RvG+v

′
G . The definition of Kronecker

sum (and Kronecker product) imply that this is written with respect to a particular basis
on RvG+v

′
G . Your first step is to find this basis.

On the other hand, the graph Laplacian LG×G′∶ RvG×G′
→ RvG×G′ is written with re-

spect to a standard basis given by the vertex set of G × G
′. The next step is to find a

correspondence between this basis and your basis for RvG+v
′
G .

The final step is to show that the matrices for LG×G′ and LG ⊕ LG′ (with respect to your
bases) are equal.

Page 17



Page 18



(5) (10 points) Now find the eigenvalues of G ×H using the last two parts of this question,
thereby providing an alternate (and more conceptual) proof of Theorem 6.3.2 in your
book (and the notes).
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