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Preface

As the the title suggests, the goal of this book is to give the reader a taste of
the “unreasonable effectiveness” of Morse theory. The main idea behind this
technique can be easily visualized.

Suppose M is a smooth, compact manifold, which for simplicity we as-
sume is embedded in a Euclidean space E. We would like to understand basic
topological invariants of M such as its homology, and we attempt a “slicing”
technique.

We fix a unit vector u in E and we start slicing M with the family of
hyperplanes perpendicular to u. Such a hyperplane will in general intersect
M along a submanifold (slice). The manifold can be recovered by continuously
stacking the slices on top of each other in the same order as they were cut out
of M .

Think of the collection of slices as a deck of cards of various shapes. If we
let these slices continuously pile up in the order they were produced, we notice
an increasing stack of slices. As this stack grows, we observe that there are
moments of time when its shape suffers a qualitative change. Morse theory
is about extracting quantifiable information by studying the evolution of the
shape of this growing stack of slices.

From a mathematical point of view we have a smooth function

h : M → R, h(x) = �u, x�.

The above slices are the level sets of h,
�

x ∈ M ; h(x) = const
�
,

and the growing stack is the time dependent sublevel set

{x ∈ M ; h(x) ≤ t}, t ∈ R.

The moments of time when the pile changes its shape are called the critical
values of h and correspond to moments of time t when the corresponding
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hyperplane {�u, x� = t} intersects M tangentially. Morse theory explains how
to describe the shape change in terms of local invariants of h.

A related slicing technique was employed in the study of the topology of
algebraic manifolds called the Picard–Lefschetz theory. This theory is back in
fashion due mainly to Donaldson’s pioneering work on symplectic Lefschetz
pencils.

The present book is divided into three conceptually distinct parts. In the
first part we lay the foundations of Morse theory (over the reals). The second
part consists of applications of Morse theory over the reals, while the last
part describes the basics and some applications of complex Morse theory,
a.k.a. Picard–Lefschetz theory. Here is a more detailed presentation of the
contents.

In chapter 1 we introduce the basic notions of the theory and we describe
the main properties of Morse functions: their rigid local structure (Morse
lemma) and their abundance (Morse functions are generic). To aid the reader
we have sprinkled the presentation with many examples and figures. One
recurring simple example we use as a testing ground is that of a natural
Morse function arising in the design of robot arms.

Chapter 2 is the technical core of the book. Here we prove the fundamental
facts of Morse theory: crossing a critical level corresponds to attaching a han-
dle and Morse inequalities. Inescapably, our approach was greatly influenced
by classical sources on this subject, more precisely Milnor’s beautiful books
on Morse theory and h-cobordism [M3, M4].

The operation of handle addition is much more subtle than it first appears,
and since it is the fundamental device for manifold (re)construction, we de-
voted an entire section to this operation and its relationship to cobordism and
surgery. In particular, we discuss in some detail the topological effects of the
operation of surgery on knots in S3 and illustrate this in the case of the trefoil
knot.

In chapter 2 we also discuss in some detail dynamical aspects of Morse the-
ory. More precisely, we present the techniques of S. Smale about modifying
a Morse function so that it is self-indexing and its stable/unstable manifolds
intersect transversally. This allows us to give a very simple description of an
isomorphism between the singular homology of a compact smooth manifold
and the (finite dimensional) Morse–Floer homology determined by a Morse
function, that is, the homology of a complex whose chains are formal linear
combinations of critical points and whose boundary is described by the con-
necting trajectories of the gradient flow. We have also included a brief section
on Morse–Bott theory, since it comes in handy in many concrete situations.

We conclude this chapter with a section of a slightly different flavor.
Whereas Morse theory tries to extract topological information from infor-
mation about critical points of a function, min-max theory tries to achieve
the opposite goal, namely to transform topological knowledge into informa-
tion about the critical points of a function. While on this topic, we did not
want to avoid discussing the Lusternik–Schnirelmann category of a space.
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Chapter 3 is devoted entirely to applications of Morse theory, and in writ-
ing it we were guided by the principle, few but juicy. We present relatively
few examples, but we use them as pretexts for wandering in many parts of
mathematics that are still active areas of research. More precisely, we start
by presenting two classical applications to the cohomology of Grassmannians
and the topology of Stein manifolds.

We use the Grassmannians as a pretext to discuss at length the Morse
theory of moment maps of Hamiltonian torus actions. We prove that these
moment maps are Morse–Bott functions. We then proceed to give a complete
presentation of the equivariant localization theorem of Atiyah, Borel, and
Bott (for S1-actions only), and we use this theorem to prove a result of P.
Conner [Co]: the sum of the Betti numbers of a compact, oriented smooth
manifold is greater than the sum of the Betti numbers of the fixed point set of
any smooth S1-action. Conner’s theorem implies among other things that the
moment maps of Hamiltonian torus actions are perfect Morse–Bott function.
The (complex) Grassmannians are coadjoint orbits of unitary groups, and as
such they are equipped with many Hamiltonian torus actions leading to many
choices of perfect Morse functions on Grassmannians.

We used the application to the topology of Stein manifolds as a pretext for
the last chapter of the book on Picard–Lefschetz theory. The technique is sim-
ilar. Given a complex submanifold M of a complex projective space, we start
slicing it using a (complex) 1-dimensional family of projective hyperplanes.
Most slices are smooth hypersurfaces of M , but a few of them are have mild
singularities (nodes). Such a slicing can be encoded by a holomorphic Morse
map M → CP1.

There is one significant difference between the real and the complex sit-
uations. In the real case, the set of regular values is disconnected, while in
the complex case this set is connected, since it is a punctured sphere. In the
complex case we study not what happens as we cross a critical value, but
what happens when we go once around it. This is the content of the Picard–
Lefschetz theorem.

We give complete proofs of the local and global Picard–Lefschetz formulæ
and we describe basic applications of these results to the topology of algebraic
manifolds.

We conclude the book with a chapter containing a few exercises and so-
lutions to (some of) them. Many of them are quite challenging and contain
additional interesting information we did not include in the main body, since
it have been distracting. However, we strongly recommend to the reader to
try solving as many of them as possible, since this is the most efficient way of
grasping the subtleties of the concepts discussed in the book. The complete
solutions of these more challenging problems are contained in the last section
of the book.

Penetrating the inherently eclectic subject of Morse theory requires quite
a varied background. The present book is addressed to a reader familiar with
the basics of algebraic topology (fundamental group, singular (co)homology,
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Poincaré duality, e.g., Chapters 0–3 of [Ha]) and the basics of differential
geometry (vector fields and their flows, Lie and exterior derivative, integration
on manifolds, basics of Lie groups and Riemannian geometry, e.g., Chapters
1–4 in [Ni]). In a very limited number of places we had to use less familiar
technical facts, but we believe that the logic of the main arguments is not
obscured by their presence.

Acknowledgments. This book grew out of notes I wrote for a one-semester
graduate course in topology at the University of Notre Dame in the fall of
2005. I want to thank the attending students, Eduard Balreira, Daniel Cibo-
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tions, which played an important role in smoothing out many rough patches
in presentation. While working on these notes I had many enlightening con-
versations on Morse theory with my colleague Richard Hind. I want to thank
him for calmly tolerating my frequent incursions into his office, and especially
for the several of his comments and examples I have incorporated in the book.

Last, but not the least, I want thank my wife. Her support allowed me
to ignore the “publish or perish” pressure of these fast times, and I could
ruminate on the ideas in this book with joyous abandonment.

This work was partially supported by NSF grant DMS-0303601.



Notations and Conventions

• For every set A we denote by #A its cardinality.
• For K = R, C, r > 0 and M a smooth manifold we denote by Kr

M
the

trivial vector bundle Kr ×M → M .
• i :=

√
−1. Re denotes the real part, and Im denotes the imaginary part.

• For every smooth manifold M we denote by TM the tangent bundle, by
TxM the tangent space to M at x ∈ M and by T ∗

x
M the cotangent space

at x.
• For every smooth manifold and any smooth submanifold S �→ M we

denote by TSM the normal bundle of S in M defined as the quotient
TSM := (TM)|S/TS. The conormal bundle of S in M is the bundle
T ∗

S
M → S defined as the kernel of the restriction map (T ∗M)|S → T ∗S.

• Vect(M) denotes the space of smooth vector fields on M .
• Ωp(M) denotes the space of smooth p-forms on M , while Ωp

cpt
(M) the

space of compactly supported smooth p-forms.
• If F : M → N is a smooth map between smooth manifolds we will denote

its differential by DF or F∗. DFx will denote the differential of F at x ∈ M
which is a linear map DFx : TxM → TxN . F ∗ : Ωp(N) → Ωp(M) is the
pullback by F .

• �:= transverse intersection.
• � := disjoint union.
• For every X,Y ∈ Vect(M) we denote by LX the Lie derivative along X and

by [X,Y ] the Lie bracket [X,Y ] = LXY . iX or X denotes the contraction
by X.

• We will orient the manifolds with boundary using the outer-normal -first
convention.

• The total space of a fiber bundle will be oriented using the fiber-first
convention.

• so(n) denotes the Lie algebra of SO(n), u(n) denotes the Lie algebra of
U(n) etc.

• Diag(c1, · · · , cn) denotes the diagonal n×n matrix with entries c1, . . . , cn.
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1

Morse Functions

In this first chapter we introduce the reader to the main characters of our story,
namely the Morse functions, and we describe the properties which make them
so useful. We describe their very special local structure (Morse lemma) and
then we show that there are plenty of them around.

1.1 The Local Structure of Morse Functions

Suppose F : M → N is a smooth (i.e., C∞) map between smooth manifolds.
The differential of F defines for every x ∈ M a linear map

DFx : TxM → TF (x)N.

Definition 1.1. (a) The point x ∈ M is called a critical point of F if

rankDFx < min(dim M,dim N).

A point x ∈ M is called a regular point of F if it is not a critical point. The
collection of all critical points of F is called the critical set of F and is denoted
by CrF .
(b) The point y ∈ N is called a critical value of F if the fiber F−1(y) contains
a critical point of F . A point y ∈ N is called a regular value of F if it is
not a critical value. The collection of all critical values of F is called the
discriminant set of F and is denoted by ∆F .
(c) A subset S ⊂ N is said to be negligible if for every smooth open embedding
Φ : Rn → N , n = dim N , the preimage Φ−1(S) has Lebesgue measure zero in
Rn. ��

Theorem 1.2 (Morse–Sard–Federer). Suppose F : M → N is a smooth
function. Then the Hausdorff dimension of the discriminant set ∆F is at most
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dim N − 1. In particular, the discriminant set is negligible in N . Moreover, if
F (M) has nonempty interior, then the set of regular values is dense in F (M).

��

For a proof we refer to Federer [Fed, Theorem 3.4.3] or Milnor [M2].

Remark 1.3. (a) If M and N are real analytic manifolds and F is a proper
real analytic map then we can be more precise. The discriminant set is a
locally finite union of real analytic submanifolds of N of dimensions less than
dim N . Exercise 5.1 may perhaps explain why the set of critical values is called
discriminant.

(b) The range of a smooth map F : M → N may have empty interior. For
example, the range of the map F : R3 → R2, F (x, y, z) = (x, 0), is the x-axis
of the Cartesian plane R2. The discriminant set of this map coincides with
the range. ��

Example 1.4. Suppose f : M → R is a smooth function. Then x0 ∈ M is a
critical point of f if and only if df |x0= 0 ∈ T ∗

x0
M .

Suppose M is embedded in an Euclidean space E and f : E → R is a
smooth function. Denote by fM the restriction of f to M . A point x0 ∈ M is
a critical point of fM if

�df, v� = 0, ∀v ∈ Tx0M.

This happens if either x0 is a critical point of f , or dfx0 �= 0 and the tangent
space to M at x0 is contained in the tangent space at x0 of the level set
{f = f(x0)}. If f happens to be a nonzero linear function, then all its level
sets are hyperplanes perpendicular to a fixed vector u, and x0 ∈ M is a critical
point of fM if and only if u ⊥ Tx0M , i.e., the hyperplane determined by f
and passing through x0 is tangent to M .

x

y

A

B

C

a

c

b
r

R

B'

R'

M

Fig. 1.1. The height function on a smooth curve in the plane.
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In Figure 1.1 we have depicted a smooth curve M ⊂ R2. The points
A, B,C are critical points of the linear function f(x, y) = y. The level sets of
this function are horizontal lines and the critical points of its restriction to M
are the points where the tangent space to the curve is horizontal. The points
a, b, c on the vertical axis are critical values, while r is a regular value. ��

Example 1.5 (Robot arms: critical configurations). We begin in this
example the study of the critical points of a smooth function which arises in
the design of robot arms. We will discuss only a special case of the problem
when the motion of the arm is constrained to a plane. For slightly different
presentations we refer to the papers [Hau, KM, SV], which served as our
sources of inspiration. The paper [Hau] discusses the most general version of
this problem, when the motion of the arm is not necessarily constrained to a
plane.

Fix positive real numbers r1, . . . , rn > 0, n ≥ 2. A (planar) robot arm
(or linkage) with n segments is a continuous curve in the Euclidean plane
consisting of n line segments

s1 = [J0J1], s2 = [J1J2], . . . , sn = [Jn−1Jn]

of lengths
dist (Ji, Ji−1) = ri, i = 1, 2, . . . , n.

We will refer to the vertices Ji as the joints of the robot arm. We assume
that J0 is fixed at the origin of the plane, and all the segments of the arm are
allowed to rotate about the joints. Additionally, we require that the last joint
be constrained to slide along the positive real semiaxis (see Figure 1.2).

r

r
r

r

J J

J

JJ0

1

1

2

2

3
3

4

4

r

r
r

r

J

J

J

JJ0

1

1

2

2
3

3

4

4

Fig. 1.2. A robot arm with four segments.

A (robot arm) configuration is a possible position of the robot arm subject
to the above constraints. Mathematically a configuration is described by an
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n-uple
z = (z1, . . . , zn) ∈ Cn

constrained by

|zk| = 1, k = 1, 2, . . . , n, Im

n�

k=1

rkzk = 0, Re

n�

k=1

rkzk > 0.

Visually, if zk = eiθk , then θk measures the inclination of the kth segment
of the arm. The position of kth joint Jk is described by the complex number
r1z1 + · · · + rkzk.

In Exercise 5.2 we ask the reader to verify that the space of configurations
is a smooth hypersurface C of the n-dimensional manifold

M :=
�

(θ1, . . . , θn) ∈ (S1)n;
n�

k=1

rk cos θk > 0
�
⊂ (S1)n,

described as the zero set of

β : M → R, β(θ1, . . . , θn) =
n�

k=1

rk sin θk = Im

n�

k=1

rkzk.

Consider the function h : (S1)n → R defined by

h(θ1, . . . , θn) =
n�

k=1

rk cos θk = Re

n�

k=1

rkzk.

Observe that for every configuration θ the number h(θ) is the distance of the
last joint from the origin. We would like to find the critical points of h|C .

It is instructive to first visualize the level sets of h when n = 2 and r1 �= r2,
as it captures the general paradigm. For every configuration θ = (θ1, θ2) we
have

|r1 − r2| ≤ h(θ) ≤ r1 + r2.

For every c ∈ (|r1 − r2|, r1 + r2), the level set {h = c} consists of two configu-
rations symmetric with respect to the x–axis. When c = |r1 ± r2| the level set
consists of a single (critical) configuration. We deduce that the configuration
space is a circle.

In general, a configuration θ = (θ1, . . . , θn) ∈ C is a critical point of the
restriction of h to C if the differential of h at θ is parallel to the differential at
θ of the constraint function β (which is the ”normal” to this hypersurface).
In other words, θ is a critical point if and only if there exists a real scalar λ
(Lagrange multiplier) such that

dh(θ) = λdβ(θ) ⇐⇒ −rk sin θk = λrk cos θk, ∀k = 1, 2, . . . , n.

We discuss separately two cases.



1.1 The Local Structure of Morse Functions 5

A. λ = 0. In this case sin θk = 0, ∀k, that is, θk ∈ {0, π}. If zk = eiθk we
obtain the critical points

(z1, . . . , zn) = (�1, . . . , �n), �k = ±1,
n�

k=1

rk�k = Re

�

k

rkzk > 0.

J J JJ
12 3 4

0
J

Fig. 1.3. A critical robot arm configuration.

B. λ �= 0. We want to prove that this situation is impossible. We have

h(θ) =
�

k

rk cos θk > 0

and thus
0 = β(θ) =

�

k

rk sin θk = −λ
�

k

rk cos θk �= 0.

We deduce that the critical points of the function h are precisely the con-
figurations ζ = (�1, . . . , �n) such that �k = ±1 and

�
k=1 rk�k > 0. The

corresponding configurations are the positions of the robot arm when all seg-
ments are parallel to the x-axis (see Figure 1.3). The critical configuration
ζ = (1, 1, . . . , 1) corresponds to the global maximum of h when the robot arm
is stretched to its full length. We can be even more precise if we make the
following generic assumption:

n�

k=1

rk�k �= 0, ∀�1, . . . , �n ∈ {1,−1}. (1.1)

The above condition is satisfied if for example the numbers rk are linearly
independent over Q. This condition is also satisfied when the length of the
longest segment of the arm is strictly greater than the sum of the lengths of
the remaining segments.

The assumption (1.1) implies that for any choice of �k = ±1 the sum�
k
rk�k is never zero. We deduce that half of all the possible choices of �k

lead to a positive
�

k
rk�k, so that the number of critical points is c(n) = 2n−1.

��

If M is a smooth manifold, X is a vector field on M , and f is a smooth
function, then we define the derivative of f along X to be the function

Xf = df(X).
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Lemma 1.6. Suppose f : M → R is a smooth function and p0 ∈ M is a
critical point of f . Then for every vector fields X,X �, Y, Y � on M such that

X(p0) = X �(p0), Y (p0) = Y �(p0),

we have
(XY f)(p0) = (X �Y �)f(p0) = (Y Xf)(p0).

Proof. Note first that

(XY − Y X)f(p0) = ([X,Y ]f)(p0) = df([X,Y ])(p0) = 0.

Since (X −X �)(p0) = 0, we deduce that

(X −X �)g(p0) = 0, ∀g ∈ C∞(M).

Hence
(X −X �)Y f(p0) = 0 =⇒ (XY f)(p0) = (X �Y f)(p0).

Finally,

(X �Y f)(p0) = (Y X �f)(p0) = (Y �X �f)(p0) = (X �Y �f)(p0). ��

If p0 is a critical point of the smooth function f : M → R, then we define
the Hessian of f at p0 to be the map

Hf,p0 : Tp0M × Tp0M → R, Hf,x0(X0, Y0) = (XY f)(p0),

where X,Y are vector fields on X such that X(p0) = X0, Y (x0) = Y0. The
above lemma shows that the definition is independent of the choice of vector
fields X,Y extending X0 and Y0. Moreover, Hf,p0 is bilinear and symmetric.

Definition 1.7. A critical point p0 of a smooth function f : M → R is called
nondegenerate if its Hessian is nondegenerate, i.e.

Hf,p0(X,Y ) = 0, ∀Y ∈ TpoM ⇐⇒ X = 0.

A smooth function is called a Morse function if all its critical points are non-
degenerate. ��

Note that if we choose local coordinates (x1, . . . , xn) near p0 such that
xi(p0) = 0, ∀i, then any vector fields X,Y have a local description

X =
�

i

Xi∂xi , Y =
�

j

Y j∂xj

near p0, and then we can write

Hf,p0(X,Y ) =
�

i,j

hijX
iY j , hij = (∂xi∂xj f)(p0).
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The critical point is nondegenerate if and only if det(hij) �= 0. For example,
the point B in Figure 1.1 is a degenerate critical point.

The Hessian also determines a function defined in a neighborhood of p0,

Hf,p0(x) =
�

i,j

hijx
ixj ,

which appears in the Taylor expansion of f at p0,

f(x) = f(p0) +
1
2
Hf,p0(x) + O(3).

Let us recall a classical fact of linear algebra.
If V is a real vector space of finite dimension n and b : V × V → R is

a symmetric, bilinear nondegenerate map, then there exists at least one basis
(e1, . . . , en) such that for any v =

�
i
viei we have

b(v, v) = −
�
|v1|2 + . . . + |vλ|2

�
+ |vλ+1|2 + . . . + |vn|2.

The integer λ is independent of the basis of (ei), and we will call it the index
of b. It can be defined equivalently as the largest integer � such that there exists
an �-dimensional subspace V− of V with the property that the restriction of b
to V− is negative definite.

Definition 1.8. Suppose p0 is a nondegenerate critical point of a smooth func-
tion f : M → R. Then its index, denoted by λ(f, p0), is defined to be the index
of the Hessian Hf,p0 . ��

If f : M → R is a Morse function with finitely many critical points, then
we define the Morse polynomial of f to be

Pf (t) =
�

p∈Crf

tλ(f,p) =
�

λ≥0

µf (λ)tλ.

Observe that µf (λ) is equal to the number of critical points of f of index λ.
The coefficients of the Morse polynomial are known as the Morse numbers of
the Morse function f .

Example 1.9. Consider the hypersurface S ⊂ R3 depicted in Figure 1.4.
This hypersurface is diffeomorphic to the 2-sphere. The height function z on
R3 restricts to a Morse function on S.

This Morse function has four critical points labeled A, B,C, D in Figure
1.4. Their Morse indices are

λ(A) = λ(B) = 2, λ(C) = 1, λ(D) = 0,

so that the Morse polynomial is

tλ(A) + tλ(B) + tλ(C) + tλ(D) = 2t2 + t + 1. ��
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A

B

C

D

z

Fig. 1.4. A Morse function on the 2-sphere.

Example 1.10 (Robot arms: index computations). Consider again the
setup in Example 1.5. We have a smooth function h : C → R, where

C =
�

(z1, . . . , zn) ∈ (S1)n; Re

�

k

rkzk > 0, Im

�

k

rkzk = 0
�
,

and
h(z1, . . . , zn) = Re

�

k

rkzk.

Under the assumption (1.1) this function has 2n−1 critical points ζ described
by

ζ = (ζ1, . . . , ζn) = (�1, . . . , �n), �k = ±1,
�

k

rk�k > 0.

We want to prove that h is a Morse function and compute its Morse polyno-
mial. We write

ζk = eiϕk , ϕk ∈ {0, π}.

A point z = (eiθ1 , . . . , eiθn) ∈ C close to ζ is described by angular coordinates

θk = ϕk + tk, |tk|� 1,

satisfying the constraint

g(t1, . . . , tn) =
n�

k=1

rk sin(ϕk + tk) = 0.

Near ζ the function g has the Taylor expansion

g(t1, . . . , tn) =
n�

k=1

�krktk + O(3),

where O(r) denotes an error term smaller than some constant multiple of
(|t1| + · · · + |tn|)r. From the implicit function theorem applied to the con-
straint equation g = 0 we deduce that we can choose (t1, . . . , tn−1) as local



1.1 The Local Structure of Morse Functions 9

coordinates on C near z by regarding C as the graph of the smooth function
tn depending on the variables (t1, . . . , tn−1). Using the Taylor expansion of tn
at

(t1, . . . , tn−1) = (0, . . . , 0)
we deduce (see Exercise 5.3)

tn = −
n−1�

k=1

�krktk
�nrn

+ O�(2). (1.2)

where O�(r) denotes an error term smaller than some constant multiple of
(|t1| + . . . + |tn−1|)r).

Near ζ the function h =
�

n

k=1 rk cos(ϕk + tk) has the Taylor expansion

h =
n�

k=1

�krk −
1
2

n�

k=1

�krkt2
k

+ O(4).

Using (1.2) we deduce that near ζ ∈ C we have the following expansion in the
local coordinates: (t1, . . . , tn−1)

h|C =
n�

k=1

�krk −
1
2

n−1�

k=1

�krkt2
k
− 1

2
�nrn

�n−1�

k=1

�krktk
�nrn

�2
+ O�(3).

We deduce that the Hessian of h|C at ζ can be identified with the restriction
of the quadratic form

q(t1, . . . , tn) = −
n�

k=1

�krkt2
k

to the subspace

TζC =
�

(t1, . . . , tn) ∈ Rn;
n�

k=1

�krktk = 0
�

.

At this point we need the following elementary result.

Lemma 1.11. Let c = (c1, . . . , cn) ∈ Rn be such that

c1 · c2 . . . cn �= 0, S := c1 + . . . + cn �= 0.

Let V :=
�
t ∈ Rn; t ⊥ c

�
and define the quadratic form

Q : Rn × Rn → R, Q(u,v) =
n�

k=1

ckukvk.

Then the restriction of Q to V is nondegenerate and

λ(Q|V ) =

�
λ(Q) S > 0,

λ(Q)− 1 S < 0.
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Proof. We may assume without any loss of generality that |c| = 1. Denote by
PV the orthogonal projection onto V and set

L : Rn → Rn, L := Diag(c1, . . . , cn).

Then
Q(u,v) = (Lu,v).

The restriction of Q to V is described by

Q|V (v1,v2) = (PV Lv1,v2), ∀vi ∈ V.

We deduce that Q|V is nondegenerate if and only if the linear operator T =
PV L : V → V has trivial kernel. Observe that v ∈ V belongs to kerT if and
only if there exists a scalar y ∈ R such that

Lv = yc ⇐⇒ v = yδ, δ = (1, . . . , 1).

Since (v, c) = 0 and (δ, c) =
�

n

k=1 ck �= 0 we deduce y = 0, so that v = 0.
For v ∈ V and y ∈ R we have

(L(v+ yδ),v+ yδ) = (Lv,v)+2y(Lv, δ)+ y2(Lδ, δ) = (Lv,v)+ y2S. (1.3)

Suppose V± is a maximal subspace of V , where Q|V is positive/negative def-
inite, so that

V+ + V− = V
�
=⇒ dim V+ + dim V− = dimV = n− 1

�
.

Set
U± = V± ⊕ Rδ = V± ⊕ Rc.

Observe that

dim U± = dim V± + 1, V+ ⊕ U− = Rn = U+ ⊕ V−. (1.4)

We now distinguish two cases.
A. S > 0. Using equation (1.3) we deduce that Q is positive definite on U+

and negative definite on V−. The equalities (1.4) imply that

λ(Q) = dim V− = λ(Q|V ).

B. S < 0. Using equation (1.3) we deduce that Q is positive definite on V+

and negative definite on U−. The equalities (1.4) imply that

λ(Q) = λ(Q|V ) + 1.

This completes the proof of Lemma 1.11. ��
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Returning to our index computation we deduce that at a critical config-
uration � = (�1, . . . , �n) the Hessian of h is equal to the restriction of the
quadratic form

Q =
n�

k=1

ckt2
k
, ck = −�krk,

n�

k=1

ck = −h(�) < 0,

to the orthogonal complement of c. Lemma 1.11 now implies that this hessian
is nondegenerate and its index is

λ(�) = λh(�) = #
�

k; �k = 1
�
− 1. (1.5)

For different approaches to the index computation we refer to [Hau, SV].
If (1.1) is satisfied we can obtain more refined information about the Morse

polynomial of h. For every binary vector � ∈ {−1, 1}n we define

σ(�) := #
�

k; �k = 1
�
, �(�) =

�

k

�k, ρ(�) =
�

k

rk�k.

We deduce
2σ(�) =

�

k

�k +
�

k

|�k| = �(�) + n

=⇒ λ(�) =
1
2
(n + �(�))− 1.

The set of critical points of h can be identified with the set

R+ :=
�

� ∈ {−1, 1}n; ρ(�) > 0
�
.

Define
R− =

�
�; −� ∈ R−

�
.

Assumption (1.1) implies that

{−1, 1}n = R+ �R−.

The Morse polynomial of h is

Ph(t) =
�

�∈R+

tλ(�) = t
n
2−1

�

�∈R+

t�(�)/2.

Define
L+

h
(t) :=

�

�∈R+

t�(�)/2, L−
h

(t) :=
�

�∈R−

t�(�)/2.

Since �(−�) = −�(�) we deduce

L−
h

(t) = L+
h
(t−1).
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On the other hand,

L+
h
(t) + L−

h
(t) =

�

�

(t1/2)�(�) = (t1/2 + t−1/2)n = t−n/2(t + 1)n.

Hence
L+

h
(t) + Lh(t−1) = t−n/2(t + 1)n.

Since
L+

h
(t) = t−n/2+1Ph(t),

we deduce
t−n/2+1Ph(t) + tn/2−1Ph(t−1) = t−n/2(t + 1)n,

so that
tPh(t) + tn−1Ph(t−1) = (t + 1)n. (1.6)

Observe that tn−1P (t−1) is the Morse polynomial of −h, so that

tPh(t) + P−h(t) = (t + 1)n. (1.7)

If
Ph(t) = a0 + a1t + . . . + an−1t

n−1,

then we deduce from (1.6) that

ak + an−2−k =
�

n

k + 1

�
, ∀k = 1, . . . , n− 2, an−1 = 1. ��

Let us return to our general study of Morse functions. The key algebraic
reason for their effectiveness in topological problems stems from their local
rigidity. More precisely, the Morse functions have a very simple local structure:
up to a change of coordinates all Morse functions are quadratic. This is the
content of our next result, commonly referred to as the Morse lemma.

Theorem 1.12 (Morse). Suppose f : M → R is a smooth function, m =
dim M , and p0 is a nondegenerate critical point of f . Then there exists an
open neighborhood U of p0 and local coordinates (x1, . . . , xm) on U such that

xi(p0) = 0, ∀i = 1, . . . ,m and f(x) = f(p0) +
1
2
Hf,p0(x).

In other words, f is described in these coordinates by a quadratic polynomial.

Proof. We use the approach in [AGV1, §6.4] based on the homotopy method.
This has the advantage that it applies to more general situations. Assume for
simplicity that f(p0) = 0.
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Fix a diffeomorphism Φ from Rm onto an open neighborhood N of p0 such
that Φ(0) = p0. This diffeomorphism defines coordinates (xi) on N such that
xi(p0) = 0, ∀i, and we set ϕ(x) = f(Φ(x)). For t ∈ [0, 1] define ϕt : Rm → R
by

ϕt(x) = (1− t)ϕ(x) + tQ(x) = Q(x) + (1− t)
�
ϕ(x)−Q(x)

�
,

where
Q(x) =

1
2

�

i,j

∂2ϕ

∂xi∂xj
(0)xixj .

We seek an open neighborhood U ⊂ Φ−1(N) of 0 ∈ Rm and a one-parameter
family of embeddings Ψt : U �→ Rm such that

Ψt(0) = 0, ϕt ◦ Ψt ≡ ϕ on U ∀t ∈ [0, 1]. (1.8)

Such a family is uniquely determined by the t-dependent vector field

Vt(x) :=
d

dt
Ψt(x).

More precisely, the path t
γx�−→ Ψt(x) ∈ Rm is the unique solution of the initial

value problem
γ̇(t) = Vt(γ(t)) ∀t, γ(0) = x.

Differentiating (1.8) with respect to t, we deduce the homology equation

ϕ̇t ◦ Ψt + (Vtϕt) ◦ Ψt = 0 ⇐⇒ Q− ϕ = Vtϕt on Ψt(U), ∀t ∈ [0, 1]. (1.9)

If we find a vector field Vt satisfying Vt(0) = 0 ∀t ∈ [0, 1] and (1.9) on a
neighborhood W of 0, then

N =
�

t∈[0,1]

Ψ−1
t

(W )

is a neighborhood1 of 0, and we deduce that Ψt satisfies (1.8) on N. To do this
we need to introduce some terminology.

Two smooth functions f, g defined in a neighborhood of 0 ∈ Rm are said to
be equivalent at 0 if there exists a neighborhood U of 0 such that f |U= g |U .
The equivalence class of such a function f is called the germ of the function
at 0 and it is denoted by [f ]. We denote by E the collection of germs at 0 of
smooth functions. It is naturally an R-algebra. The evaluation map

C∞ � f �→ f(0) ∈ R

induces a surjective morphism of rings E → R. Its kernel is therefore a maximal
ideal in E, which we denote by m. It is easy to see that E is a local ring, since
for any function f such that f(0) �= 0, the inverse 1/f is smooth near zero.
1 This happens because the condition Vt(0) = 0 ∀t implies that there exists r > 0

with the property that Ψt(x) ∈ W , ∀|x| < r, ∀t ∈ [0, 1]. Loosely speaking, if a
point x is not very far from the stationary point 0 of the flow Ψt, then in one
second it cannot travel very far along this flow.
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Lemma 1.13 (Hadamard). The ideal m is generated by the germs of the
coordinate functions xi.

Proof. It suffices to show that m ⊂
�

i
xiE.

Consider a germ in m represented by the smooth function f defined in an
open ball Br(0). Then for every x ∈ Br(0) we have

f(x) = f(x)− f(0) =
� 1

0

d

ds
f(sx)ds =

�

i

xi

� 1

0

∂f

∂xi
(sx)ds

� �� �
:=ui

.

This proves that [f ] =
�

i
[xi][ui]. ��

For every multi-index α = (α1, . . . ,αm) ∈ Zm

≥0 we set

|α| =
�

i

αi, xα = (x1)α1 . . . (xm)αm , Dα =
∂|α|

(∂x1)α1 . . . (∂xm)αm
.

Lemma 1.14. If (Dαf)(0) = 0 for all |α| < k then [f ] ∈ mk. In particular
[ϕ] ∈ m2, ϕ−Q ∈ m3.

Proof. We argue by induction on k ≥ 1. The case k = 1 follows from
Hadamard’s lemma. Suppose now that (Dαf)(0) = 0 for all |α| < k. By
induction we deduce that [f ] ∈ mk−1, so that

f =
�

|α|=k−1

xαuα, uα ∈ E.

Hence, for any multi-index β such that |β| = k − 1, we have

Dβf = Dβ

� �

|α|≤k−1

xαuα

�
∈ uβ + m.

In other words,
Dβf − uβ ∈ m, ∀|β| = k − 1.

Since (Dβf)(0) = 0, we deduce from Hadamard’s lemma that Dβf ∈ m so
that uβ ∈ m for all β. ��

Denote by Jϕ the ideal in E generated by the germs at 0 of the partial
derivatives ∂xiϕ, i = 1, . . . ,m. It is called the Jacobian ideal of ϕ at 0. Since 0
is a critical point of ϕ, we have Jϕ ⊂ m. Because 0 is a nondegenerate critical
point, we have an even stronger result.

Lemma 1.15 (Key lemma). Jϕ = m.
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Proof. We present a proof based on the implicit function theorem. Consider
the smooth map

y = dϕ : Rm → Rm, y = (y1(x), . . . , ym(x)), yi = ∂iϕ.

Then
y(0) = 0,

∂y

∂x
|x=0 = Hϕ,0.

Since detHϕ,0 �= 0, we deduce from the implicit function theorem that y is a
local diffeomorphism. Hence its components yi define local coordinates near
0 ∈ Rm such that yi(0) = 0. We can thus express the xi’s as smooth functions
of yj ’s, xi = xi(y1, . . . , ym).

On the other hand, xi(y)|y=0 = 0, so we can conclude from the Hadamard
Lemma that there exist smooth functions ui

j
= ui

j
(y) such that

xi =
�

j

ui

j
yj =⇒ xi ∈ Jϕ, ∀i. ��

Set δ := ϕ−Q, so that ϕt = ϕ− tδ. We rewrite the homology equation as

Vt · (ϕ− tδ) = −δ.

For every g ∈ E we consider the “initial value” problem

Vt(0) = 0, ∀t ∈ [0, 1], (I)

Vt · (ϕ− tδ) = g, ∀t ∈ [0, 1]. (Hg)

Lemma 1.16. For every g ∈ m there exists a smooth vector field Vt satisfying
(Hg) for any t ∈ [0, 1]. Moreover, if g ∈ m2 we can find a solution Vt of (Hg)
satisfying the initial condition (I) as well.

Proof. We start with some simple observations. Observe that if Vt(gi) is a
solution of (Hgi), i = 0, 1, and ui ∈ E, then u0Vt(g0) + u1Vt(g1) is a solution
of (Hu0g0+u1g1). Since every g ∈ m can be written as a linear combination

g =
m�

i=1

xiui, ui ∈ E,

it suffices to find solutions V i

t
of (Hxi).

Using the key lemma we can find aij ∈ E such that

xi =
�

i

aij∂jϕ, ∂j := ∂xj .

We can write this in matrix form as

x = A(x)∇ϕ ⇐⇒ x = A(x)∇(ϕ− tδ) + tA(x)∇δ. (1.11)
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Lemma 1.14 implies δ ∈ m3, so that ∂iδ ∈ m2, ∀i. Thus we can find bij ∈ m
such that

∂iδ =
�

j

bijx
j ,

or in matrix form,
∇δ = Bx, B(0) = 0.

Substituting this in (1.11), we deduce
�

Rm − tA(x)B(x)
�
x = A(x)∇(ϕ− tδ).

Since B(0) = 0, we deduce that
�

Rm − tA(x)B(x)
�

is invertible2 for every
t ∈ [0, 1] and every sufficiently small x. We denote by Ct(x) its inverse, so
that we obtain

x = Ct(x)A(x)∇(ϕ− tδ).

If we denote by V i

j
(t, x) the (i, j) entry of Ct(x)A(x), we deduce

xi =
�

j

V i

j
(t, x)∂j(ϕ− tδ),

so
V i

t
=

�

j

V i

j
(t, x)∂j

is a solution of (Hxi). If g =
�

i
gixi ∈ m, then

�
i
giV i

t
is a solution of (Hg).

If additionally g ∈ m2, then we can choose the previous gi to be in m. Then�
i
giV i

t
is a solution of (Hg) satisfying the initial condition (I). ��

Now observe that since δ ∈ m3 ⊂ m2, we can find a solution Vt of H−δ

satisfying the “initial” condition (I). This vector field is then a solution of the
homology equations (1.9). This completes the proof of Theorem 1.12. ��

Corollary 1.17 (Morse lemma). If p0 is a nondegenerate critical point of
index λ of a smooth function f : M → R, then there exist local coordinates
(xi)1≤i≤m near p0 such that xi(p0) = 0, ∀i, and in these coordinates we have
the equality

f = f(p0)−
λ�

i=1

(xi)2 +
m�

j=λ+1

(xj)2. ��

We will refer to coordinates with the properties in the Morse lemma as
coordinates adapted to the critical point. If (x1, . . . , xm) are such coordinates,
we will often use the notation

2 The reader familiar with the basics of commutative algebra will most certainly
recognize that this step of the proof is in fact Nakayama’s lemma in disguise.
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x = (x−, x+), x− = (x1, . . . , xλ), x+ = (xλ+1, . . . , xm),

f = f(p0)− |x−|2 + |x+|2.

1.2 Existence of Morse Functions

The second key reason for the topological versatility of Morse functions is
their abundance. It turns out that they form a dense open subset in the space
of smooth functions. The goal of this section is to prove this claim.

The strategy we employ is very easy to describe. We will produce families
of smooth functions fλ : M → R, depending smoothly on the parameter
λ ∈ Λ, where Λ is a smooth finite dimensional manifold. We will then produce
a smooth map π : Z → Λ such that fλ is a Morse function for every regular
value of π. Sard’s theorem will then imply that fλ is a Morse function for
most λ’s.

Suppose M is a connected, smooth, m-dimensional manifold. According
to the Whitney embedding theorem (see, e.g., [W, IV.A]) we can assume that
M is embedded in an Euclidean vector space E of dimension n ≤ 2m + 1.
We denote the metric on E by (•, •). Suppose Λ is a smooth manifold and
F : Λ × E → R is a smooth function. We regard F as a smooth family of
functions

Fλ : E → R, Fλ(x) = F (λ, x), ∀(λ, x) ∈ Λ× E.

We set
f := F |Λ×M , fλ := Fλ |M .

Let x ∈ M . There is a natural surjective linear map Px : E∗ → T ∗
x
M which

associates to each linear functional on E its restriction to TxM ⊂ E. In
particular, we have an equality

dfλ(x) = PxdFλ(x).

For every x ∈ M we have a smooth partial differential map

∂xf : Λ → T ∗
x
M, λ �→ dfλ(x).

Definition 1.18. (a) We say that the family F : Λ × E → R is sufficiently
large relative to the submanifold M �→ E if the following hold:

• dim Λ ≥ dim M .
• For every x ∈ M , the point 0 ∈ T ∗

x
M is a regular value for ∂xf .
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(b) We say that F is large if for every x ∈ E the partial differential map

∂xF : Λ → E∗, λ �→ dFλ(x)

is a submersion, i.e., its differential at any λ ∈ Λ is surjective. ��

Lemma 1.19. If F : Λ× E → R is large, then it is sufficiently large relative
to any submanifold M �→ E.

Proof. From the equality ∂xf = Px∂xF we deduce that ∂xf is a submersion
as a composition of two submersions. In particular, it has no critical values.

��

Example 1.20. (a) Suppose Λ = E∗ and H : E∗ × E → R,

H(λ, x) = λ(x), ∀(λ, x) ∈ E∗ × E.

Using the metric identification we deduce that

dxHλ = λ, ∀λ ∈ E∗.

Hence
∂xH : E∗ → T ∗

x
E = E∗

is the identity map and thus it is a submersion. Hence H is a large family.
(b) Suppose E is a Euclidean vector space with metric (•, •), Λ = E, and
R : E × E → R,

R(λ, x) =
1
2
|x− λ|2.

Then R is large. To see this, denote by † : E → E∗ the metric duality. Note
that

dxRλ = (x− λ)†,

and the map E � λ �→ (x − λ)† ∈ E∗ is an affine isomorphism. Thus R is a
large family.
(c) Suppose E is an Euclidean space. Denote by Λ the space of positive definite
symmetric endomorphisms A : E → E and define

F : Λ× E → R, Λ× E � (A, x) �→ 1
2
(Ax, x).

Observe that ∂xF : Λ → E is given by

∂xF (A) = Ax, ∀A ∈ Λ.

If x �= 0 then ∂xF is onto. This shows that F is sufficiently large relative to
any submanifold of E not passing through the origin. ��
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Theorem 1.21. If the family F : Λ × E → R is sufficiently large relative to
the submanifold M �→ E, then there exists a negligible set Λ∞ such that for
all λ ∈ Λ \ Λ∞ the function fλ : M → R is a Morse function.

Proof. We will carry the proof in several steps.

Step 1. We assume that M is special, i.e., there exist global coordinates

(x1, . . . , xn)

on E (not necessarily linear coordinates) such that M can be identified with
an open subset W of the coordinate “plane”

�
xm+1 = · · · = xn = 0

�
.

For every λ ∈ Λ we can then regard fλ as a function fλ : W → R and its
differential as a function

ϕλ : W → Rm, w = (x1, . . . , xm) �−→ ϕλ(w) =
�
∂x1fλ(w), . . . , ∂xmfλ(w)

�
.

A point w ∈ W is a nondegenerate critical point of fλ if

ϕλ(w) = 0 ∈ Rm

and
the differential Dϕλ : TwW → Rm is bijective.

We deduce that fλ is a Morse function if and only if 0 is a regular value of
ϕλ. Consider now the function

Φ : Λ×W → Rm, Φ(λ, w) = ϕλ(w).

The condition that the family be sufficiently large is now needed to prove the
following fact.

Lemma 1.22. 0 ∈ Rm is a regular value of Φ, i.e., for every (λ, w) ∈ Φ−1(0)
the differential DΦ : T(λ,w)Λ×W → Rm is onto.

To keep the flow of arguments uninterrupted we will present the proof of
this result after we have completed the proof of the theorem. We deduce that

Z = Φ−1(0) =
�

(λ, w) ∈ Λ×W ; ϕλ(w) = 0
�
.

The natural projection π : Λ×W → Λ induces a smooth map π : Z → Λ. We
have the following key observation.

Lemma 1.23. If λ is a regular value of π : Z → Λ, then 0 is a regular value
of ϕλ, i.e., fλ is a Morse function.
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Proof. Suppose λ is a regular value of π. If λ does not belong to π(Z) the
the function fλ has no critical points on M , and in particular, it is a Morse
function.

Thus, we have to prove that for every w ∈ W such that ϕλ(w) = 0, the
differential Dϕλ : TwW → Rm is surjective. Set

T1 := TλΛ, T2 = TwW, V = Rm,

D1 : DλΦ : T1 → V, D2 = DwΦ : T2 → V.

Note that DΦ = D1 + D2, z = (λ, w) ∈ Z, and

TzZ = ker(D1 + D2 : T1 ⊕ T2 → V ).

The lemma is then a consequence of the following linear algebra fact.

• Suppose T1, T2, V are finite dimensional real vector spaces and

Di : Ti → V, i = 1, 2,

are linear maps such that D1 + D2 : T1 ⊕ T2 → V is surjective and the
restriction of the natural projection

P : T1 ⊕ T2 → T1

to K = ker(D1 + D2) is surjective. Then D2 is surjective.
Indeed, let v ∈ V . Then there exists (t1, t2) ∈ T1 ⊕ T2 such that v =

D1t1 + D2t2. On the other hand, since P : K → T1 is onto, there exists
t�2 ∈ T2 such that (t1, t�2) ∈ K. Note that

v = D1t1 + D2t2 − (D1t1 + D2t
�
2) = D2(t2 − t�2) =⇒ v ∈ ImD2. ��

Using the Morse–Sard–Federer theorem we deduce that the set ΛM ⊂ Λ
of critical values of π : Z → Λ is negligible, i.e., it has measure zero (see
Definition 1.1). Thus, for every λ ∈ Λ \ ΛM the function fλ : M → R is a
Morse function. This completes Step 1.

Step 2. M is general. We can then find a countable open cover (Mk)k≥1 of
M such that Mk is special ∀k ≥ 1. We deduce from Step 1 that for every
k ≥ 1 there exists a negligible set Λk ⊂ Λ such that for every λ ∈ Λ \ Λk the
restriction of fλ to Mk is a Morse function. Set

Λ∞ =
�

k≥1

Λk.

Then Λ∞ is negligible, and for every λ ∈ Λ \ Λ∞ the function fλ : M → R is
a Morse function. The proof of the theorem will be completed as soon as we
prove Lemma 1.22.
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Proof of Lemma 1.22. We have to use the fact that the family F is
sufficiently large relative to M . This condition is equivalent to the fact that if
(λ0, w0) is such that ϕλ0(w0) = 0, then the differential

DλΦ =
∂

∂λ
|λ=λ0 dfλ(w0) : Tλ0Λ → Rm

is onto. A fortiori, the differential DΦ : T(λ0,w0)(Λ×W ) → Rm is onto. ��

Definition 1.24. A continuous function g : M → R is called exhaustive if
all the sublevel sets {g ≤ c} are compact. ��

Using Lemma 1.19 and Example 1.20 we deduce the following result.

Corollary 1.25. Suppose M is a submanifold of the Euclidean space E not
containing the origin. Then for almost all v ∈ E∗, almost all p ∈ E, and
almost any positive symmetric endomorphism A of E the functions

hv, rp, qA : M → R,

defined by

hv(x) = v(x), rp(x) =
1
2
|x− p|2, ; qA(x) =

1
2
(Ax, x),

are Morse functions. Moreover, if M is closed as a subset of E then the
functions rp and qA are exhaustive. ��

Remark 1.26. (a) The Whitney embedding theorem states something stronger:
any smooth manifold of dimension m can be embedded as a closed subset of
an Euclidean space of dimension at most 2m+1. We deduce that any smooth
manifold admits exhaustive Morse functions.
(b) Note that an exhaustive smooth function satisfies the Palais–Smale con-
dition: any sequence xn ∈ M such that f(xn) is bounded from above and
|df(xn)g → 0 contains a subsequence convergent to a critical point of f . Here
|df(x)|g denotes the length of df(x) ∈ T ∗

x
M with respect to some fixed Rie-

mannian metric on M . ��

Definition 1.27. A Morse function f : M → R is called resonant if there
exist two distinct critical points p, q corresponding to the same critical value,
i.e., f(p) = f(q). If different critical points correspond to different critical
values then f is called nonresonant3 . ��

3 R. Thom refers to our non-resonant Morse functions as excellent.
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It is possible that a Morse function f constructed in this corollary may be
resonant. We want to show that any Morse function can be arbitrarily well
approximated in the C2-topology by nonresonant ones.

Consider a smooth function η : [0,∞) → [0, 1] satisfying the conditions

η(0) = 1, η(t) = 0, ∀t ≥ 2, −1 ≤ η�(t) ≤ 0, ∀t ≥ 0.

We set
ηε(t) = ε3η(ε−1t).

Observe that
η(0) = ε, −ε2 ≤ η�

ε
(t) ≤ 0.

Suppose f : M → R is a smooth function and p is a nondegenerate critical
point of f , f(p) = c. Fix coordinates x = (x−, x+) adapted to p. Hence

f = c− |x−|2 + |x+|2, ∀x ∈ Uε = {|x−|2 + |x+| < 2ε}.

Set u± = |x±|2, u = u− + u+ and define

f±ε = f±ε,p = f + ±ηε(u) = c− u− + u+ + ηε(u).

Then f = f±ε on X \ Uε, while along Uε we have

df±ε = (η�
ε
− 1)du− + (η�

ε
+ 1)du+.

This proves that the only critical point of f±ε |Uε is x = 0. Thus f±ε,p has the
same critical set as f , and

�f − f±ε�C2 ≤ ε, f±ε(p) = f(p) ± ε3, f±ε(q) = f(q), ∀q ∈ Crf \{p}.

Iterating this procedure, we deduce the following result.

Proposition 1.28. Suppose f : M → R is a Morse function on the compact
manifold M . Then there exists a sequence of nonresonant Morse functions
fn : M → R with the properties

Crfn = Cr(f), ∀n, fn

C
2

−→ f, as n →∞. ��
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The Topology of Morse Functions

The present chapter is the heart of Morse theory, which is based on two
fundamental principles. The “weak” Morse principle states that as long as
the real parameter t varies in an interval containing only regular values of a
smooth function f : M → R, then the topology of the sublevel set {f ≤ t} is
independent of t. We can turn this on its head and state that a change in the
topology of {f ≤ t} is an indicator of the presence of a critical point.

The“strong” Morse principle describes precisely the changes in the topol-
ogy of {f ≤ t} as t crosses a critical value of f . These changes are known in
geometric topology as surgery operations, or handle attachments.

The surgery operations are more complex than they first appear, and we
thought it wise to devote an entire section to this topic. It will give the reader
a glimpse at the potential “zoo” of smooth manifolds that can be obtained by
an iterated application of these operations.

2.1 Surgery, Handle Attachment, and Cobordisms

To formulate the central results of Morse theory we need to introduce some
topological terminology. Denote by Dk the k-dimensional, closed unit disk
and by Ḋk its interior. We will refer to Dk as the standard k-cell. The cell
attachment technique is one of the most versatile methods of producing new
topological spaces out of existing ones.

Given a topological space X and a continuous map ϕ : ∂Dk → X, we can
attach a k-cell to X to form the topological space X∪ϕDk. The compact spaces
obtained by attaching finitely many cells to a point are homotopy equivalent
to finite CW -complexes. We would like to describe a related operation in the
more restricted category of smooth manifolds.

We begin with the operation of surgery. Suppose M is a smooth m-
dimensional manifold. The operation of surgery requires several additional
data:
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• an embedding S �→ M of the standard k-dimensional sphere Sk, k < m,
with trivializable normal bundle TSM ;

• a framing of the normal bundle TSM , i.e. a bundle isomorphism

ϕ : TSM → Rm−k

S
= Rm−k × S.

Equivalently, a framing of S defines an isotopy class of embeddings

ϕ : Dm−k × Sk → M such that ϕ({0}× Sk) = S.

Set U := ϕ(Ḋm−k × Sk). Then U is a tubular neighborhood of S in M .
We can now define a new topological manifold M(S, ϕ) by removing U and
then gluing instead Û = Sm−k−1 × Dk+1 along ∂U = ∂(M \ U) via the
identifications

∂Û
ϕ→ ∂U = ∂(M \ U).

For every e0 ∈ ∂Dm−k = Sm−k−1, the sphere ϕ(e0×Sk) ⊂ M will bound the
disk e0 × Dk+1 in M(S, ϕ). Note that e0 × Sk can be regarded as the graph
of a section of the trivial bundle Dm−k × Sk → Sk.

To see that M(S, ϕ) is indeed a smooth manifold we observe that

U \ S ∼= (Ḋm−k \ 0)× Sk.

Using spherical coordinates we obtain diffeomorphisms

(Ḋm−k \ 0)× Sk ∼= (0, 1)× Sm−k−1 × Sk,

Sm−k−1 × (0, 1)× Sk ∼= Sm−k−1 × (Dk+1 \ 0).

Now attach (Sm−k−1 × Dk+1) to U along U \ S using the obvious diffeomor-
phism

(0, 1)× Sm−k−1 × Sk → Sm−k−1 × (0, 1)× Sk.

The diffeomorphism type of M(S, ϕ) depends on the isotopy class of the em-
bedding S �→ M and on the regular homotopy class of the framing ϕ. We say
that M(S, ϕ) is obtained from M by a surgery of type (S, ϕ).

Example 2.1 (Zero dimensional surgery). Suppose M is a smooth m-
dimensional manifold consisting of two connected components M±. A 0-
dimensional sphere S0 consists of two points p±. Fix an embedding S0 �→ M
such that p± ∈ M±. Fix open neighborhoods U± of p± ∈ M± diffeomorphic
to Ḋm and set U = U− ∪ U+. Then

∂(M \ U) ∼= ∂U− ∪ ∂U+
∼= S0 × Sm−1.

If we now glue D1×Sm−1 = [−1, 1]×Sm−1 such that {±1}×Sm−1 is identified
with ∂U±, we deduce that the surgery of M−∪M+ along the zero sphere {p±}
is diffeomorphic to the connected sum M−#M+. Equivalently, we identify
(−1, 0)×Sm−1 ⊂ D1×Sm−1 with the punctured neighborhood U− \{p−} (so
that for s ∈ (−1, 0) the parameter −s is the radial distance in U−) and then
identify (0, 1) × Sm−1 with the punctured neighborhood U+ \ {p+} (so that
s ∈ (0, 1) represents the radial distance). ��



2.1 Surgery, Handle Attachment, and Cobordisms 25

Example 2.2 (Codimension two surgery). Suppose Mm is a compact,
oriented smooth manifold m ≥ 3 and i : Sm−2 �→ M is an embedding of
a (m − 2)-sphere with trivializable normal bundle. Set S = i(Sm−2). The
natural orientation on Sm−2 (as boundary of the unit disk in Rm−1) induces
an orientation on S. We have a short exact sequence

0 → TS → TM |S → TSM → 0

of vector bundles over S.
The orientation on S together with the orientation on M induce via the

above sequence an orientation on the normal bundle TSM . Fix a metric on
this bundle and denote by DSM the associated unit disk bundle. Since the
normal bundle has rank 2, the orientation on TSM makes it possible to speak
of counterclockwise rotations in each fiber. A trivialization is then uniquely
determined by a choice of section

e : S → ∂DSM.

Given such a section e, we obtain a positively oriented orthonormal frame
(e, f) of TSM , where f is obtained from e by a π/2 counterclockwise rotation.
In particular, we obtain an embedding

ϕe : D2 × Sm−2 ∼= DSM �→ M.

Once we fix such a section e0 : S → ∂DSM we obtain a trivialization

∂DSM ∼= S1 × S,

and then any other framing is described by a smooth map Sm−2 → S1.
We see that the homotopy classes of framings are classified by πm−2(S1). In
particular, this shows that the choice of framing becomes relevant only when
m = 3.

The surgery on the framed sphere (S, e0) has the effect of removing a
tubular neighborhood U ∼= ϕe0(D2×Sm−2) and replacing it with the manifold
Û = S1 × Dm−1, which has identical boundary.

The section e0 of ∂DS → S traces a submanifold L0 ⊂ ∂DSM diffeomor-
phic to Sm−2. Via the trivialization ϕe0 it traces a sphere ϕe0(L0) ⊂ ∂U called
the attaching sphere of the surgery. After the surgery, this attaching sphere
will bound the disk {1}× Dm−1 ⊂ Û . ��

Example 2.3 (Surgery on knots in S3
). Suppose M = S3 and that K

is a smooth embedding of a circle S1 in S3. Such embeddings are commonly
referred to as knots.

A classical result of Seifert (see [Rolf, 5.A]) states that any such knot
bounds an orientable Riemann surface X smoothly embedded in S3. The
interior-pointing unit normal along ∂X = K defines a nowhere vanishing sec-
tion of the normal bundle TKS3 and thus defines a framing of this bundle. This
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is known as the canonical framing1 of the knot. It defines a diffeomorphism
between a tubular neighborhood U of the knot and the solid torus D2 × S1.

The canonical framing traces the curve

� = �K = {1}× S1 ⊂ ∂D2 × S1.

The curve � is called the longitude of the knot, while the boundary ∂D2× {1}
of a fiber of the normal disk bundle defines a curve called the meridian of the
knot and denoted by µ = µK .

Any other framing of the normal bundle will trace a curve ϕ on ∂U ∼=
∂D2 × S1 isotopic inside U to the axis K = {0} × S1 of the solid torus U .
Thus in H1(∂D2 × S1, Z) it has the form

[ϕ] = p[µ] + [�],

where the integer p is the winding number of ϕ in the meridional plane D2.
The curve ϕ is called the attaching curve of the surgery.

The integer p completely determines the isotopy class of ϕ. Thus every
surgery on a knot in S3 is uniquely determined by an integer p called the
coefficient of the surgery, and the surgery with this framing coefficient will be
called p-surgery. We denote by S3(K, p) the result of a p-surgery on the knot
K.

The attaching curve of the surgery ϕ is a parallel of the knot K. By defi-
nition, a parallel of K is a knot K � located in a thin tubular neighborhood of
K with the property that the radial projection onto K defines a homeomor-
phism K � → K. Conversely, every parallel K � of the knot K can be viewed
as the attaching curve of a surgery. The surgery coefficient is then the linking
number of K and K �, denoted by lk(K, K �).

When we perform a p-surgery on K we remove the solid torus U = D2×S1

and we replace it with a new solid torus Û = S1 × D2, so that in the new
manifold the attaching curve Kp = � + pµ will bound the disk {1}×D2 ⊂ Û .

Let us look at a very simple yet fundamental example. Think of S3 as the
round sphere �

(z0, z1) ∈ C2; |z0|2 + |z1|2 = 2
�
.

Consider the closed subsets Ui = {(z0, z1) ∈ S3; |zi| ≤ 1}, i = 0, 1. Observe
that U0 is a solid torus via the diffeomorphism

U0 � (z0, z1) �→ (z0,
z1

|z1|
) ∈ D2 × S1.

Denote by Ki the knot in S3 defined by zi = 0. For example, K0 admits the
parametrization

[0, 1] � t �→ (0,
√

2e2πit) ∈ S3.

The knots K0, K1 are disjoint and form the Hopf link. Both are unknotted
(see Figure 2.1).
1 Its homotopy class is indeed independent of the choice of the Seifert surface X.
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K

K
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1

Fig. 2.1. The Hopf link.

For example, K0 bounds the embedded 2-disk

X0 :=
�
ζ ∈ C; |ζ| ≤ 2

�
�→

�
(z0, z1) = (

�
2− |ζ|2, ζ),∈ S3

�
.

Observe that U0 is a tubular neighborhood of K0, and the above isomorphism
identifies it with the trivial 2-disk bundle, thus defining a framing of K0. This
framing is the canonical framing of U0. The longitude of this framing is the
curve

�0 = ∂U0 ∩X0 = {(1, e2πit); t ∈ [0, 1]}.

The meridian of K0 is the curve z0 = e2πit, z1 = 1, t ∈ [0, 1]. Via the diffeo-
morphism

U1 → D2 × S1, U1 � (z0, z1) �→
�

z1,
1

|z0|
z0

�
∈ D2 × S1,

this curve can be identified with the meridian µ1 of K1.
Set Mp := S3(K, p). The manifold Mp is obtained by removing U0 from

S3 and gluing back a solid torus Û0 = S1×D2 to the complement of U0, which
is the solid torus U1, so that

∂Û0 ⊃ µ̂0 = {1}× ∂D2 �−→ p[µ0] + [�0] = p[µ0] + [µ1].

For p = 0 we see that the disk {1} × ∂D2 ∈ S1 × D2 = Û0 bounds a disk in
Û0 and a meridional disk in U1. The result of zero surgery on the unknot will
then be S1 × S2.

If p �= 0, we can compute the fundamental group of Mp using the van
Kampen theorem. Denote by T the solid torus ∂Û0, by j0 the inclusion in-
duced morphism π1(T ) → π1(Û0), and by j1 the inclusion induced morphism
π1(T ) → π1(U1). As generators of π1(T ) we can choose µ0 and the attach-
ing curve of the surgery ϕ = µp

0�0 because the intersection number of these
two curves is ±1. As generator of π1(U1) we can choose �1 = µ0 because the
longitude of K1 is the meridian of K0. As generator of π1(Û0) we can choose
j0(µ0) because j0 is surjective and ϕ ∈ ker j0. Thus π1(Mp) is generated by
µ0, ϕ with the relation

1 = j0(µ̂0) = jp(µ̂0) = µp

0�0, �0 = j0(�0) = jp(�0), jp(µ0) = j0(µ0).

Hence π1(Mp) ∼= Z/p. In fact, Mp is a lens space. More precisely, we have an
orientation preserving diffeomorphism
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S3(K0,±|p|) ∼= L(|p|, |p| ± 1). ��

Example 2.4 (Surgery on the trefoil knot). Suppose K is a knot in S3.
Choose a closed tubular neighborhood U of K. The canonical framing of K
defines a diffeomorphism U = D2 × S1. Denote by EK the exterior

EK = S3 \ int (U).

Let T = ∂EK = ∂U , and denote by i∗ : π1(T ) → π1(EK) the inclusion
induced morphism. Let K � ⊂ T be a a parallel of K , i.e., a simple closed
curve that intersects a meridian µ = ∂D2 × {pt} of the knot exactly once.

The parallel K � determines a surgery on the knot K with surgery coefficient
p = lk(K, K �). To compute the fundamental group of S3(K, p) we use as before
the van Kampen theorem.

Suppose π1(EK) has a presentation with the set of generators GK and
relations RK . Let Û = S1 × D2 and denote by j the natural map

∂U = ∂D1 × S1 → S1 × D2 = Û .

Then π1(Û) is generated by �̂ = j∗(µ) and we deduce that S3(K, p) has a
presentation with generators G ∪ {�̂} and relation

i∗(K �) = 1, �̂ = j∗(µ).

Equivalently, a presentation of S3(K, p) is obtained from a presentation of
π1(EK) by adding a single relation

i∗(K �) = 1.

The fundamental group of the complement of the knot is called the group
of the knot, and we will denote it by GK . Let us explain how to compute a
presentation of GK and the morphism i∗.

Observe first that π1(T ) is a free Abelian group of rank 2. As basis of
π1(T ) we can choose any pair (µ, γ), where γ is a parallel of K situated on T .
Then we can write

K � = aµ + bγ.

If w denotes the linking number of γ and K , and � denotes the longitude of
K, then we can write γ = wµ + �,

K � = pµ + � = aµ + b(wµ + �) =⇒ b = 1, a = p− w, K � = (p− w)µ + γ.

Thus i∗ is completely understood if we know i∗(µ) and i∗(γ) for some parallel
γ of K.

The group of the knot K can be given an explicit presentation in terms
of the knot diagram. This algorithmic presentation is known as the Wirtinger
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Fig. 2.2. The (left-handed) trefoil knot and its blackboard parallel.

presentation. We describe it the special case of the (left-handed) trefoil knot
depicted in Figure 2.2 and we refer to [Rolf, III.A] for proofs.

The Wirtinger algorithm goes as follows.

• Choose an orientation of the knot and a basepoint ∗ situated off the plane
of the diagram. Think of the basepoint as the location of the eyes of the
reader.

• The diagram of the knot consists of several disjoint arcs. Label them by
a1, a2, . . . , aν in increasing cyclic order given by the above chosen orien-
tation of the knot. In the case of the trefoil knot we have three arcs,
a1, a2, a3.

• To each arc ak there corresponds a generator xk represented by a loop
starting at ∗ and winding around ak once in the positive direction, where
the positive direction is determined by the right-hand rule: if you point
your right-hand thumb in the direction of ak, then the rest of your palm
should be wrapping around ak in the direction of xk (see Figure 2.3).

• For each crossing of the knot diagram we have a relation. The crossings
are of two types, positive (+) (or right-handed) and negative (−) (or left-
handed) (see Figure 2.3). Label by i the crossing where the arc ai begins
and the arc ai−1 ends. Denote by ak(i) the arc going over the ith crossing
and set

�(i) = ±1 if i is a ±-crossing.

Then the relation introduced by the ith crossing is

xi = x−�(i)
k(i) xi−1x

�(i)
k(i).

The knot diagram defines a parallel of K called the blackboard parallel and
denoted by Kbb. It is obtained by tracing a contour parallel and very close
to the diagram of K and situated to the left of K with respect to the chosen
orientation. In Figure 2.2 the blackboard parallel of the trefoil knot is depicted
with a thin line.



30 2 The Topology of Morse Functions

a

a

a

k

k
k

i

i

i--1

x

x

x
x

a

a

a

k

k k

i

i

i--1

i--1

i--1x

xx x

positive crossing negative crossing

Fig. 2.3. The Wirtinger relations.

The linking number of K and Kbb is called the writhe of the knot diagram
and it is denoted by w(K). It is not an invariant of the knot. It is equal to
the signed number of crossings of the diagram, i.e., the difference between the
number of positive crossings and the number of negative crossings. One can
show that

i∗(Kbb) =
ν�

i=1

x�(i)
k(i), i∗(µ) = xν . (2.1)

Set G = GK , where K is the (left-handed) trefoil knot. In this case all the
crossings in the diagram depicted in Figure 2.2 are negative and we have
w(K) = −3. The group G has three generators x1, x2, x3, and since all the
crossings are negative we conclude that �(i) = −1, ∀i = 1, 2, 3, so that we
have three relations

x1 = x2x3x
−1
2 x2 = x3x1x

−1
3 , x3 = x1x2x

−1
1 , (2.2)

k(1) = 2, k(2) = 3, k(3) = 1. (2.3)

From the equalities (2.3) we deduce

c = i∗(Kbb) = x−1
2 x−1

3 x−1
1 , i∗(µ) = x3. (2.4)

For x ∈ G we denote by Tx : G → G the conjugation g �→ xgx−1. We deduce

xi = Txk(i)xi−1, ∀i = 1, 2, 3 =⇒ x3 = T
x
−1
k(1)x

−1
k(2)x

−1
k(3)

x3 = Tcx3,

i.e., x3 commutes with c = x−1
2 x−1

3 x−1
1 . Set for simplicity

a = x1, b = x2, x3 = Tab = aba−1.

We deduce from (2.2) that G has the presentation

G = �a, b| aba = bab�.
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Consider the group
H = �x, y| x3 = y2 �.

We have a map
H → G, x �→ ab, y �→ aba.

It is easily seen to be a morphism with inverse a = x−1y, b = a−1x = y−1x2

so that G ∼= H.
If we perform −1 surgery on the (left handed) trefoil knot, then the at-

taching curve of the surgery is isotopic to

K � = −1− wµ + Kbb, w = lk (Kbb, �) = −3,

and we conclude

i∗(Kbb) = c = x−1
2 x−1

3 x−1
1 = b−1ab−1a−1a = b−1ab−1, i∗(µ) = aba−1.

The fundamental group π1

�
S3(K,−1)

�
is obtained form G by introducing a

new relation
i∗(µ)−1−w = c−1 w=−3⇐⇒ ab2a−1 = ba−1b.

Hence the fundamental group of S3(K,−1) has the presentation

�a, b| aba = bab, ab2a−1 = ba−1b� ⇐⇒ �a, b| aba = bab, a2b2 = aba−1ba�.

Observe that its abelianization is trivial. However, this group is nontrivial. It
has order 120 and it can be given the equivalent presentation

�x, y| x3 = y5 = (xy)2�.

It is isomorphic to the binary icosahedral group I∗. This is the finite subgroup
of SU(2) that projects onto the subgroup I ⊂ SO(3) of isometries of a regular
icosahedron via the 2 : 1 map SU(2) → SO(3).

The manifold S3(K,−1) is called the Poincaré sphere, and it is tradition-
ally denoted by Σ(2, 3, 5) because it is diffeomorphic to

�
z = (z0, z1, z2) ∈ C3; z2

0 + z3
1 + z5

2 = 0, |z| = ε
�
.

It is a Z-homology sphere, meaning that its homology is isomorphic to the
Z-homology of S3. ��

Suppose that X is an m-dimensional smooth manifold with boundary. We
want to describe what it means to attach a k-handle to X. This operation will
produce a new smooth manifold with boundary.

A k-handle of dimension m (or a handle of index k) is the manifold with
corners

Hk,m := Dk × Dm−k.

The disk Dk×{0} ⊂ Hk,m is called the core, while the disk {0}×Dm−k ⊂ Hk,m

is called the cocore. The boundary of the handle decomposes as
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∂Hk,m = ∂−Hk,m ∪ ∂+Hk,m,

where
∂−Hk,m := ∂Dk × Dm−k, ∂+Hk,m := Dk × ∂Dk−m.

Fig. 2.4. A 1-handle of dimension 2, a 0-handle of dimension 2 and a 2-handle of
dimension 3. The mid section disks are the cores of these handles.

The operation of attaching a k-handle (of dimension m) requires several
additional data.

• A (k− 1)-dimensional sphere Σ �→ ∂X embedded in ∂X with trivializable
normal bundle TΣ∂X. This normal bundle has rank m − k = dim ∂X −
dim Σ.

• A framing ϕ of the normal bundle TΣ∂X.

The framing defines a diffeomorphism from Dm−k × Sk−1 to a tubular
neighborhood N of Σ in ∂X. Using this identification we detect inside N a
copy of ∂−Hk,m = Σ×Dm−k. Now attach Hk,m to ∂X by identifying ∂−Hk,m

with its copy inside N and denote the resulting manifold by X+ = X(Σ,ϕ).

Σ

Ν

Fig. 2.5. Attaching a 2-handle of dimension 3.
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Fig. 2.6. Attaching a 1-handle of dimension 2 and smoothing the corners.

The manifold X+ has corners, but they can be smoothed out (see Figure
2.6). The smoothing procedure is local, so it suffices to understand it in the
special case

X ∼= (−∞, 0]× ∂Dk × Rm−k, ∂X = {0}× ∂Dk × Rm−k(∼= N).

Consider the decomposition

Rm = Rk × Rm−k, Rm � x = (x−, x+) ∈ Rk × Rm−k.

We have a homeomorphism

(−∞, 0]× ∂Dk × Rm−k−→
�

x ∈ Rm; |x+|2 − |x−|2 ≤ −1
�
,

defined by

(−∞, 0]×∂Dk×Rm−k � (t, θ, x+) �→
�
( e−2t+|x+|2)1/2 · θ, x+

�
∈ Rk×Rm−k.

The manifold X+ obtained after the surgery is homeomorphic to
�

x ∈ Rm; |x+|2 − |x−|2 ≤ 1 },

which is a smooth manifold with boundary.
This homeomorphism is visible in Figure 2.6, but a formal proof can be

read from Figure 2.7.
Let us explain Figure 2.7. We set r± = |x±| and observe that

X ∼=
�
r− ≥ 1

�
, Hk,m = {r−, r+ ≤ 1}.

After we attach the handle we obtain
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Fig. 2.7. Smoothing corners.

X+ =
�

r− ≥ 1
�
∪

�
r− ≤ 1, r+ ≤ 1

�
.

Now fix a homeomorphism

X+ → Y =
�
r+ ≤ 1

�
,

which is the identity in a neighborhood of the region {r− · r+ = 0}. Clearly
Y is homeomorphic to the region r2

+ − r2
− ≤ 1 via the homeomorphism

Y � (x−, x+) �→ (x−, (1 + r2
−)1/2x+).

Let us analyze the difference between the topologies of ∂X+ and ∂X.
Observe that we have a decomposition

∂X+ = (∂X \ ∂−Hk,m) ∪ϕ ∂+Hk,m.

Above, (∂X\∂−Hk,m) is a manifold with boundary diffeomorphic to ∂Dm−k×
Sk−1 which is identified with the boundary of ∂+Hk,m = Dk×∂Dm−k via the
chosen framing ϕ. In other words, ∂X+ is obtained from ∂X via the surgery
given by the data (S, ϕ).

In general, if M1 is obtained from M0 by a surgery of type (S, ϕ), then M1

is cobordant to M0. Indeed, consider the manifold

X = [0, 1]×M0.

We obtain an embedding S �→ {1}×M0 �→ ∂X and a framing ϕ of its normal
bundle. Then

∂X(S, ϕ) = M0(S, ϕ) �M0.

The above cobordism X(S, ϕ) is called the trace of the surgery.

2.2 The Topology of Sublevel Sets

Suppose M is a smooth connected m-dimensional manifold and f : M → R
is an exhaustive Morse function, i.e., the sublevel set
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M c = {x ∈ M ; f(x) ≤ c}

is compact for every c ∈ R. We fix a smooth vector field X on M that is
gradient-like with respect to f . This means that

X · f > 0 on M \ Crf ,

and for every critical point p of f there exist coordinates (xi) adapted to p
such that

X = −2
λ�

i=1

xi∂xi + 2
�

j>λ

xj∂xj , λ = λ(f, p).

In these coordinates near p the flow Γt generated by −X is described by

Γt(x) = e2tx− + e−2tx+,

where x = x− + x+,

x− := (x1, . . . , xλ, 0, . . . , 0), x+ := (0, . . . , 0, xλ+1, . . . , xm).

To see that there exist such vector fields choose a Riemannian metric g adapted
to f , i.e., a metric with the property that for every critical point p of f there
exist coordinates (xi) adapted to p such that near p we have

g =
m�

i=1

(dxi)2, f = f(p) +
λ�

j=1

(xj)2 −
�

k>λ

(xk)2.

We denote by ∇f = ∇gf ∈ Vect(M) the gradient of f with respect to the
metric g, i.e., the vector field g-dual to the differential df . More precisely, ∇f
is defined by the equality

g(∇f, X) = df(X) = X · f, ∀X ∈ Vect(M).

In local coordinates (xi), if

df =
�

i

∂f

∂xi
dxi, g =

�

i,j

gijdxidxj ,

then
∇f =

�

j

gij∂xj f,

where (gij)1≤i,j≤m denotes the matrix inverse to (gij)1≤i,j≤m. In particular,
near a critical point p of index λ the gradient of f in the above coordinates is
given by

∇f = −2
λ�

i=1

xi∂xi + 2
�

j>λ

xj∂xj .

This shows that X = ∇f is a gradient-like vector field.
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Remark 2.5. As explained in [Sm, Theorem B], any gradient-like vector field
can be obtained by the method described above. ��

Notation. In the sequel, when referring to f−1
�
(a, b)

�
, we will use the more

suggestive notation {a < f < b}. The same goes for {a ≤ f < b}, etc. ��

Theorem 2.6. Suppose that the interval [a, b] ∈ R contains no critical values
of f . Then the sublevel sets Ma and M b are diffeomorphic. Furthermore, Ma

is a deformation retract of M b, so that the inclusion Ma �→ M b is a homotopy
equivalence.

Proof. Since there are no critical values of f in [a, b] and the sublevel sets M c

are compact, we deduce that there exists ε > 0 such that

{a− ε < f < b + ε} ⊂ M \ Crf .

Fix a gradient-like vector field Y and construct a smooth function

ρ : M → [0,∞)

such that

ρ(x) =

�
|Y f |−1 a ≤ f(x) ≤ b,

0 f(x) �∈ (a− ε, b + ε).

We can now construct the vector field X := −ρY on M , and we denote by

Φ : R×M → M, (t, x) �−→ Φt(x)

the flow generated by X. If u(t) is an integral curve of X, i.e., u(t) satisfies
the differential equation

u̇ = X(u),

then differentiating f along u(t), we deduce that in the region {a ≤ f ≤ b}
we have the equality

df

dt
= Xf = − 1

Y f
Y f = −1.

In other words, in the region {a ≤ f ≤ b} the function f decreases at a rate
of one unit per second. This implies

Φb−a(M b) = Ma, Φa−b(Ma) = M b,

so that Φb−a establishes a diffeomorphism between M b and Ma.
To show that Ma is a deformation retract of M b, we consider

H : [0, 1]×M b → M b, H(t, x) = Φt·( f(x)−a )+ (x),
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where for every real number r we set r+ := max(r, 0). Observe that if f(x) ≤ a,
then

H(t, x) = x, ∀t ∈ [0, 1],

while for every x ∈ M b we have

H(1, x) = Φ( f(x)−a )+ (x) ∈ Ma.

This proves that Ma is a deformation retract of M b. ��

Theorem 2.7 (Fundamental structural theorem). Suppose c is a critical
value of f containing a single critical point p of Morse index λ. Then for
every ε > 0 sufficiently small the sublevel set {f ≤ c + ε} is diffeomorphic to
{f ≤ c − ε} with a λ-handle of dimension m attached. If x = (x−, x+) are
coordinates adapted to the critical point, then the core of the handle is given
by

eλ(p) :=
�

x+ = 0, |x−|2 ≤ ε
�
.

In particular, {f ≤ c + ε} is homotopic to {f ≤ c − ε} with the λ-cell eλ

attached.

Proof. We follow the elegant approach in [M3, Section I.3]. There exist ε > 0
and local coordinates (xi) in an open neighborhood U of p with the following
properties.

• The region
�
|f − c| ≤ ε

�
is compact and contains no critical point of f

other than p.
• xi(p) = 0, ∀i and the image of U under the diffeomorphism

(x1, . . . , xm) : U → Rm

contains the closed disk

D =
��

(xi)2 ≤ 2ε
�

.

•
f |D= c−

�

i≤λ

(xi)2 +
�

j>λ

(xj)2.

We set
x− := (x1, . . . , xλ, 0, . . . , 0), u− :=

�

i≤λ

(xi)2,

x+ := (0, . . . , 0, xλ+1, . . . , xm), u+ :=
�

j>λ

(xj)2.

We have
f |D= c− u− + u+.
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We fix a smooth function µ : [0,∞) → R with the following properties (see
Figure 2.8).

µ(0) > ε, µ(t) = 0, ∀t ≥ 2ε, (2.5)
−1 <µ�(t) ≤ 0, ∀t ≥ 0. (2.6)

Now let (see Figure 2.8)

h := µ(0) > ε, r := min{t; µ(t) = 0} ≤ 2ε.

Define

t

µ

2ε

ε

r

h

Fig. 2.8. The cutoff function µ.

F : M → R, F = f − µ(u− + 2u+),

so that along D we have

F |U= c− u− + u+ − µ(u− + 2u+),

while on M \ D we have F = f .

Lemma 2.8. The function F satisfies the following properties.
(a) F is a Morse function,

CrF = Crf , F (p) < c− ε, and F (q) = f(q), ∀q ∈ Crf \{p}.

(b) {f ≤ a} ⊂ {F ≤ a}, ∀a ∈ R, {F ≤ c + δ} = {f ≤ c + δ}, ∀δ ≥ ε.

Proof. (a) Clearly CrF ∩(M \D) = Crf ∩(M \U). To show that CrF ∩D =
Crf ∩D we use the fact that along D we have

F = f − µ(u− + 2u+), dF = −(1 + µ�)du− + (1− 2µ�)du+.

The condition (2.6) implies that du− = 0 = du+ at every critical point q of F
in U , so that x−(q) = 0, x+(q) = 0, i.e., q = p. Clearly F (p) = f(p)− µ(0) <
c− ε. Clearly p is a nondegenerate critical point of F .
(b) Note first that
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F ≤ f =⇒ {f ≤ a} ⊂ {F ≤ a}, ∀a ∈ R.

Again we have

{F ≤ c + δ} ∩ (M \ D) = {f ≤ c + δ} ∩ (M \ D),

so we have to prove

{F ≤ c + δ} ∩D ⊂ {f ≤ c + δ} ∩D.

Suppose q ∈ {F ≤ c + δ} ∩D and set u± = u±(q). This means that

u− + u+ ≤ 2ε, u+ ≤ u− + δ + µ(u− + 2u+).

Using the condition −1 < µ� we deduce

µ(t) = µ(t)− µ(2ε) ≤ 2ε− t ≤ 2δ − t, ∀t ≤ 2ε.

If u− + 2u+ ≤ 2ε, we have

u− + δ + µ(u− + 2u+) ≤ 3δ − 2u+ ⇒ u+ ≤ δ

⇒ u+ − u− ≤ δ ⇒ f(q) ≤ c + δ.

If u− + 2u+ ≥ 2ε, then f(q) = F (q) ≤ c + ε. ��

The above lemma implies that F is an exhaustive Morse function such
that the interval [c− ε, c + ε] consists only of regular values. We deduce from
Theorem 2.6 that {F ≤ c + ε} is diffeomorphic to {F ≤ c− ε}. Since

�
F ≤ c + ε

�
=

�
f ≤ c + ε

�
,

it suffices to show that
�

F ≤ c− ε
�

is diffeomorphic to
�

f ≤ c− ε
�

with a
λ-handle attached.

Denote by H the closure of
�

F ≤ c− ε
�
\ {f ≤ c− ε} =

�
F ≤ c− ε

�
∩ {f > c− ε}.

Observe that
H =

�
F ≤ c− ε

�
∩ { f ≥ c− ε } ⊂ D.

The region H is described by the system of inequalities





u− + u+ ≤ 2ε,
f = −u− + u+ ≥ −ε,
F = −u− + u+ − µ ≤ −ε,

µ = µ(u− + 2u+).

Its boundary decomposes as ∂H = ∂−H ∪ ∂+H, where

∂−H =
�

u− + u+ ≤ 2ε f = −u− + u+ = −ε,
F = −u− + u+ − µ ≤ −ε,
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and

∂+H =






u− + u+ ≤ 2ε,
f = −u− + u+ ≥ −ε,
F = −u− + u+ − µ = −ε.

Let us analyze the region R in the Cartesian plane described by the system
of inequalities

x, y ≥ 0, x + y ≤ 2ε, −x + y − µ(x + 2y) ≤ −ε, −x + y ≥ −ε.

The region �
y − x ≥ −ε, x + y ≤ 2ε, x, y ≥ 0

�

is the shaded polygonal area depicted in Figure 2.9. The two lines y−x = −ε

x

y

y−x=
x+y=

Q

Q

A

A

O

Oy=s(x)
P

P

S

h

h

v v
1

1

2

2

F=c 

f=
c−

ε−ε

−ε

2ε

ϕ

Fig. 2.9. A planar convex region.

and x + y = 2ε intersect at the point Q = ( 3ε

2 , ε

2 ). We want to investigate the
equation

−x + y − µ(x + 2y) + ε = 0.

Set
ηx(y) := −x + y − µ(x + 2y) + ε.

Observe that since µ(x) > µ(0)− x, we have

ηx(0) = −x− µ(x) + ε < −µ(0) + ε < 0,

while
lim

y→∞
ηx(y) = ∞.

Since y �→ ηx(y) is strictly increasing there exists a unique solution y = s(x)
of the equation ηx(y) = 0. Using the implicit function theorem we deduce that
s(x) depends smoothly on x and
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ds

dx
=

1 + µ�

1− 2µ�
∈ [0, 1].

The point Q lies on the graph of the function y = s(x), s(0) > 0, and since
s�(x) ∈ [0, 1], we deduce that the slope-1 segment AQ lies below the graph of
s(x). We now see that the region R is described by the system of inequalities

x, y ≥ 0, y ≤ s(x), y − x ≥ −ε.

Fix a homeomorphism ϕ from R to the standard square

S =
�

(t−, t+) ∈ R2; 0 ≤ t± ≤ 1
�

such that the vertices O,A, P, Q are mapped to the vertices

(0, 0), (1, 0), (1, 1), (0, 1)

(see Figure 2.9). Denote by hi and vj the horizontal and vertical edges of S
(see Figure 2.9).

Observe that we have a natural projection

u : H → R2, H � q �→ (x, y) = (u−(q), u+(q) ).

Its image is precisely the region R, and we denote by t = (t−, t+) the compo-
sition ϕ ◦ u. We now have a homeomorphism

H �→ Hλ = Dλ × Dm−λ,

H � q �−→
�
t−(q)θ−(q), t+(q)θ+(q)

�
∈ Dλ × Dm−λ,

where
θ±(q) = u−1/2

± (q)x±(q)

denote the angular coordinates in

Σ− =
�

u− = 1, x+ = 0
� ∼= Sλ−1

and
Σ+ =

�
u+ = 1, x− = 0

� ∼= Sm−λ−1.

Then ∂+H corresponds to the part of H mapped by u onto h2, and ∂−H
corresponds to the part of H mapped by u onto v2. The core is the part
mapped onto the horizontal segment h1, while the co-core is the part of H
mapped onto v1. This discussion shows that indeed

�
F ≤ c− ε

�
is obtained

from
�

f ≤ c− ε
�

by attaching the λ-handle H. ��

Remark 2.9. Suppose that c is a critical value of the exhaustive Morse function
f : M → R and the level set f−1(c) contains critical points p1, . . . , pk with
Morse indices λ1, . . . ,λk. Then the above argument shows that for ε > 0
sufficiently small the sublevel set {f ≤ c + ε} is obtained from {f ≤ c− ε} by
attaching handles H1, . . . ,Hk of indices λ1, . . . ,λk. ��
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Corollary 2.10. Suppose M is a smooth manifold and f : M → R is an an
exhaustive Morse function on M . Then M is homotopy equivalent to a CW -
complex that has exactly one λ-cell for every critical point of f of index λ.

��

Example 2.11 (Planar pentagons). Let us show how to use the fundamen-
tal structural theorem in a simple yet very illuminating example. We define a
regular planar pentagon to be a closed polygonal line in the plane consisting
of five straight line segments of equal length 1. We would like to understand
the topology of the space of all possible regular planar pentagons.

Consider one such pentagon with vertices J0, J1, J2, J3, J4 such that

dist (Ji, Ji+1) = 1.

There are a few trivial ways of generating new pentagons out of a given one.
We can translate it, or we can rotate it about a fixed point in the plane.
The new pentagons are not that interesting, and we will declare all pentagons
obtained in this fashion from a given one to be equivalent. In other words, we
are really interested in orbits of pentagons with respect to the obvious action
of the affine isometry group of the plane.

There is an natural way of choosing a representative in such an orbit. We
fix a cartesian coordinate system and we assume that the vertex J0 is placed
at the origin, while the vertex J4 lies on the positive x-semiaxis, i.e., J4 has
coordinates (1, 0).

J

J

J

J J
J

JJ

JJ

0
0

11

2

2

3

3

4
4

Fig. 2.10. Planar pentagons.

Note that we can regard such a pentagon as a robot arm with four segments
such that the last vertex J4 is fixed at the point (0, 1). Now recall some of the
notation in Example 1.5.

A possible position of such a robot arm is described by four complex
numbers,

z1, . . . , z4, |zi| = 1, ∀i = 1, 2, 3, 4.

Since all the segments of such a robot arm have length 1, the position of the
vertex Jk is given by the complex number z1 + . . . + zk.
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The space C of configurations of the robot arm constrained by the con-
dition that J4 can only slide along the positive x-semiaxis is a 3-dimensional
manifold. On C we have a Morse function

h : C → R, h(z) = Re(z1 + z2 + z3 + z4),

which measures the distance of the last joint to the origin. The space of
pentagons can be identified with the level set

�
h = 1

�
.

Consider the function f = −h : C → R. The sublevel sets of f are compact.
Moreover, the computations in Example 1.10 show that f has exactly five
critical points, a local minimum

(1, 1, 1, 1),

and four critical configurations of index 1

(1, 1, 1,−1), (1, 1,−1, 1), (1,−1, 1, 1), (−1, 1, 1, 1),

all situated on the level set {h = 2} = {f = −2}. The corresponding positions
of the robot arm are depicted in Figure 2.11.
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Fig. 2.11. Critical positions.

The level set
�

f = −1
�

is not critical, and it is obtained from the sublevel
set {f ≤ −3} by attaching four 1-handles.

The sublevel set
�

f ≤ −3
�

is a closed 3-dimensional ball, and thus the
sublevel set

�
f ≤ −1

�
is a 3-ball with four 1-handles attached. Its boundary,�

f = −1
�
, is therefore a Riemann surface of genus 4. We conclude that the

space of orbits of regular planar pentagons is a Riemann surface of genus 4.
For more general results on the topology of the space of planar polygons we
refer to the very nice paper [KM]. ��
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Remark 2.12. We can use the fundamental structural theorem to produce a
new description of the trace of a surgery. We follow the presentation in [M4,
Section 3].

Consider an orthogonal direct sum decomposition Rm = Rλ ⊕ Rm−λ. We
denote by x the coordinates in Rλ and by y the coordinates in Rm−λ. Then
identify

Dλ = {x ∈ Rλ; |x| ≤ 1}, Dm−λ = {y ∈ Rm−λ; |y| ≤ 1},
Hλ,m =

�
(x, y) ∈ Rm; |x|, |y| ≤ 1

�
.

Consider the regions (see Figure 2.12)

B̂λ :=
�
(x, y) ∈ Rm; −1 ≤ −|x|2 + |y|2 ≤ 1, 0 ≤ |x| · |y| < r

�
,

Bλ =
�

(x, y) ∈ B̂λ; |x| · |y| > 0
�
.

The region Bλ has two boundary components (see Figure 2.12)

∂±Bλ =
�

(x, y) ∈ Bλ; −|x|2 + |y|2 = ±1
�
.

x

y

-|x|  + |y|   = 

-|x|  + |y|   = 1

−1
22

22
|x|.|y|=const.

Fig. 2.12. A Morse theoretic picture of the trace of a surgery.

Consider the functions

f, h : Rm → R, f(x, y) = −|x|2 + |y|2, h(x, y) = |x| · |y|,

so that

Bλ =
�
−1 ≤ f ≤ 1, 0 < h < r

�
, ∂±Bλ =

�
f = ±1, 0 < h < r

�
.
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Denote by U the gradient vector field of f . We have

U = −Ux + Uy, Ux = 2
�

i

xi∂xi , Uy = 2
�

j

yj∂yj .

The function h is differentiable in the region h > 0, and

∇h =
|y|
|x|x +

|x|
|y|y.

We deduce
U · h = (∇h, U) = 0.

Define V = 1
U ·f U . We have

V · f = 1, V · h = 0.

Denote by Γt the flow generated by V . We have

d

dt
f(Γtz) = 1, ∀z ∈ Rm and

d

dt
h(Γtz) = 0, ∀z ∈ Rm, h(z) > 0.

Thus h is constant along the trajectories of V , and along such a trajectory f
increases at a rate of one unit per second. We deduce that for any z ∈ ∂−Bλ

we have
f(Γtz) = −1 + t, h(Γtz) = h(z) ∈ (0, 1).

We obtain a diffeomorphism

Ψ : [−1, 1]× ∂−Bλ → Bλ, (t, z) �−→ Γt+1(z).

Its inverse is
Bλ � w �−→

�
f(w), Γ−1−f(z)w

�
.

This shows that the pullback of f : Bλ → R to [−1, 1]×∂−Bλ via Ψ coincides
with the natural projection

[−1, 1]× ∂−Bλ → [−1, 1].

Moreover, we have a diffeomorphism

{1}× ∂−Bλ

Ψ−→ ∂+Bλ.

Now observe that we have a diffeomorphism

Φ :
�

Ḋm−λ \ {0}
�
× Sλ−1 → ∂−Bλ,

�
Ḋm−λ \ {0}

�
× Sλ−1 � (u, v) �→

�
cosh(|u|)v , sinh(|u|)θu

�
∈ Rλ × Rm−λ,

θu :=
u

|u| .



46 2 The Topology of Morse Functions

Suppose M is a smooth manifold of dimension m−1 and we have an embedding

ϕ : Dm−λ × Sλ−1 �→ M.

Consider the manifold X = [−1, 1]×M and set

X � = X \ ϕ
�

[−1, 1]× {0}× Sλ−1
� �

.

Denote by W the manifold obtained from the disjoint union X � � B̂λ by
identifying Bλ ⊂ B̂λ with an open subset of [−1, 1] ×M via the gluing map
γ = ϕ ◦ Φ−1 ◦ Ψ−1,

Bλ

Ψ
−1

−→ [−1, 1]× ∂−Bλ

Φ
−1

−→ [−1, 1]×
�

Ḋm−λ \ {0}
�
× Sλ−1 ϕ→ [−1, 1]×M.

Via the above gluing, the restriction of f to Bλ is identified with the
natural projection π : X � → [−1, 1], i.e.,

γ∗(f |Bλ) = π|γ(Bλ)

Gluing π and γ∗f we obtain a smooth function

F : W → [−1, 1]

that has a unique critical point p with critical value F (p) = 0 and Morse index
λ. Set

W a =
�

w ∈ W ; F (w) ≤ a
�
.

We deduce from the fundamental structural theorem that W 1/2 is obtained
from W−1/2 ∼= M by attaching a λ-handle with framing given by ϕ. The
region

�
− 1

2 ≤ F ≤ 1
2

�
is therefore diffeomorphic to the trace of the surgery

M−→M(Sλ−1, ϕ). ��

2.3 Morse Inequalities

To formulate these important algebraic consequences of the topological facts
established so, far we need to introduce some terminology.

Denote by Z[[t, t−1] the ring of formal Laurent series with integral coeffi-
cients. More precisely,

�

n∈Z
antn ∈ Z[[t, t−1] ⇐⇒ an = 0 ∀n � 0, am ∈ Z, ∀m.

Suppose F is a field. A graded F-vector space

A• =
�

n∈Z
An



2.3 Morse Inequalities 47

is said to be admissible if dim An < ∞, ∀n, and An = 0, ∀n � 0. To an
admissible graded vector space A• we associate its Poincaré series

PA•(t) =
�

n

(dimF An)tn ∈ Z[[t, t−1].

We define an order relation � on the ring Z[[t, t−1] by declaring that

X(t) � Y (t) ⇐⇒ there exists Q ∈ Z[[t, t−1] with nonnegative coefficients

such that
X(t) = Y (t) + (1 + t)Q(t). (2.7)

Remark 2.13. (a) Assume that

X(t) =
�

n

xntn ∈ Z[[t, t−1], Y (t) =
�

n

yntn ∈ Z[[t, t−1]

are such that X � Y . Then there exists Q ∈ Z[[t, t−1] such that

X(t) = Y (t) + (1 + t)Q(t), Q(t) =
�

n

qntn, qn ≥ 0.

Then we can rewrite the above equality as

(1 + t)−1X(t) = (1 + t)−1Y (t) + Q(t).

Using the identity
(1 + t)−1 =

�

n≥0

(−1)ntn

we deduce �

k≥0

(−1)kxn−k −
�

k≥0

(−1)kyn−k = qn ≥ 0.

Thus the order relation � is equivalent to the abstract Morse inequalities

X � Y ⇐⇒
�

k≥0

(−1)kxn−k ≥
n�

k≥0

(−1)kyn−k, ∀n ≥ 0. (2.8)

Note that (2.7) implies immediately the weak Morse inequalities

xn ≥ yn, ∀n ≥ 0. (2.9)

(b) Observe that � is an order relation satisfying

X � Y ⇐⇒ X + R � Y + R, ∀R ∈ Z[[t, t−1],

X � Y, Z � 0 =⇒ X · Z � Y · Z. ��
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Lemma 2.14 (Subadditivity). Suppose we have a long exact sequence of
admissible graded vector spaces A•, B•, C•:

· · ·→ Ak

ik−→ Bk

jk−→ Ck

∂k−→ Ak−1 → · · · .

Then
PA• + PC• � PB• . (2.10)

Proof. Set

ak = dim Ak, bk = dimBk, ck = dimCk,

αk = dim ker ik, βk = dim ker jk, γk = dim ker ∂k.

Then





ak = αk + βk

bk = βk + γk

ck = γk + αk−1

=⇒ ak − bk + ck = αk + αk−1

=⇒
�

k

(ak − bk + ck)tk =
�

k

tk(αk + αk−1)

=⇒ PA•(t)− PB•(t) + PC•(t) = (1 + t)Q(t), Q(t) =
�

k

αktk.

��

For every compact topological space X we denote by bk(X) = bk(X, F)
the kth Betti number (with coefficients in F)

bk(X) := dim Hk(X, F),

and by PX(t) = PX,F(t) the Poincaré polynomial

PX,F(t) =
�

k

bk(X, F)tk.

If Y is a subspace of X then the relative Poincaré polynomial PX,Y (t) is
defined in a similar fashion. The Euler characteristic of X is

χ(X) =
�

k≥0

(−1)kbk(X),

and we have the equality
χ(X) = PX(−1).
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Corollary 2.15 (Topological Morse inequalities). Suppose f : M → R is
a Morse function on a smooth compact manifold of dimension M with Morse
polynomial

Pf (t) =
�

λ

µf (λ)tλ.

Then for every filed of coefficients F we have

Pf (t) � PM,F(t).

In particular,
�

λ≥0

(−1)λµf (λ) = Pf (−1) = PM,F(−1) = χ(M).

Proof. Let c1 < c1 < · · · < cν be the critical values of f . Set (see Figure 2.13)

t0 = c1 − 1, tν = cν + 1, tk =
ck + ck+1

2
, k = 1, . . . , ν − 1, Mi = {f ≤ ti}.

For simplicity, we drop the field of coefficients from our notations.

t

t

t

c

c

c

c

1

1

2

2

3

3

4

Fig. 2.13. Slicing a manifold by a Morse function.

From the long exact homological sequence of the pair (Mi, Mi−1) and the
subadditivity lemma we deduce

PMi−1 + PMi,Mi−1 � PMi .

Summing over i = 1, . . . , ν, we deduce

ν�

i=1

PMi−1 +
ν�

i=1

PMi,Mi−1 �
ν�

i=1

PMi =⇒
ν�

k=1

PMk,Mk−1 � PMν .

Using the equality Mν = M we deduce
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ν�

i=1

PMi,Mi−1 � PM .

Denote by Cri ⊂ Crf the critical points on the level set {f = ci}. From
the fundamental structural theorem and the excision property of the singular
homology we deduce

H•(Mi, Mi−1; F) ∼=
�

p∈Cri

H•(Hλ(p), ∂−Hλ(p); F) ∼=
�

p∈Cri

H•(eλ(p), ∂eλ(p); F).

Now observe that Hk(eλ, ∂eλ; F) = 0, ∀k �= λ, while Hλ(eλ, ∂eλ; F) ∼= F. Hence

PMi,Mi−1(t) =
�

p∈Cri

tλ(p).

Hence

Pf (t) =
ν�

i=1

PMi,Mi−1(t) � PM . ��

Remark 2.16. The above proof yields the following more general result. If

X1 ⊂ . . . ⊂ Xν = X

is an increasing filtration by closed subsets of the compact space X, then

ν�

i=1

PXi,Xi−1(t) � PX(t). ��

Suppose F is a field and f is a Morse function on a compact manifold. We
say that a critical point p ∈ Crf of index λ is F-completable if the boundary
of the core eλ(p) defines a trivial homology class in Hλ−1(M c−ε, F), c = f(p),
0 < ε � 1. We say that f is F-completable if all its critical points are F-
completable.

We say that f is an F-perfect Morse function if its Morse polynomial is
equal to the Poincaré polynomial of M with coefficients in F, i.e., all the Morse
inequalities become equalities.

Proposition 2.17. Any F-completable Morse function on a smooth, closed,
compact manifold is F-perfect.

Proof. Suppose f : M → R is a Morse function on the compact, smooth m-
dimensional manifold. Denote by c1 < · · · < cν the critical values of M and
set (see Figure 2.13)

t0 = c1 − 1, tν = cν + 1, ti :=
ci + ci+1

2
, i = 1, . . . , ν − 1.
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Denote by Cri ⊂ Crf the critical points on the level set {f = ci}. Set
Mi := {f ≤ ti}. From the fundamental structural theorem and the excision
property of the singular homology we deduce

H•(Mi, Mi−1; F) ∼=
�

p∈Cri

H•(Hλ(p), ∂−Hλ(p); F) ∼=
�

p∈Cri

H•(eλ(p), ∂eλ(p); F).

Now observe that Hk(eλ, ∂eλ; F) = 0, ∀k �= λ, while Hλ(eλ, ∂eλ; F) ∼= F. This
last isomorphism is specified by fixing an orientation on eλ(p), which then
produces a basis of Hλ(Hλ, ∂−Hλ; F) described by the relative homology class
[eλ, ∂eλ].

The connecting morphism

H•(Mi, Mi−1; F) ∂−→ H•−1(Mi−1, F)

maps [eλ, ∂eλ(p)] to the image of [∂eλ] in Hλ(p)−1(Mi−1, F). Since f is F-
completable we deduce that these connecting morphisms are trivial. Hence
for every 1 ≤ i ≤ ν we have a short exact sequence

0 → H•(Mi−1, F) → H•(Mi, F) →
�

p∈Cri

H•(eλ(p), ∂eλ(p); F) → 0.

Hence
PMi,F(t) = PMi−1,F(t) +

�

p∈Cri

tλ(p).

Summing over i = 1, . . . , ν and observing that M0 = ∅ and Mν = M , we
deduce

PM,F(t) =
ν�

i=1

�

p∈Cri

tλ(p) = Pf (t). ��

Let us describe a simple method of recognizing completable functions.

Proposition 2.18. Suppose f : M → R is a Morse function on a compact
manifold satisfying the gap condition

|λ(p)− λ(q)| �= 1, ∀p, q ∈ Crf .

Then f is F-completable for any field F.

Proof. We continue to use the notation in the proof of Proposition 2.17. Set

Λ :=
�

λ(p); p ∈ Crf

�
, Λi =

�
λ(p); p ∈ Cri

�
⊂ Z.

The gap condition shows that

λ ∈ Λ =⇒ λ± ∈ Z \ Λ. (2.11)

Note that the fundamental structural theorem implies
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Hk(Mi, Mi−1; F) = 0 ⇐⇒ k ∈ Z \ Λ, (2.12)

since Mi/Mi−1 is homotopic to a wedge of spheres of dimensions belonging to
Λ.

We will prove by induction over i ≥ 0 that

k ∈ Z \ Λ =⇒ Hk(Mi, F) = 0, (Ai)

and that the connecting morphism

∂ : Hk(Mi, Mi−1; F)−→Hk−1(Mi−1, F) (Bi)

is trivial for every k ≥ 0.
The above assertions are trivially true for i = 0. Assume i > 0. We begin

by proving (Bi).
This statement is obviously true if Hk(Mi, Mi−1; F) = 0, so we may assume

Hk(Mi, Mi−1; F) �= 0. Note that (2.12) implies k ∈ Λ, and thus the gap
condition (2.11) implies that k − 1 ∈ Z \ Λ.

The inductive assumption (Ai−1) implies that Hk−1(Mi−1, F) = 0, so that
the connecting morphism

∂ : Hk(Mi, Mi−1; F) → Hk−1(Mi−1, F)

is zero. This proves (Bi). In particular, for every k ≥ 0 we have an exact
sequence

0 → Hk(Mi−1, F) → Hk(Mi, F) → Hk(Mi, Mi−1; F).

Suppose k ∈ Z \ Λ. Then Hk(Mi, Mi−1; F) = 0, so that Hk(Mi, F) ∼=
Hk(Mi−1, F). From (Ai−1) we now deduce Hk(Mi−1, F) = 0. This proves
(Ai) as well.

To conclude the proof of the proposition observe that (Bi) implies that f
if F-completable. ��

Corollary 2.19. Suppose f : M → R is a Morse function on a compact
manifold whose critical points have only even indices. Then f is a perfect
Morse function. ��

Example 2.20. Consider the round sphere

Sn =
�

(x0, . . . , xn) ∈ Rn+1;
�

i

|xi|2 = 1
�
.

The height function

hn : Sn → R, (x0, . . . , xn) �→ x0
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is a Morse function with two critical points: a global maximum at the north
pole x0 = 1 and a global minimum at the south pole, x0 = −1.

For n > 1 this is a perfect Morse function, and we deduce

PSn(t) = Phn(t) = 1 + tn.

Consider the manifold M = Sm × Sn. For |n−m| ≥ 2 the function

hm,n : Sm × Sn → R, Sm × Sn � (x, y) �→ hm(x) + hn(y),

is a Morse function with Morse polynomial

Phm,n(t) = Phm(t)Phn(t) = 1 + tm + tn + tm+n,

and since |n−m| ≥ 2, we deduce that it is a perfect Morse function. ��

Example 2.21. Consider the complex projective space CPn with projective
coordinates [z0, . . . , zn] and define

f : CPn → R, f([z0, z1 . . . , zn]) =
�

n

j=1 j|zj |2

|z0|2 + . . . + |zn|2
.

We want to prove that f is a perfect Morse function.
The projective space CPn is covered by the coordinate charts

Vk =
�

zk �= 0,
�
, k = 0, 1, . . . , n,

with affine complex coordinates

vi = vi(k) =
zi

zk

, i ∈ {0, 1, . . . , n} \ {k}.

Fix k and set
|v|2 := |v(k)|2 =

�

i �=k

|vi|2.

Then
f |Vk=

�
k +

�

j �=k

j|vj |2)
�

� �� �
=:k+a(v)

(1 + |v|2)−1

� �� �
=:b(v)

.

Observe that db = −b2d|v|2 and

df |Vk = bda− (k + a)b2d|v|2 = b2
�

j �=k

�
j(1 + |v|2)− (k + a)

�
d|vj |2

=
�

j �=k

�
(j − k) + (|v|2 − a)

�
d|vj |2.
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Since
d|vj |2 = v̄jdvj + v̄jdvj ,

and the collection {dvj , dv̄j ; j �= k} defines a trivialization of T ∗Vk ⊗ C we
deduce that v is a critical point of f |Vk if and only if

�
j(1 + |v|2)− (k + a)

�
vj = 0, ∀j �= k.

Hence f |Vk has only one critical point pk with coordinates v(k) = 0. Near
this point we have the Taylor expansions

(1 + |v|2)−1 = 1− |v|2 + . . . ,

f |Vk = (k + a(v))(1− |v|2 + . . . ) = k +
�

j �=j

(j − k)|vj |2 + . . . .

This shows that Hessian of f at pk is

Hf,pk = 2
�

j �=k

(j − k)(x2
j

+ y2
j
), vj = xj + yji.

Hence pk is nondegenerate and has index λ(pk) := 2k. This shows that f is a
Q-perfect Morse function with Morse polynomial

PCPn(t) = Pf (t) =
n�

j=0

t2j =
1− t2(n+1)

1− t2
.

Let us point out an interesting fact which suggests some of the limitations of
the homological techniques we have described in this section.

Consider the perfect Morse function h2,4 : S2 × S4 → R described in
Example 2.20. Its Morse polynomial is

P2,4 = 1 + t2 + t4 + t6

and thus coincides with the Morse polynomial of the perfect Morse function
f : CP3 → R investigated in this example. However S2 × S4 is not even
homotopic to CP3, because the cohomology ring of S2×S4 is not isomorphic
to the cohomology ring of CP3. ��

Remark 2.22. The above example may give the reader the impression that
on any smooth compact manifold there should exist perfect Morse functions.
This is not the case. In Exercise 5.14 we describe a class of manifolds which do
not admit perfect Morse functions. The Poincaré sphere is one such example.

��
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2.4 Morse–Smale Dynamics

Suppose f : M → R is a Morse function on the compact manifold M and ξ
is a gradient-like vector field relative to f . We denote by Φt the flow on M
determined by −ξ.

Lemma 2.23. For every p0 ∈ M the limits

Φ±∞(p0) := lim
t→±∞

Φt(p0)

exist and are critical points of f . ��

Proof. Set γ(t) := Φt(p0). If γ(t) is the constant path, then the statement is
obvious. Assume that γ(t) is not constant.

Since ξ · f ≥ 0 and γ̇(t) = −ξ(γ(t)), we deduce that

ḟ :=
d

dt
f(γ(t)) = df(γ̇) = −ξ · f ≤ 0.

From the condition ξ · f > 0 on M \Crf and the assumption that γ(t) is not
constant we deduce

ḟ(t) < 0, ∀t.

Define Ω±∞ to be the set of points q ∈ M such that there exists a sequence
tn → ±∞ with the property that

lim
n→∞

γ(tn) = q.

Since M is compact we deduce Ω±∞ �= ∅. We want to prove that Ω±∞ consist
of a single point which is a critical point of f . We discuss only Ω∞, since the
other case is completely similar.

Observe first that
Ψt(Ω∞) ⊂ Ω∞, ∀t ≥ 0.

Indeed, if q ∈ Ω∞ and γ(tn) → q, then

γ(tn + t) = Ψt(γ(tn)) → Ψt(q) ∈ Ω∞.

Suppose q0, q1 are two points in Ω∞. Then there exists an increasing sequence
tn →∞ such that

γ(t2n+i) → qi, i = 0, 1, t2n+1 ∈ (t2n, t2n+2).

We deduce
f(γ(t2n)) > f(γ(t2n+1)) > f(γ(t2n+2)).

Letting n → ∞ we deduce f(q0) = f(q1), ∀q0, q1 ∈ Ω∞, so that there exists
c ∈ R such that
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Ω∞ ⊂ f−1(c).

If q ∈ Ω∞ \ Crf , then t �→ Ψt(q) ∈ Ω∞ is a nonconstant trajectory of −ξ
contained in a level set f−1(c). This is impossible since f decreases strictly
on such nonconstant trajectories. Hence

Ω∞ ⊂ Crf .

To conclude it suffices to show that Ω∞ is connected. Denote by C the set of
connected components of Ω∞. Assume that #C > 1. Fix a metric d on M and
set

δ := min
�

dist (C, C �); C, C � ∈ C, C �= C �
�

> 0.

Let C0 �= C1 ∈ C and qi ∈ Ci, i = 0, 1. Then there exists an increasing
sequence tn →∞ such that

γ(t2n+i) → qi, i = 0, 1, t2n+1 ∈ (t2n, t2n+2).

Observe that

lim dist
�
γ(t2n), C0

�
= dist (q0, C0) = 0,

lim dist
�
γ(t2n+1), C0

�
= dist (q1, C0) ≥ δ.

From the mean value theorem we deduce that for all n � 0 there exists
sn ∈ (t2n, t2n+1) such that

dist
�
γ(sn), C0

�
=

δ

2
.

A subsequence of γ(sn) converges to a point q ∈ Ω∞ such that dist (q, C0) = δ

2 .
This is impossible since q ∈ Ω∞ ⊂ Crf \C0. This concludes the proof of
Lemma 2.23. ��

Suppose f : M → R is a Morse function and p0 ∈ Crf , c0 = f(p0). Fix a
gradient-like vector field ξ on M and denote by Φt the flow on M generated
by −ξ. We set

W±(p0) = W±(p0, ξ) := Φ−1
±∞(p0) =

�
x ∈ M ; lim

t→±∞
Φt(x) = p0

�
.

W±(p0, ξ) is called the stable/unstable manifold of p0 (relative to the gradient-
like vector field ξ). We set

S±(p0, ε) = W±(p0) ∩ { f = c0 ± ε }.

Proposition 2.24. Let m = dimM , λ = λ(f, p0). Then W−(p0) is a smooth
manifold homeomorphic to Rλ, while W+(p0) is a smooth manifold homeo-
morphic to Rm−λ.
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Proof. We will only prove the statement for the unstable manifold since −ξ
is a gradient-like vector field for −f and W+(p0, ξ) = W−(p0,−ξ). We will
need the following auxiliary result.

Lemma 2.25. For any sufficiently small ε > 0 the set S−(p0, ε) is a sphere
of dimension λ − 1 smoothly embedded in the level set {f = c0 − ε} with
trivializable normal bundle.

Proof. Pick local coordinates x = (x−, x+) adapted to p0. Fix ε > 0 suffi-
ciently small so that in the neighborhood

U =
�
|x−|2 + |x−|2 < r

�

the vector field ξ has the form

−2x−∂x− + x+∂x+ = −2
�

i≤λ

xi∂xi + 2
�

j>λ

xj∂xj .

A trajectory Φt(q) of −ξ which converges to p0 as t → −∞ must stay inside
U for all t � 0. Inside U , the only such trajectories have the form e2tx−, and
they are all included in the disk

D−(p0, r) =
�

x+ = 0, |x−|2 ≤ r
�
.

Moreover, since f decreases strictly on nonconstant trajectories, we deduce
that if ε < r, then

S−(p0, ε) = ∂D−(p0, ε). ��

Fix now a diffeomorphism u : Sλ−1 → S−(p0, ε). If (r, θ), θ ∈ Sλ−1, denote
the polar coordinates on Rλ, we can define

F : Rλ → W−1(p0), F (r, θ) = Φ 1
2 log r

(u(θ)).

The arguments in the proof of Lemma 2.25 show that F is a diffeomorphism.
��

Remark 2.26. The stable and unstable manifolds of a critical point are not
closed subset of M . In fact, their closures tend to be quite singular, and one
can say that the topological complexity of M is hidden in the structure of
these singularities. ��

We have the following fundamental result of S. Smale [Sm].

Theorem 2.27. Suppose f : M → R is a Morse function on a compact
manifold. Then there exists a gradient-like vector field ξ such that for any
p0, p1 ∈ Crf the unstable manifold W−(p0, ξ) intersects the stable manifold
W+(p1, ξ) transversally.
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Proof. For the sake of clarity we prove the theorem in the special case when
f is nonresonant. The general case is only notationally more complicated. Let

∆f =
�

c1 < · · · < cν

�

be the set of critical values of f . Denote by pi the critical point of f on the
level set {f = ci}. Clearly W−(p) intersects W+(p) transversally at p. In
general, W+(pi) ∩W−(pj) is a union of trajectories of −ξ and

W+(pi) ∩W−(pj) �= ∅ =⇒ f(pi) ≤ f(pj) ⇐⇒ i ≤ j.

Note that if r is a regular value of f , then manifolds W±(p, ξ) intersect the
level set {f = r} transversally, since ξ is transversal to the level set and
tangent to W±. For every regular value r we set

W±(pi, ξ)r := W±(pi, ξ) ∩ {f = r}.

Observe that

W−(pj , ξ) � W+(pi, ξ) ⇐⇒ W−(pj , ξ)r � W+(pi, ξ)r,

for some regular value f(pi) < r < f(pj).
For any real numbers a < b such that the interval [a, b] contains only

regular values and any gradient-like vector field ξ we have a diffeomorphism

Φξ

b,a
: {f = a}−→{f = b}

obtained by following the trajectories of the flow of the vector field �ξ� := 1
ξ·f ξ

along which f increases at a rate of one unit per second. We denote by Φξ

a,b

its inverse. Note that

W±(pi, ξ)a = Φξ

a,b

�
W±(pi, ξ)b

�
, W±(pi, ξ)b = Φξ

b,a

�
W±(pi, ξ)a

�
.

For every r ∈ R we set Mr := {f = r}.

Lemma 2.28 (Main deformation lemma). Suppose a < b are such that
[a, b] consists only of regular values of f . Suppose h : Mb → Mb is a diffeomor-
phism of Mb isotopic to the identity. This means that there exists a smooth
map

H : [0, 1]×Mb → Mb, (t, x) �→ ht(x),

such that x �→ ht(x) is a diffeomorphism of Mb, ∀t ∈ [0, 1], h0 = Mb , h1 = h.
Then there exists a gradient-like vector field η for f which coincides with ξ
outside {a < f < b} such that the diagram below is commutative:

Mb Mb

Ma

h

Φ
ξ
b,a

Φ
η
b,a
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Proof. For the simplicity of exposition we assume a = 0, b = 1 and that t �→ ht

is independent of t for t close to 0 and 1. Note that we have a diffeomorphism

Ψ : [0, 1]×M1 → {0 ≤ f ≤ 1}, (t, x) �→ Φξ

t,1(x) ∈ {f = t}.

Its inverse is
y �→

�
f(y), Φξ

1,f(y)(y)
�
.

Using the isotopy H we obtain a diffeomorphism

Ĥ := [0, 1]×M1 → [0, 1]×M1, Ĥ(t, x) = (t, ht(x)).

It is now clear that the pushforward of the vector field �ξ� via the diffeomor-
phism

F = Ψ ◦H ◦ Ψ−1 : {0 ≤ f ≤ 1}→ {0 ≤ f ≤ 1}

is a vector field η̂ which coincides with �ξ� near M0, M1 and satisfies η̂ ·f = 1.
The vector field

η = (ξ · f)η̂

extends to a vector field that coincides with ξ outside {0 < f < 1} and satisfies
�η� = η̂. Moreover, the flow of �η� fits in the commutative diagram

M1 M1

M0 M0

F

F

Φ
ξ
1,0 Φ

η
1,0 .

Now observe that F |M0 = M0 and

FM1 = Φξ

1,1h1Φ
ξ

1,1 = h1 = h. ��

Lemma 2.29 (Moving lemma). Suppose X,Y are two smooth submanifolds
of the compact smooth manifold V and X is compact. Then there exists a dif-
feomorphism of h : V → V isotopic to the identity2 such that h(X) intersects
Y transversally. ��

We omit the proof which follows from the transversality results in [Hir,
Chapter 3] and the isotopy extension theorem, [Hir, Chapter 8].

We can now complete the proof of Theorem 2.27. Let 1 ≤ k ≤ ν. Suppose
we have constructed a gradient-like vector field ξ such that

W+(pi) � W−(pj , ξ), ∀i < j ≤ k.

2 The diffeomorphism h can be chosen to be arbitrarily C
0-close to the identity.
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We will show that for ε > 0 sufficiently small there exists a gradient-like vector
field η which coincides with ξ outside the region {ck+1 − 2ε < f < ck+1 − ε}
and such that

W−(pk+1, η) � W+(pj , η), ∀j ≤ k.

For ε > 0 sufficiently small, W−(pk+1, ξ)ck+1−ε is a sphere of dimension
λ(pk+1)− 1 embedded in {f = ck+1 − ε}. We set

a := ck+1 − 2ε, b = ck+1 − ε,

and
Xb =

�

j≤k

W+(pj , ξ)b.

Using the moving lemma, we can find a diffeomorphism h : Mb → Mb isotopic
to the identity such that (see Figure 2.14)

h(Xb) � W−(pk+1, ξ)b. (2.13)

p

p

f=b

f=a

W  (p  ,   )

-

+
k

k

k+1

k+1

W  (p     ,   )

h

ξ

ξ

Fig. 2.14. Deforming a gradient-like flow.

Using the main deformation lemma we can find a gradient-like vector field
η which coincides with ξ outside {a < f < b} such that

Φη

b,a
= h ◦ Φξ

b,a
.

Since η coincides with ξ outside {a < f < b}, we deduce

W+(pj , η)a = W+(pj , ξ)a, ∀j ≤ k, W−(pk+1, ξ)b = W−(pk+1, η)b.



2.4 Morse–Smale Dynamics 61

Now observe that

W+(pj , η)b = Φη

b,a
W+(pj , η)a = hΦξ

b,a
W+(pj , ξ)a = hW+(pj , ξ)b,

and we deduce from (2.13) that

W+(pj , η)b � W−(pk+1, η)b, ∀j ≤ k.

Performing this procedure gradually, from k = 1 to k = ν, we obtain a
gradient-like vector field with the properties stipulated in Theorem 2.27. ��

Definition 2.30. (a) If f : M → R is a Morse function and ξ is a gradient
like vector field such that

W−(p, ξ) � W+(q, ξ), ∀p, q ∈ Crf ,

then we say that (f, ξ) is a Morse–Smale pair on M and that ξ is a Morse–
Smale vector field adapted to f . ��

Remark 2.31. Observe that if (f, ξ) is a Morse–Smale pair on M and p, q ∈
Crf are two distinct critical points such that λf (p) ≤ λf (q), then

W−(p, ξ) ∩W+(q, ξ) = ∅.

Indeed, suppose this is not the case. Then

dim W−(p, ξ) + dim W+(q, ξ) = dim M + ( λ(p)− λ(q) ) ≤ dim M,

and because W−(p, ξ) intersects W+(q, ξ) transversally, we deduce that

dim
�
W−(p, ξ) ∩W+(q, ξ)

�
= 0.

Since the intersection W−(p, ξ) ∩W+(q, ξ) is flow invariant and p �= q, this
zero dimensional intersection must contain at least one nontrivial flow line. ��

Definition 2.32. A Morse function f : M → R is called self-indexing if

f(p) = λf (p), ∀p ∈ Crf . ��

Theorem 2.33 (Smale). Suppose M is a compact smooth manifold of di-
mension m. Then there exist Morse-Smale pairs (f, ξ) on M such that f is
self-indexing.

Proof. We follow closely the strategy in [M4, Section 4]. We begin by describ-
ing the main technique that allows us to gradually modify f to a self-indexing
Morse function.
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Lemma 2.34 (Rearrangement lemma). Suppose f : M → R is a Morse
function such that 0, 1 are regular values of f and the region {0 < f < 1}
contains precisely two critical points p0, p1. Furthermore, assume that ξ is a
gradient-like vector field on M such that

W (p0, ξ) ∩W (p1, ξ) ∩ {0 ≤ f ≤ 1} = ∅,

where we have used the notation W (pi) = W+(pi) ∪W−(pi).
Then for any real numbers a0, a1 ∈ [0, 1] there exists a Morse function

g : M → R with the following properties:
(a) g coincides with f outside the region {0 < f < 1}.
(b) g(pi) = ai, ∀i = 0, 1.
(c) f − g is constant in a neighborhood of {p0, p1}.
(d) ξ is a gradient-like vector field for g.

Proof. Let

W :=
�
W+(p0, ξ) ∪W−(p0, ξ) ∪W+(p1, ξ) ∪W−(p�1ξ)

�
∩ {0 ≤ f ≤ 1},

M0 := {f = 0}, M �
0 = M0 \

�
W−(p0, ξ) ∪W−(p1, ξ) )

�
,

W−(pi, ξ)0 := W−(pi, ξ) ∩M0.

Denote by �ξ� the vector field 1
ξ·f ξ on {0 ≤ f ≤ 1} \ W and by Φξ

t
its flow.

Then Φξ

t
defines a diffeomorphism

Ψ : [0, 1]×M �
0 → {0 ≤ f ≤ 1} \ W, (t, x) �→ Φξ

t
(x).

Its inverse is
y �→ Ψ−1(y) = (f(y), Φξ

−f(y)(y) ).

Choose open neighborhoods Ui of W−(pi, ξ)0 in M0 such that U ∩ U � = ∅.
This is possible since W (p0) ∩W (p1) ∩M0 = ∅.

Now fix a smooth function µ : M0 → [0, 1] such that µ = i on Ui. Denote
by Ûi the set of points y in {0 ≤ f ≤ 1} such that either y ∈ W+(pi, ξ) or the
trajectory of −ξ through y intersects M0 in Ui, i = 0, 1 (see Figure 2.15). We
can extend µ to a smooth function µ̂ on {0 ≤ f ≤ 1} as follows.

If y �∈ (Û0 ∪ Û1), then Ψ−1(y) = (t, x), x ∈ M0 \ (U0 ∪ U1), and we set

µ̂(y) := µ(x).

Then we set µ̂(y) = i ∀y ∈ Ûi.
Now fix a smooth function G : [0, 1]× [0, 1] → [0, 1] satisfying the following

conditions:

• ∂G

∂t
(s, t) > 0, ∀0 ≤ s, t ≤ 1.

• G(s, 0) = 0, G(s, 1) = 1.
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Fig. 2.15. Decomposing a Morse flow.

• G(s, t) = t near the segments t = 0, 1.
• G(i, t)− t = (ai − f(pi)) for t near f(pi).

We can think of G as a 1-parameter family of increasing diffeomorphisms

Gs : [0, 1] → [0, 1], s �→ Gs(t) = G(s, t)

such that g0(f(p0)) = a0 and g1(f(p1)) = a1.
Now define

h : {0 ≤ f ≤ 1}→ [0, 1], h(y) = G(µ̂(y), f(y)).

It is now easy to check that g has all the desired properties. ��

Remark 2.35. (a) To understand the above construction it helps to think of
the Morse function f as a clock, i.e. a way of measuring time. For example,
the time at the point y is f(y).

We can think of the family s → Gs as 1-parameter family of “clock modi-
fiers”. If a clock indicates time t ∈ [0, 1], then by modifying the clock with Gs

it will indicate time Gs(t).
The function h can be perceived as a different way of measuring time,

obtained by modifying the “old clock” f using the modifier Gs. More precisely,
the new time at y will be Gµ̂(y)(f(y)).

(b) The rearrangement lemma works in the more general context, when
instead of only two critical points, we have a partition C0 � C1 of the set of
critical points in the region {0 < f < 1} such that f is constant on C0 and
on C1, and W (p0, ξ) ∩W (p1, ξ) = ∅, ∀p0 ∈ C0, ∀p1 ∈ C1. ��
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We can now complete the proof of Theorem 2.33. Suppose (f, ξ) is a Morse-
Smale pair on M such that f is nonresonant. Remark 2.31 shows that

p �= q and λ(p) ≤ λ(q) =⇒ W−(p, ξ) ∩W+(q, ξ) = ∅.

We say that a pair of critical points p, q ∈ Crf is an inversion if

λ(p) < λ(q) and f(p) > f(q).

We see that if (p, q) is an inversion, then

W−(p, ξ) ∩W+(q, ξ) = ∅.

Using the rearrangement lemma and Theorem 2.27 we can produce inductively
a new Morse–Smale pair (g, η) such that Crg = Crf , and g is nonresonant
and has no inversions.

To see how this is done, define the level function

�f : Crf → Z≥0, �(p) := #
�
q ∈ Crf ; f(q) < f(p)

�
,

denote by ν(f) the number of inversions of f , and then set

µ(f) = max
�

�f (q); (p, q) inversion of f
�
.

If ν(f) > 0, then there exists an inversion (p, q) such that �f (p) = µ(f) + 1
and �f (q) = µ(f). We can then use the rearrangement lemma to replace f
with f � such that ν(f �) < ν(f).

This implies that there exist regular values r0 < r1 < · · · < rm such that
all the critical points in the region {rλ < g < rλ+1} have the same index λ.

Using the rearrangement lemma again (see Remark 2.35(b)) we produce
a new Morse-Smale pair (h, τ) with critical values c0 < · · · < cm, and all the
critical points on {h = cλ} have the same index λ.

Finally, via an increasing diffeomorphism of R we can arrange that cλ = λ.
��

Observe that the above arguments prove the following slightly stronger
result.

Corollary 2.36. Suppose (f, ξ) is a Morse–Smale pair on the compact man-
ifold M . Then we can modify f to a smooth Morse function g : M → R with
the following properties:
(a) Crg = Crf and λ(f, p) = λ(g, p) = g(p), ∀p ∈ Crf = Crg.
(b) ξ is a gradient-like vector field for g.

In particular, (g, ξ) is a self-indexing Morse–Smale pair.
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Fig. 2.16. Constructing the Thom–Smale complex.

2.5 Morse–Floer Homology

Suppose (f, ξ) is a Morse–Smale pair on the compact m-dimensional manifold
M such that f is self-indexing. In particular, the real numbers k+ 1

2 are regular
values of f . We set

Mk =
�

f ≤ k +
1
2

�
, Yk =

�
k − 1

2
≤ f ≤ k +

1
2

�
.

Then Yk is a smooth manifold with boundary (see Figure 2.16)

∂Yk = ∂−Yk ∪ ∂+Yk, ∂±Yk =
�

f = k ± 1
2

�
.

Set

Ck(f) := Hk(Mk, Mk−1; Z), Crk =
�
p ∈ Crf ; λ(p) = k

�
⊂ { f = k }.

Finally, for p ∈ Crk denote by D±(p) the unstable disk

D±(p) := W±(p, ξ) ∩ Yk.

Using excision and the fundamental structural theorem of Morse theory
we obtain an isomorphism

Ck(f) ∼=
�

p∈Crk

Hk

�
D−(p), ∂D−(p); Z

�
.
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By fixing an orientation or
−(p) on each unstable manifold W−(p) we obtain

isomorphisms
Hk( D−(p), ∂D−(p); Z ) → Z, p ∈ Crk .

We denote by �p| the generator of Hk( D−(p), ∂D−(p); Z ) determined by the
choice of orientation or

−(p).
Observe that we have a natural morphism ∂ : Ck → Ck−1 defined as the

composition

Hk( Mk, Mk−1; Z ) → Hk−1(Mk−1, Z) → Hk−1( Mk−1, Mk−2; Z ). (2.14)

Arguing exactly as in the proof of [Ha, Theorem 2.35] (on the equivalence of
cellular homology with the singular homology)3 we deduce that

· · ·→ Ck(f) ∂−→ Ck−1(f) → · · · (2.15)

is a chain complex whose homology is isomorphic to the homology of M .
This is called the Thom–Smale complex associated to the self-indexing Morse
function f .

We would like to give a more geometric description of the Thom-Smale
complex. More precisely, we will show that it is isomorphic to a chain complex
which can be described entirely in terms of Morse data.

Observe first that the connecting morphism

∂k : Hk(Mk, Mk−1) → Hk−1(Mk−1)

can be geometrically described as follows. The relative class �p| ∈ Ck is rep-
resented by the fundamental class of the oriented manifold with boundary
(D−(p), ∂D−(p)). The orientation or

−(p) induces an orientation on ∂D−(p),
and thus the oriented closed manifold ∂D−(p) defines a homology class in
Hk−1(Mk−1, Z) which represents ∂�p|.

Assume for simplicity that the ambient manifold M is oriented. (As ex-
plained Remark 2.39 (a) this assumption is not needed.) The orientation orM

on M and the orientation or
−(p) on D−(p) determine an orientation or

+(p)
on D+(p) via the equalities

TpM = TpD
−(p)⊕ TpD

+(p), or−(p) ∧ or+(p) = orM .

Since ξ is a Morse–Smale gradient like vector field, we deduce that ∂D−(p)
and D+(q) intersect transversally. In particular, if p ∈ Crk and q ∈ Crk−1,
then

3 For the cognoscienti. The increasing filtration · · · ⊂ Mk−1 ⊂ Mk ⊂ · · · defines
an increasing filtration on the singular chain complex C•(M, Z). The associated
(homological) spectral sequence has the property that E

2
p,q = 0 for all q > 0 so

that the spectral sequence degenerates at E
2 and the edge morphism induces an

isomorphism Hp(M) → E
2
p,0. The E

1 term is precisely the chain complex (2.15).
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dim ∂D−(p) + dim D+(p) = (k − 1) + dim M − (k − 1) = m,

so that ∂D−(p) intersects D+(p) transversally in finitely many points. We
denote by �p|q� the signed intersection number

�p|q� := #(D−(p) ∩ ∂D+(q)), p ∈ Crk, q ∈ Crk−1 .

Observe that each point s in D+(q)∩∂D−(p) corresponds to a unique trajec-
tory γ(t) of the flow generated by −ξ such that γ(−∞) = p and γ(∞) = q.
We will refer to such a trajectory as a tunnelling from p to q. Thus �p|q� is a
signed count of tunnellings from p to q.

Proposition 2.37 (Thom–Smale). There exists �k ∈ {±1} such that

∂�p| = �k

�

q∈Crk−1

�p|q� · �q|, ∀p ∈ Crk . (2.16)

Proof. We have

∂�p| ∈ Hk−1(Mk−1, Mk−2; Z) ∼= Hk−1(Yk−1, ∂−Yk−1; Z).

From the Poincaré–Lefschetz duality theorem we deduce

Hk−1(Yk−1, ∂−Yk−1; Z) ∼= Hm−(k−1)(Yk−1, ∂+Yk−1; Z).

Since Hj(Yk−1, ∂+Yk−1; Z) is a free Abelian group nontrivial only for j =
m− (k − 1) we deduce that the canonical map

Hm−(k−1)(Yk−1, ∂+Yk−1; Z)−→Hom
�
Hm−(k−1)(Yk−1, ∂+Yk−1; Z), Z

�

given by the Kronecker pairing is an isomorphism.
The group Hm−(k−1)(Yk−1, ∂+Yk−1; Z) is freely generated by4

|q� := [D+(q), ∂D+(q), or+(q)], q ∈ Crk−1 .

If we view ∂�p| as a morphism Hm−(k−1)(Yk−1, ∂+Yk−1; Z)−→Z, then its value
on |q� is given (up to a sign �k which depends only on k) by the above inter-
section number �p|q�. ��

Given a Morse–Smale pair (f, ξ) on an oriented manifold M and orienta-
tions of the unstable manifolds, we can form the Morse–Floer complex

(C•(f), ∂), Ck(f) =
�

p∈Crk(f)

Z · �p|,

4 There is no typo! |q� is a ket vector and not a bra vector �q|.
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where the boundary operator has the tunnelling description (2.16). Note that
the definitions of Ck(f) and ∂ depend on ξ but not on f .

In view of Corollary 2.36 we may as well assume that f is self-indexing.
Indeed, if this is not the case, we can replace f by a different Morse function
g with the same critical points and indices such that g is self-indexing and ξ
is a gradient-like vector field for both f and g.

We conclude that ∂ is indeed a boundary operator, i.e., ∂2 = 0, because it
can alternatively be defined as the composition (2.14). We have thus proved
the following result.

Corollary 2.38. For any Morse–Smale pair (f, ξ) on the compact oriented
manifold M there exists an isomorphism from the homology of the Morse–
Floer complex to the singular homology of M . ��

Remark 2.39. (a) The orientability assumption imposed on M is not necessary.
We used it only for the ease of presentation. Here is how one can bypass it.

Choose for every p ∈ Crf orientations of the vector spaces T−
p

M of
spanned by the eigenvectors of the Hessian of f corresponding to negative
eigenvalues. The unstable manifold W−(p) is homeomorphic to a vector space
and its tangent space at p is precisely T−

p
M . Thus, the chosen orientation on

T−
p

M induces an orientation on W−(p). Similarly, the chosen orientation on
T−

p
M defines an orientation on the normal bundle TW+(p)M of the embedding

W+(p) �→ M .
Now observe that if X and Y are submanifolds in M intersecting transver-

sally, such that TX is oriented and the normal bundle TY M of Y �→ M is
oriented, then there is a canonical orientation of X∩Y induced from the short
exact sequence of bundles

0 → T (X ∩ Y ) �→ (TX)|X∩Y → (TY M)|X∩Y → 0.

Hence, if λ(p)−λ(q) = 1, then W−(p)∩W+(q) is an oriented one-dimensional
manifold.

On the other hand, each component of W−(p) ∩ W+(q) is a trajectory
of the gradient flow and thus comes with another orientation given by the
direction of the flow.

We conclude that on each component of W−(p) ∩W+(q) we have a pair
of orientations which differ by a sign �. We can now define n(p, q) to be the
sum of all these �’s. We then get an operator

∂̂ : Ck(f) → Ck−1(f), ∂̂�p| =
�

q

n(p, q)�q|.

One can prove that it coincides, up to an overall sign, with the previous
boundary operator.
(b) For different proofs of the above corollary we refer to [BaHu, Sal, Sch].



2.5 Morse–Floer Homology 69

(c) Corollary 2.38 has one unsatisfactory feature. The isomorphism is not
induced by a morphism between the Morse–Floer complex and the singular
chain complexes and thus does not highlight the geometric nature of this
construction.

For any homology class in a smooth manifold M , the Morse–Smale flow
Φt on M selects a very special singular chain representing this class. For
example, if a homology class is represented by the singular cycle c, then is
also represented by the cycle Φt(c) and, stretching our imagination, by the
cycle Φ∞(c) = limt→∞ Φt(c).

The Morse–Floer complex is, loosely speaking, the subcomplex of the sin-
gular complex generated by the family of singular simplices of the form Φ∞(σ),
where σ is a singular simplex. The supports of such asymptotic simplices are
invariant subsets of the Morse–Smale flow and thus must be unions of orbits
of the flow.

The isomorphism between the Morse–Floer homology and the singular ho-
mology suggests that the subcomplex of the singular chain complex generated
by asymptotic simplices might be homotopy equivalent to the singular chain
complex. For a rigorous treatment of this idea we refer to [La] or [HL].

There is another equivalent way of visualizing the Morse flow complex
which goes back to R. Thom [Th]. Think of a Morse–Smale pair (f, ξ) on M as
defining a “polyhedral structure5”, and then the Morse–Floer complex is the
complex naturally associated to this structure. The faces of this “polyhedral
structure” are labelled by the critical points of f , and their interiors coincide
with the unstable manifolds of the corresponding critical point.

The boundary of a face is a union (with integral multiplicities) of faces of
one dimension lower. To better understand this point of view it helps to look
at the simple situation depicted in Figure 2.17. Let us explain this figure.

First, we have the standard description of a Riemann surface of genus 2
obtained by identifying the edges of an 8-gon with the gluing rule

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 .

This poyhedral structure corresponds to a Morse function on the Riemann
surface which has the following structure.

• There is a single critical point of index 2, denoted by F , and located in the
center of the two-dimensional face. The relative interior of the top face is
the unstable manifold of F , and all the trajectories contained in this face
will leave F and end up either at a vertex or in the center of some edge.

• There are four critical points of index one, a1, a2, b1, b2, located at the
center of the edges labelled by the corresponding letter. The interiors of
the edges are the corresponding one-dimensional unstable manifolds. The

5 The technically correct but less suggestive term would be that of Whitney regular
stratification.
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Fig. 2.17. The polyhedral structure determined by a Morse function on a Riemann
surface of genus 2.

arrows along the edges describe orientations on these unstable manifolds.
The gradient flow trajectories along an edge point away from the center.

• There is a unique critical point of index 0 denoted by V .

In the picture there are two tunnellings connecting F with a1, but they
are counted with opposite signs. In general, we deduce

�F |ai� = �F |bj� = 0, ∀i, j.

Similarly,
�ai|V � = �bj |V � = 0, ∀i, j.

(d) The dynamical description of the boundary map of the Morse–Floer com-
plex in terms of tunnellings is due to Witten, [Wit] (see the nice story in [B3]),
and it has become popular through the groundbreaking work of A. Floer, [Fl].

The tunnelling approach has been used quite successfully in infinite dimen-
sional situations leading to various flavors of the so called Floer homologies.

These are situations when the stable and unstable manifolds are infinite
dimensional yet they intersect along finite dimensional submanifolds. One can
still form the operator ∂ using the description in Proposition 2.37, but the
equality ∂2 = 0 is no longer obvious, because in this case an alternative
description of ∂ of the type (2.14) is lacking. For more information on this
aspect we refer to [ABr, Sch].

��

2.6 Morse–Bott Functions

Suppose f : M → R is a smooth function on the m-dimensional manifold M .
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Definition 2.40. A smooth submanifold S �→ M is said to be a nondegener-
ate critical submanifold of f if the following hold.

• S is compact and connected.
• S ⊂ Crf .
• ∀s ∈ S we have TsS = kerHf,s, i.e.,

Hf,s(X,Y ) = 0, ∀Y ∈ TsM ⇐⇒ X ∈ TsS(⊂ TsM).

The function f is called a Morse–Bott function if its critical set consists of
nondegenerate critical submanifolds. ��

Suppose S �→ M is a nondegenerate critical submanifold of f . Assume
for simplicity that f |S= 0. Denote by TSM the normal bundle of S �→ M ,
TSM := (TM)|S/TS. For every s ∈ S and every X,Y ∈ TsS we have

Hf,s(X,Y ) = 0,

so that the Hessian of f at s induces a quadratic form Qf,s on TsM/TsS =
(TSM)s. We thus obtain a quadratic form Qf on TSM , which we regard as a
function on the total space of TSM , quadratic along the fibers.

The same arguments in the proof of Theorem 1.12 imply the following
Morse lemma with parameters.

Proposition 2.41. There exists an open neighborhood U of S �→ E = TSM
and a smooth open embedding Φ : U → M such that Φ|S = S and

Φ∗f =
1
2
Qf .

If we choose a metric g on E, then we can identify the Hessians Qf,s with a
symmetric automorphism Q : E → E. This produces an orthogonal decompo-
sition

E = E+ ⊕ E−,

where E± is spanned by the eigenvectors of H corresponding to positive/negative
eigenvalues. If we denote by r± the restriction to E± of the function

u(v, s) = gs(v, v),

then we can choose the above Φ so that

Φ∗f = −u− + u+.

The topological type of E± is independent of the various choices, and thus
it is an invariant of (S, f) denoted by E±(S) or E±(S, f). We will refer to
E−(S) as the negative normal bundle of S. In particular, the rank of E− is
an invariant of S called the Morse index of the critical submanifold S, and it
is denoted by λ(f, S). The rank of E+ is called the Morse coindex of S, and
it is denoted by λ̂(f, S). ��
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Definition 2.42. Let F be a field. The F-Morse–Bott polynomial of a Morse-
Bott function f : M → R defined on the compact manifold M is the polynomial

Pf (t) = Pf (t; F) =
�

S

tλ(f,S)PS,F(t),

where the summation is over all the critical submanifolds of f . Note that the
Morse-Bott polynomial of a Morse function coincides with the Morse polyno-
mial defined earlier. ��

Arguing exactly as in the proof of the fundamental structural theorem we
obtain the following result.

Theorem 2.43 (Bott). Suppose f : M → R is a an exhaustive smooth func-
tion and c ∈ R is a critical value such that Crf ∩f−1(c) consists of finitely
many critical submanifolds S1, . . . , Sk. For i = 1, . . . , k denote by D−(Si) the
(closed) unit disk bundle of E−(Si) (with respect to some metric on E−(Si)).
Then for ε > 0 the sublevel set M c+ε = {f ≤ c + ε} is homotopic to the space
obtained from M c−ε = {f ≤ c − ε} by attaching the disk bundles D−(Si) to
M c−ε along the boundaries ∂D−(Si). In particular, for every field F we have
an isomorphism

H•(M c+ε, M c−ε; F) =
k�

i=1

H•(D−(Si), ∂D−(Si); F). (2.17)

��

Let F be a field and X a compact CW -complex. For a real vector bundle
π : E → X of rank r over X, we denote by D(E) the unit disk bundle of E
with respect to some metric. We say that E is F-orientable if there exists a
cohomology class

τ ∈ Hr(D(E), ∂D(E); F)

such that its restriction to each fiber (D(E)x, ∂D(E)x), x ∈ X defines a
generator of the relative cohomology group Hr(D(E)x, ∂D(E)x; F). The class
τ is called the Thom class of E associated to a given orientation.

For example, every vector bundle is Z/2-orientable, and every complex vec-
tor bundle is Q-orientable. Every real vector bundle over a simply connected
space is Q-orientable.

The Thom isomorphism theorem states that if the vector bundle π : E →
X is F-orientable, then for every k ≥ 0 the morphism

Hk(X, F) � α �−→ τE ∪ π∗α ∈ Hk+r(D(E), ∂D(E); F)

is an isomorphism for any k ∈ Z. Equivalently, the transpose map

Hk+r(D(E), ∂D(E); F) → Hk(X, F), c �→ π∗(c ∩ τE)
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is an isomorphism. This implies

PD(E),∂D(E)(t) = trPX(t). (2.18)

Definition 2.44. Suppose F is a field, and f : M → R is a Morse–Bott
function. We say that f is F-orientable if for every critical submanifold S the
bundle E−(S) is F-orientable. ��

Corollary 2.45. Suppose f : M → R is an F-orientable Morse-Bott function
on the compact manifold. Then we have the Morse–Bott inequalities

Pf (t) � PM,F(t).

In particular,
�

S

(−1)λ(f,S)χ(S) = Pf (−1) = PM (−1) = χ(M).

Proof. Denote by c1 < · · · < cν the critical values of f and set

tk =
ck + ck+1

2
, k = 1, ν − 1, t0 = c1 − 1, tν = cν + 1, Mk = {f ≤ tk}.

As explained in Remark 2.16, we have an inequality
�

k

PMk,Mk−1 � PM .

Using the equality (2.17) we deduce
�

k

PMk,Mk−1 =
�

S

PD−(S),∂D−(S),

where the summation is over all the critical submanifolds of f . Since E−(S)
is orientable for every S, we deduce from (2.18) that

PD−(S),∂D−(S) = tλ(f,S)PS . ��

Definition 2.46. Suppose f : M → R is a Morse–Bott function on a compact
manifold M . Then f is called F-completable if for every critical value c and
every critical submanifold S ⊂ f−1(c) the inclusion

∂D−(S) → {f ≤ c− ε}

induces the trivial morphism in homology. ��

Arguing exactly as in the proof of Proposition 2.17 we obtain the following
result.
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Theorem 2.47. Suppose f : M → R is a F-completable, F-orientable, Morse–
Bott function on a compact manifold. Then f is F-perfect, i.e., Pf (t) = PM (t).

��

Corollary 2.48. Suppose f : M → R is an orientable Morse–Bott function
such that for every critical submanifold M we have λ(f, S) ∈ 2Z and PS(t) is
even, i.e.,

bk(S) �= 0 =⇒ k ∈ 2Z.

Then f is Q-perfect and thus Pf (t) = PM (t).

Proof. Using the same notation as in the proof of Corollary 2.45, we deduce
by induction over k from the long exact sequences of the pairs (Mk, Mk−1)
that bj(Mk) = 0 if j is odd, and we have short exact sequence

0 → Hj(Mk−1) → Hj(Mk) → Hj(Mk, Mk−1) → 0

if j is even. ��

2.7 Min–Max Theory

So far we have investigated how to use information about the critical points
of smooth function on a smooth manifold to extract information about the
manifold itself. In this section we will turn the situation on its head. We will
use topological methods to extract information about the critical points of a
smooth function.

To keep the technical details to a minimum so that the geometric ideas are
as transparent as possible, we will restrict ourselves to the case of a smooth
function f on a compact, connected smooth manifold M without boundary
equipped with a Riemannian metric g.

We can substantially relax the compactness assumption, and the same
geometrical principles we will outline below will still apply, but will require
more technical work.

Morse theory shows that if we have some information about the critical
points of f we can obtain lower estimates for their number. For example, if
all the critical points are nondegenerate, then their number is bounded from
below by the sum of Betti numbers of M . What happens if we drop the
nondegeneracy assumption? Can we still produce interesting lower bounds for
the number of critical points?

We already have a very simple lower bound. Since a function on a compact
manifold must have a minimum and a maximum, it must have at least two
critical points. This lower bound is in some sense optimal because the height
function on the round sphere has precisely two critical points. This optimality
is very unsatisfactory since, as pointed out by G. Reeb in [Re], if the only
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critical points of f are (nondegenerate) minima and maxima, then M must
be homeomorphic to a sphere.

Min-max theory is quite a powerful technique for producing critical points
that often are saddle type points. We start with the basic structure of this
theory. For simplicity we denote by M c the sublevel set {f ≤ c}.

The min-max technology requires a special input.

Definition 2.49. A collection of min-max data for the smooth function

f : M → R

is a pair (H, S) satisfying the following conditions.

• H is a collection of homeomorphisms of M such that for every regular
value a of M there exist ε > 0 and h ∈ H such that

h(Ma+ε) ⊂ Ma−ε.

• S is a collection of subsets of M such that

h(S) ∈ S, ∀h ∈ H, ∀S ∈ S. ��

The key existence result of min-max theory is the following.

Theorem 2.50 (Min-max principle). Suppose (H, S) is a collection of
min-max data for the smooth function f : M → R. Then the real number

c = c(H, S) := inf
S∈S

sup
x∈S

f(x)

is a critical value of f .

Proof. We argue by contradiction. Assume that c is a regular value. Then
there exist ε > 0 and h ∈ H such that

h(M c+ε) ⊂ M c−ε.

From the definition of c we deduce that there exists S ∈ S such that
sup

x∈S
f(x) < c + ε, that is,

S ⊂ M c+ε.

Then S� = h(S) ∈ S and h(S) ⊂ M c−ε. It follows that sup
x∈S� f(x) ≤ c − ε,

so that
inf

S�∈S
sup
x∈S�

f(x) ≤ c− ε.

This contradicts the choice of c as a min-max value. ��

The usefulness of the min-max principle depends on our ability to pro-
duce interesting min-max data. We will spend the remainder of this section
describing a few classical constructions of min-max data.
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In all these constructions the family of homeomorphisms H will be the
same. More precisely, we fix gradient-like vector field ξ and we denote by Φt

the flow generated by −ξ. The condition (a) in the definition of min-max data
is clearly satisfied for the family

Hf := {Φt; t ≥ 0}.

Constructing the family S requires much more geometric ingenuity.

Example 2.51. Suppose S is the collection

S =
�
{x}; x ∈ M

�
.

The condition (b) is clearly satisfied, and in this case we have

c(Hf , S) = min
x∈M

f(x).

This is obviously a critical value of f . ��

Example 2.52 (Mountain-Pass points). Suppose x0 is a strict local min-
imum of f , i.e. there exists a small, closed geodesic ball U centered at x0 ∈ M
such that

c0 = f(x0) < f(x), ∀x ∈ U \ {x0}.

Note that
c�0 := min

x∈∂U

f(x) > c0.

Assume that there exists another point x1 ∈ M \U such that (see Figure 2.18)

c1 = f(x1) ≤ f(x0).

Now denote by Px0 the collection of smooth paths γ : [0, 1] → M such
that

γ(0) = x0, γ(1) ∈ M c0 \ U.

The collection Px0 is nonempty, since M is connected and x1 ∈ M c0 \ U .
Observe that for any γ ∈ Px0 and any t ≥ 0 we have

Φt ◦ γ ∈ Px0 .

Now define
S =

�
γ([0, 1]); γ ∈ Px0

�
.

Clearly the pair (Hf , S) satisfies all the conditions in Definition 2.49, and we
deduce that

c = inf
γ∈Px0

max
s∈[0,1]

f(γ(s))
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Fig. 2.18. A mountain pass from x0 to x1.

is a critical value of f such that c ≥ c�0 > c0 (see Figure 2.18).
This statement is often referred to as the Mountain-pass lemma and critical

points on the level set {f = c} are often referred to as mountain-pass points.
Observe that the Mountain Pass Lemma implies that if a smooth function has
two strict local minima then it must admit a third critical point.

The search strategy described in the Mountain-pass lemma is very intuitive
if we think of f as a height function. The point x0 can be thought of as a
depression and the boundary ∂U as a mountain range surrounding x0. We
look at all paths γ from x0 to points of lower altitude, and on each of them
we pick a point xγ of greatest height. Then we select the path γ such that the
point xγ has the smallest possible altitude.

It is perhaps instructive to give another explanation of why there should
exist a critical value greater than c0. Observe that the sublevel set M c0 is
disconnected while the manifold M is connected. The change in the topological
type in going from M c0 to M can be explained only by the presence of a critical
value greater than c0. ��

To produce more sophisticated examples of min-max data we will use
a technique pioneered by Lusternik and Schnirelmann. Denote by CM the
collection of closed subsets of M . For a closed subset C ⊂ M and ε > 0 we
denote by Nε(C) the open tube of radius ε around C, i.e. the set of points in
M at distance < ε from C.

Definition 2.53. An index theory on M is a map

γ : CM → Z̄≥0 := {0, 1, . . . } ∪ {∞}

satisfying the following conditions.
• Normalization. For every x ∈ M there exists r = r(x) > 0 such that



78 2 The Topology of Morse Functions

γ({x}) = 1 = γ(Nε(x)), ∀x ∈ M, ∀ε ∈ (0, r).

• Topological invariance. If f : M → M is a homeomorphism, then

γ(C) = γ(f(C)), ∀C ∈ CM .

• Monotonicity. If C0, C1 ∈ CM and C0 ⊂ C1, then γ(C0) ≤ γ(C1).
• Subadditivity. γ(C0 ∪ C1) ≤ γ(C0) + γ(C1).

��

Suppose we are given an index theory γ : CM → Z̄≥0. For every positive
integer k we define

Γk :=
�

C ∈ CM ; γ(C) ≥ k
�
.

The axioms of an index theory imply that for each k the pair (Hf , Γk) is a
collection of min-max data. Hence, for every k the min-max value

ck = inf
C∈Γk

max
x∈C

f(x)

is a critical value. Since
Γ1 ⊃ Γ2 ⊃ . . . ,

we deduce that
c1 ≤ c2 ≤ · · · .

Observe that the decreasing family Γ1 ⊃ Γ2 ⊃ · · · stabilizes at Γm, where
m = γ(M). If by accident it happens that

c1 > c2 > · · · > cγ(M),

then we could conclude that f has at least γ(M) critical points. We want to
prove that this conclusion holds even if some of these critical values are equal.

Theorem 2.54. Suppose that for some k, p > 0 we have

ck = ck+1 = . . . = ck+p = c,

and denote by Kc the set of critical points on the level set c. Then either c is
an isolated critical value of f and Kc contains at least p + 1 critical points,
or c is an accumulation point of Crf , i.e. there exists a sequence of critical
values dn �= c converging to c.

Proof. Assume that c is an isolated critical value. We argue by contradiction.
Suppose Kc contains at most p points. Then γ(Kc) ≤ p. At this point we need
a deformation result whose proof is postponed. Set

Tr(Kc) := Nr(Kc).
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Lemma 2.55 (Deformation lemma). Suppose c is an isolated critical value
of f and Kc = Crf ∩{f = c} is finite. Then for every δ > 0 there exist
0 < ε, r < δ and a homeomorphism h = hδ,ε,r of M such that

h
�
M c+ε \ Tr(Kc)

�
⊂ M c−ε.

Consider ε, r sufficiently small as in the deformation lemma. Then the
normalization and subadditivity axioms imply

γ(Tr(Kc)) ≤ γ(Kc) = p.

We choose C ∈ Γk+p such that

max
x∈C

f(x) ≤ ck+p + ε = c + ε.

Note that
C ⊂ Tr(Kc) ∪ C \ Tr(Kc),

and from the subadditivity of the index we deduce

γ(C \ Tr(Kc)) ≥ γ(C)− γ(Tr(Kc)) ≥ k.

Hence
γ
�
h(C \ Tr(Kc))

�
= γ(C \ Tr(Kc)) ≥ k,

so that
C � := h( C \ Tr(Kc) ) ∈ Γk.

Since
C \ Tr(Kc) ⊂ M c+ε \ Tr(Kv),

we deduce from the deformation lemma that

C � ⊂ M c−ε.

Now observe that the condition C � ∈ Γk implies

c = ck ≤ max
x∈C�

f(x),

which is impossible since C � ⊂ M c−ε. ��

Proof of the deformation lemma. The strategy is a refinement of the
proof of Theorem 2.6. The homeomorphism will be obtained via the flow
determined by a carefully chosen gradient-like vector field.

Fix a Riemannian metric g on M . For r sufficiently small, Nr(Kc) is a
finite disjoint union of open geodesic balls centered at the points of Kc. Let
r0 > 0 such that Nr0(Kc) is such a disjoint union and the only critical points
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of f in Nr0(Kc) are the points in Kc. Fix ε0 such that c is the only critical
value in the interval [c− ε0, c + ε0]. For r ∈ (0, r0) define

b = b(r) := inf
�
|∇f(x)|, x ∈ M c+ε0 \ (M c−ε0 ∪Nr/8(Kc))

�
> 0.

Choose ε = ε(r) ∈ (0, ε0) satisfying.

2ε < min
� b(r)r

8
, b(r)2, 1

�
=⇒ 2ε

b(r)
<

r

8
,

2ε

min(1, b(r)2)
≤ 1. (2.19)

Define smooth cutoff functions

α : M → [0, 1], β : M → [0, 1]

such that
• α(x) = 0 if |f(x)− c| ≥ ε0 and α(x) = 1 if |f(x)− c| ≤ ε;
• β(x) = 1 if dist (x,Kc) ≥ r/4 and β(x) = 0 if dist (x,Kc) < r/8.

Finally, define a rescaling function

ϕ : [0,∞) → [0,∞), ϕ(s) :=

�
1 s ∈ [0, 1],
s−1 s ≥ 1.

We can now construct the vector field ξ on M by setting

ξ(x) := −α · β · ϕ
�
|∇gf |2

�
∇gf.

Observe that ξ vanishes outside the region {c − ε0 < f < c − ε0} and also
vanishes in an r/8-neighborhood of Kc. This vector field is not smooth, but
it still is Lipschitz continuous. Note also that

|ξ(x)| ≤ 1, ∀x ∈ M.

The existence theorem for ODEs shows that for every x ∈ M there exist
T±(x) ∈ (0,∞] and a C1-integral curve γx : (−T−(x), T+(x)) → M of ξ
through x,

γx(0) = x, γ̇x(t) = ξ(γx(t)), ∀t ∈ (−T−(x), T+(x)).

The compactness of M implies that the integral curves of ξ are defined for all
t ∈ R, i.e., T±(x) = ∞. In particular, we obtain a (topological) flow Φt on M .
To prove the deformation lemma it suffices to show that

Φ1

�
M c+ε \ Nr(Kc)

�
⊂ M c−ε.

Note that by construction we have

d

dt
f(Φt(x)) ≤ 0, ∀x ∈ M,
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Fig. 2.19. A gradient-like flow.

so that
Φ1(M c−ε) ⊂ M c−ε.

Let x ∈ M c+ε \
�
Nr(Kc)∪M c−ε

�
. We need to show that Φ1(x) ∈ M c−ε. We

will achieve this in several steps.
For simplicity we set xt := Φt(x). Consider the region

Z =
�

c− ε ≤ f ≤ c + ε
�
\ Nr/2(Kc),

and define
Tx :=

�
t ≥ 0; xs ∈ Z, ∀s ∈ [0, t]

�
.

Clearly Tx �= ∅.
Step 1. We will prove that if t ∈ Tx, then

dist (x, xs) <
r

8
, ∀s ∈ [0, t].

In other words, during the time interval Tx the flow line t �→ xt cannot stray
too far from its initial point.

Observe that α and β are equal to 1 in the region Z and thus for every
t ∈ Tx we have
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2ε ≥ f(x)− f(xt) = −
�

t

0
g
�
∇f(xs), ξ(xs)

�
ds

=
�

t

0
|∇f(xs)|2ϕ

�
|∇f(xs)|2

�
ds

≥ b(r)
�

t

0
|∇f(xs)|ϕ

�
(|∇f(xs)|2

�
ds = b(r)

�
t

0

����
dxs

ds

���� ds

≥ b(r) · dist (x, xt).

From (2.19) we deduce

dist (x, xt) ≤
2ε

b(r)
<

r

8
.

Step 2. We will prove that there exists t > 0 such that Φt(x) ∈ M c−ε. Loosely,
speaking, we want to show that there exists a moment of time t when the
energy f(xt) drops below c− ε. Below this level the rate of decrease in energy
will pickup.

We argue by contradiction, and thus we assume f(xt) > c − ε, ∀t > 0.
Thus

0 ≤ f(x)− f(xt) ≤ 2ε, ∀t > 0.

Since xs ∈ {c− ε ≤ f ≤ c + ε}, ∀s ≥ 0, we deduce

Tx =
�

t ≥ 0; dist (xs, Kc) ≥
r

2
, ∀s ∈ [0, t]

�
.

Hence
dist (xt, Kc) ≥ dist (x,Kc)− d(x, xt) > r − r

8
, ∀t ∈ Tx

This implies that T = supTx = ∞. Indeed, if T < ∞ then

dist (xT , Kc) ≥ r − r

8
>

r

2
=⇒ dist (xt, Kc) >

r

2
, ∀t sufficiently close to T .

This contradicts the maximality of T .
Hence we deduce

xt ∈ Z ⇐⇒ c− ε < f(xt) ≤ c + ε, dist (xt, Kc) >
r

2
, ∀t ≥ 0.

This is impossible, since there exists a positive constant ν such that

|ξ(x)| > ν, ∀x ∈ Z,

which implies that

df(xt)
dt

≤ −b(r)ν =⇒ lim
t→∞

f(xt) = −∞,
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which is incompatible with the condition 0 ≤ f(x) − f(xt) ≤ 2ε for every
t ≥ 0.
Step 3. We will prove that Φ1(x) ∈ M c−ε by showing that there exists t ∈
(0, 1] such that xt ∈ M c−ε. Let

t0 := inf
�
t ≥ 0; xt ∈ M c−ε

�
.

From Step 2 we see that t0 is well defined and f(xt0) = c− ε. We claim that
the path

[0, t0] � s �→ xs

does not intersect the neighborhood Nr/2(Kc), i.e.,

dist (xs, Kc) ≥
r

2
, ∀s ∈ [0, t0].

Indeed, from Step 1 we deduce

dist (xs, Kc) > r − r

8
, ∀s ∈ [0, t0).

Now observe that

df(xs)
ds

= −|∇f |2ϕ(|∇f |2) ≥ −max(1, b(r)2).

Thus, for every s ∈ [0, t0] we have

f(x)− f(xs) ≥ smax(1, b(r)2) =⇒ f(xs) ≤ c + ε− smax(1, b(r)2).

If we let s = t0 in the above inequality and use the equality f(xt0) = c − ε,
we deduce

c− ε ≤ c + ε− t0 max(1, b(r)2) =⇒ t0 ≤
2ε

max(1, b(r)2)

(2.19)
≤ 1.

This completes the proof of the deformation lemma. ��

We now have the following consequence of Theorem 2.54.

Corollary 2.56. Suppose γ : CM → Z̄≥0 is an index theory on M . Then any
smooth function on M has at least γ(M) critical points. ��

To complete the story we need to produce interesting index theories on
M . It turns out that the Lusternik–Schnirelmann category of a space is such
a theory.
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Definition 2.57. (a) A subset S ⊂ M is said to be contractible in M if the
inclusion map S �→ M is homotopic to the constant map.
(b) For every closed subset C ⊂ M we define its Lusternik–Schnirelmann
category of C in M and denote it by catM (C), to be the smallest positive
integer k such that there exists a cover of C by closed subsets

S1, . . . , Sk ⊂ M

that are contractible in M . If such a cover does not exist, we set

catM (C) := ∞. ��

Theorem 2.58 (Lusternik–Schnirelmann). If M is a compact smooth
manifold, then the correspondence

CM � C �→ catM (C)

defines an index theory on M . Moreover, if R denotes one of the rings
Z/2, Z, Q then

cat(M) := catM (M) ≥ CL (M,R) + 1,

where CL (M, R) denotes the cuplength of M with coefficients in R, i.e., the
largest integer k such that there exists

α1, . . . ,αk ∈ H•(M,R)

with the property that
α1 ∪ · · · ∪ αk �= 0.

Proof. It is very easy to check that catM satisfies all the axioms of an index
theory: normalization, topological invariance, monotonicity, and subadditivity,
and we leave this task to the reader. The lower estimate of cat(M) requires a
bit more work. We argue by contradiction. Let

� := CL (M, R)

and assume that cat(M) ≤ �. Then there exist α1, . . . ,α� ∈ H•(M, R) and
closed sets S1, . . . , S� ⊂ M , contractible in M , such that

M =
��

k=1

Sk, α1 ∪ · · · ∪ α� �= 0.

Denote by jk the inclusion Sk �→ M .
Since Sk is contractible in M , we deduce that the induced map



2.7 Min–Max Theory 85

j∗
k

: H•(M, R) → H•(Sk, R)

is trivial. In particular, the long exact sequence of the pair (M,Sk) shows that
the natural map

ik : H•(M,Sk;R) → H•(M)

is onto. Hence there exists βk ∈ H•(M, Sk) such that

ik(βk) = αk.

Now we would like to take the cup products of the classes βk, but we hit a
technical snag. The cup product in singular cohomology,

H•(M,Si;R)×H•(M,Sj ;R) → H•(M,Si ∪ Sj ;R),

is defined only if the sets Si, Sj are “reasonably well behaved” (“excisive” in
the terminology of [Spa, Section 5.6]). Unfortunately, we cannot assume this.
There are two ways out of this technical conundrum. Either we modify the
definition of catM to allow only covers by closed, contractible, and excisive
sets, or we work with a more supple cohomology. We adopt this second option
and we choose to work with Alexander cohomology H̄•(−, R), [Spa, Section
6.4].

This cohomology theory agrees with the singular cohomology for spaces
which which are not too “wild”. In particular, we have an isomorphism
H̄•(M,R) ∼= H•(M,R), and thus we can think of the αk’s as Alexander
cohomology classes.

Arguing exactly as above, we can find classes βk ∈ H̄•(M,Sk;R) such that

ik(βk) = αk.

In Alexander cohomology there is a cup product

∪ : H̄•(M,A;R)× H̄•(M,B;R) → H̄•(M,A ∪B;R),

well defined for any closed subsets of M . In particular, we obtain a class

β1 ∪ · · · ∪ βl ∈ H̄•(M,S1 ∪ · · · ∪ S�;R)

that maps to α1 ∪ · · · ∪ α� via the natural morphism

H̄•(M,S1 ∪ · · · ∪ S�;R) → H̄•(M,R).

Now observe that Ĥ•(M,S1 ∪ · · · ,∪S�;R) = 0, since S1 ∪ · · · ∪ S� = M . We
reached a contradiction since α1 ∪ · · · ∪ α� �= 0. ��

Example 2.59. Since CL (RPn, Z/2) = CL((S1)n, Z) = CL (CPn, Z) = n we
deduce

cat(RPn) ≥ n + 1, cat( (S1)n ) ≥ n + 1, cat(CPn) ≥ n + 1.

��
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Corollary 2.60. Every even smooth function f : Sn → R has at least 2(n+1)
critical points.

Proof. Observe that f descends to a smooth function f̄ on RPn which has at
least cat(RPn) ≥ n + 1 critical points. Every critical point of f̄ is covered by
precisely two critical points of f . ��



3

Applications

It is now time to reap the benefits of the theoretical work we sowed in the
previous chapter. Most applications of Morse theory that we are aware of share
one thing in common. More precisely, they rely substantially on the special
geometric features of a concrete situation to produce an interesting Morse
function, and then squeeze as much information as possible from geometrical
data. Often this process requires deep and rather subtle incursions into the
differential geometry of the situation at hand. The end result will display
surprising local-to-global interactions.

The applications we have chosen to present follow this pattern and will
lead us into unexpected geometrical places that continue to be at the center
of current research.

3.1 The Cohomology of Complex Grassmannians

Denote by Gk,n the Grassmannian of complex k-dimensional subspaces of an
n-dimensional complex vector space. The Grassmannian Gk,n is a complex
manifold of complex dimension k(n − k) (see Exercise 5.22) and we have a
diffeomorphism

Gk,n = Gn−k,n

which associates to each k-dimensional subspace its orthogonal complement
with respect to a fixed Hermitian metric on the ambient space. Denote by
Pk,n(t) the Poincaré polynomial of Gk,n with rational coefficients.

Proposition 3.1. For every 1 ≤ k ≤ n the polynomial Pk,n(t) is even, i.e.,
the odd Betti numbers of Gk,n are trivial. Moreover,

Pk,n+1(t) = Pk,n(t) + t2(n+1−k)Pk−1,n(t)

∀1 ≤ k ≤ n.
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Proof. We carry out an induction on ν = k + n. The statement is trivially
valid for ν = 2, i.e., (k, n) = (1, 1).

Suppose U is a complex n-dimensional vector space equipped with a Her-
mitian metric (•, •). Set V := C ⊕ U and denote by e0 the standard basis
of C. The metric on U defines a metric on V , its direct sum with the stan-
dard metric on C. For every complex Hermitian vector space W we denote by
Gk(W ) the Grassmannian of k-dimensional complex subspaces of W and by
S(W ) the linear space of Hermitian linear operators T : W → W . Note that
we have a natural map

Gk(W ) → S(W ), L �→ PL,

where PL : W → W denotes the orthogonal projection on L. This map is a
smooth embedding. (See Exercise 5.22.)

Denote by A : C ⊕ U → C ⊕ U the orthogonal projection onto C. Then
A ∈ S(V ) and we define

f : S(V ) → R, f(T ) = Re tr(AT ).

This defines a smooth function on Gk(V ),

L �→ f(L) = Re tr(APL) = (PLe0, e0).

Equivalently, f(L) = cos2 �(e0, L). Observe that we have natural embeddings
Gk(U) �→ Gk(V ) and

Gk−1(U) → Gk(V ), Gk−1(U) � L �→ Ce0 ⊕ L.

Lemma 3.2.

0 ≤ f ≤ 1, ∀L ∈ Gk(V ),

f−1(0) = Gk(U), f−1(1) = Gk−1(U).

Proof. If L ⊂ V is a k-dimensional subspace, we have 0 ≤ (PLe0, e0) ≤ 1.
Observe that

(PLe0, e0) = 1 ⇐⇒ e0 ∈ L,

(PLe0, e0) = 0 ⇐⇒ e0 ∈ L⊥ ⇐⇒ L ⊂ (e0)⊥ = U.

Hence for i = 0, 1 we have Si = {f = i} = Gk−i(U). ��

Lemma 3.3. The only critical values of f are 0 and 1.

Proof. Let L ∈ Gk(V ) such that 0 < f(L) < 1. This means that

0 < (PLe0, e0) = cos2 �(e0, L) < 1.
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In particular, L intersects the hyperplane U ⊂ V transversally along a k − 1-
dimensional subspace L� ⊂ L. Fix an orthonormal basis e1, . . . , ek−1 of L� and
extend it to an orthonormal basis e1, . . . , en of U . Then

L = L� + Cv, v = c0e0 +
�

j≥k

cjej , |c0|2 +
�

j≥k

|cj |2 = 1

and (PLe0, e0) = |c0|2. If we choose

v(t) = a0(t)e0 +
�

j≥k

aj(t)ej , |a0(t)|2 = 1−
�

j≥k

|aj(t)|2,

such that a0(t) and aj(t) depend smoothly on t, d|a0|2
dt

|t=0 �= 0, a0(0) = c0,then

t �−→ Lt = L� + Cv(t)

is a smooth path in Gk(V ) and df

dt
(Lt)|t=0 �= 0. This proves that L0 = L is a

regular point of f . ��

Lemma 3.4. The level sets Si = f−1(i), i = 0, 1, are nondegenerate critical
manifolds.

Proof. Observe that S0 is a complex submanifold of Gk(V ) of complex dimen-
sion k(n− k) and thus complex codimension

codimC (S0) = k(n + 1− k)− k(n− k) = k.

Similarly,

codimC (S1) = (n + 1− k)k − (n + 1− k)(k − 1) = (n− k + 1).

To prove that S0 is a nondegenerate critical manifold it suffices to show that
for every L ∈ S0 = Gk(U) there exists a smooth map Φ : Ck → Gk(V ) such
that

Φ(0) = L, Φ is an immersion at 0 ∈ Ck,

and
f ◦ Φ has a nondegenerate minimum at 0 ∈ Ck.

For every u ∈ U denote by Xu : V → V the skew-Hermitian operator
defined by

Xu(e0) = u, Xu(v) = −(v, u)e0, ∀v ∈ U.

Observe that the map U � u �→ Xu ∈ HomC(V, V ) is R-linear. The operator
Xu defines a 1-parameter family of unitary maps etXu : V → V . Set

Φ(u) := eXuL, P (u) := PΦ(u).

Then
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P (u) = eXuPLe−Xu , Ṗu =
dP (tu)

dt
|t=0 = [Xu, PL]

and
(Ṗue0, u) = −(PLXu(e0), u) = −|u|2,

so that if u ∈ L we have
Ṗu = 0 =⇒ u = 0.

This proves that the map

L → Gk(V ), L � u �−→ Φ(u) ∈ Gk(V ),

is an immersion at u = 0. Let us compute f(Φ(u)). We have

f(Φ(u)) = (P (u)e0, e0) = (PLe−Xue0, e
−Xue0)

=
�

PL(1−Xu +
1
2
X2

u
− · · · )e0, (1−Xu +

1
2
X2

u
− · · · )e0

�

=
�
PLXue0, Xue0

�
+ · · · = |u|2 + · · · ,

where at the last step we used the equalities Xue0 = u, PLu = u, PLe0 = 0.
Hence

d2f
�
Φ(tu)

�

dt2
|t=0 = 2(PLXue0, Xue0) = 2|u|2.

This shows that 0 ∈ L is a nondegenerate minimum of L � u �→ f(Φ(u)) ∈ R,
and since dimC L = codimC S0, we deduce that S0 is a nondegenerate critical
manifold.

Let L ∈ S1. Denote by L0 the intersection of L and U and by L�0 the
orthogonal complement of L0 in U . Observe that

dimC L�0 = n− k + 1 = codimC S1,

and we will show that the smooth map

Φ : L�0 → Gk(V ), u �→ Φ(u) = eXuL

is an immersion at 0 ∈ L�0 and that f ◦Φ has a nondegenerate maximum at 0.
Again we set P (u) = PΦ(u) and we have

Ṗu :=
dP (tu)

dt
|t=0 = [Xu, PL],

Ṗue0 = XuPLe0 − PLXue0 = Xue0 = u =⇒ (Ṗue0, u) = |u|2.

Now observe that

f
�
Φ(u)

�
=

�
PLe−Xue0, e−Xue0

�

=
�

PL(1−Xu +
1
2
X2

u
+ · · · )e0, (1−Xu +

1
2
X2

u
+ · · · )e0

�
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(Xue0 = u, PLXue0 = 0)

=
�

e0 +
1
2
X2

u
e0 + · · · , e0 − u +

1
2
X2

u
e0

�

= |e0|2 +
1
2
(X2

u
e0, e0) +

1
2
(e0, X

2
u
e0) + · · ·

(X∗
u

= −Xu)

= 1− (Xue0, Xue0) + · · · = 1− |u|2 + · · · .

This shows that S1 is a nondegenerate critical manifold. ��

Remark 3.5. The above computations can be refined to prove that the normal
bundle of S0 = Gk(U) �→ Gk(V ) is isomorphic as a complex vector bundle to
the dual of the tautological vector bundle on the Grassmannian Gk(U), while
the normal bundle of S1 = Gk−1(U) �→ Gk(V ) is isomorphic to the dual of
the tautological quotient bundle on the Grassmannian Gk−1(U). ��

We have
λ(f, S0) = 0, λ(f, S1) = 2(n + 1− k).

The negative bundles E−(Si) are orientable since they are complex vector
bundles

E−(S0) = 0, E−(S1) = TS1Gk(V ).

Since S0
∼= Gk,n, S1

∼== Gk−1,n, we deduce from the induction hypothesis
that the Poincaré polynomials PSi(t) are even. Hence the function f is a
perfect Morse–Bott function, and we deduce

PGk(V ) = PS0(t) + t2(n+1−k)PS1(t),

or
Pk,n+1(t) = Pk,n(t) + t2(n+1−k)Pk−1,n(t). ��

Let us make a change in variables

Qk,� = Pk,n, � = (n− k).

The last identity can be rewritten

Qk,�+1 = Qk,� + t2(�+1)Qk−1,�+1.

On the other hand, Qk,� = Q�,k, and we deduce

Qk,�+1 = Q�+1,k = Q�+1,k−1 + t2kQ�,k.

Subtracting the last two equalities, we deduce

(1− t2k)Qk,� = (1− t2(�+1))Qk−1,�+1.
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We deduce

Qk,� =
(1− t2(�+1))

(1− t2k)
Qk−1,�+1 =⇒ Pk,n =

(1− t2(n−k+1))
(1− t2k)

Pk−1,n.

Iterating, we deduce that the Poincaré polynomial of the complex Grassman-
nian Gk,n is

Pk,n(t) =

�
n

j=(n−k+1)(1− t2j)
�

k

i=1(1− t2i)
=

�
n

i=1(1− t2i)
�

k

j=1(1− t2j)
�

n−k

i=1 (1− t2i)
.

3.2 Lefschetz Hyperplane Theorem

A Stein manifold is a complex submanifold M of Cν such that the natural
inclusion M �→ Cν is a proper map. Let m denote the complex dimension of
M and denote by ζ = (ζ1, . . . , ζν) the complex linear coordinates on Cν . We
set i =

√
−1.

Example 3.6. Suppose M ⊂ Cν is an affine algebraic submanifold of Cν , i.e.
there exist polynomials P1, . . . , Pr ∈ C[ζ1, . . . , ζν ] such that

M =
�

ζ ∈ Cν ; Pi(ζ) = 0, ∀i = 1, . . . , r
�
.

Then M is a Stein manifold. ��

Suppose M �→ Cν is a Stein manifold. Modulo a translation of M we
can assume that the function f : Cν → R, f(ζ) = |ζ|2 restricts to a Morse
function which is necessarily exhaustive because M is properly embedded.
The following theorem due to A. Andreotti and T. Frankel [AF] is the main
result of this section.

Theorem 3.7. The Morse indices of critical points of f |M are not greater
than m. ��

Corollary 3.8. A Stein manifold of complex dimension m has the homotopy
type of an m-dimensional CW complex.1 In particular,

Hk(M, Z) = 0, ∀k > m. ��

1 With a bit of extra work one can prove that if X is affine algebraic, then f has
only finitely many critical points, so X is homotopic to a compact CW complex.
There exist, however, Stein manifolds for which f has infinitely many critical
values.
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Before we begin the proof of Theorem 3.7 we need to survey a few basic
facts of complex differential geometry.

Suppose M is a complex manifold of complex dimension m. Then the (real)
tangent bundle TM is equipped with a natural automorphism

J : TM → TM

satisfying J2 = −1 called the associated almost complex structure. If (zk)1≤k≤m

are complex coordinates on M , zk = xk + iyk, then

J∂xk = ∂yk , J∂yk = −∂xk .

We can extend J by complex linearity to the complexified tangent bundle
cTM := TM ⊗R C, Jc : cTM → cTM . The equality J2 = −1 shows that ±i
are the only eigenvalues of Jc. If we set

TM1,0 := ker(i− Jc), TM0,1 := ker(i + Jc),

then we get a direct sum decomposition

cTM = TM1,0 ⊕ TM0,1.

Locally TM1,0 is spanned by the vectors

∂zk =
1
2
(∂xk − i∂yk), k = 1, . . . ,m,

while TM0,1 is spanned by

∂z̄k =
1
2
(∂xk + i∂yk), k = 1, . . . ,m.

We denote by Vectc(M) the space of smooth sections of cTM , and by Vect(M)
the space of smooth sections of TM , i.e., real vector fields on M .

Given V ∈ Vect(M) described in local coordinates by

V =
�

k

�
ak∂xk + bk∂yk

�
,

and if we set vk = ak + ibk, we obtain the (local) equalities

V =
�

k

(vk∂zk + v̄k∂z̄k), JV =
�

k

(ivk∂zk − iv̄k∂z̄k). (3.1)

The operator J induces an operator J t : T ∗M → T ∗M that extends by
complex linearity to cT ∗M . Again we have a direct sum decomposition

cT ∗M = T ∗M1,0 ⊕ T ∗M0,1,

T ∗M1,0 = ker(i− J t

c
), T ∗M0,1 = ker(i + J t

c
).



94 3 Applications

Locally, T ∗M1,0 is spanned by dzk = dxk + idyk, while T ∗M0,1 is spanned by
dz̄k = dxk − idyk. The decomposition

cT ∗M = T ∗M1,0 ⊕ T ∗M0,1

induces a decomposition of Λr cT ∗M ,

Λr cT ∗M =
�

p+q=r

Λp,qT ∗M, Λp,qT ∗M = ΛpT ∗M1,0 ⊗C ΛqT ∗M0,1.

The bundle Λp,qT ∗M is locally spanned by the forms dzI ∧ dz̄J , where I, J
are ordered multi-indices of length |I| = p, |J | = q,

I = (i1 < i2 < · · · < ip), J = (j1 < · · · < jq),

and
dzI = dzi1 ∧ · · · ∧ dzip , dz̄J = dz̄j1 ∧ · · · ∧ dz̄jq .

We denote by Ωp,q(M) the space of smooth sections of Λp,qT ∗M and by
Ωr(M, C) the space of smooth sections of Λr cT ∗M . The elements of Ωp,q(M)
are called (p, q)-forms.

The exterior derivative of a (p, q)-form α admits a decomposition

dα = (dα)p+1,q + (dα)p,q+1.

We set
∂α := (dα)p+1,q, ∂̄α := (dα)p,q+1.

If f is a (0, 0)-form (i.e., a complex valued function on M), then locally we
have

∂f =
�

k

(∂zkf)dzk, ∂̄f =
�

k

(∂z̄kf)dz̄k.

In general, if
α =

�

|I|=p,|J|=q

αIJdzI ∧ dz̄J , αIJ ∈ Ω0,0

then

∂α =
�

|I|=p,|J|=q

∂αIJ ∧ dzI ∧ dz̄J , ∂̄α =
�

|I|=p,|J|=q

∂̄αIJ ∧ dzI ∧ dz̄J .

We deduce that for every f ∈ Ω0,0(M) we have the local equality

∂∂̄f =
�

j,k

∂zj ∂z̄kfdzj ∧ dz̄k. (3.2)

If U =
�

j
(aj∂xk +bj∂yj ) and V =

�
k
(ck∂xk +dk∂yk) are locally defined real

vector fields on M and we set
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uj = (aj + ibj), vk = (ck + idk),

then using (3.2) we deduce

∂∂̄f(U, V ) =
�

j,k

(∂zj ∂z̄kf)(uj v̄k − ūkvj). (3.3)

Lemma 3.9. Suppose f : M → R is a smooth real valued function on the
complex manifold M and p0 is a critical point of M . Denote by H the Hessian
of f at p0. We define the complex Hessian of f at p0 to be the R-bilinear map

Cf : Tp0M × Tp0M → R,

Cf (U, V ) := H(U, V ) + H(JU, JV ), ∀U, V ∈ Tp0M.

Then
Cf (U, V ) = i∂∂̄f(U, JV ).

Proof. Fix complex coordinates (z1, . . . , zm) near p0 such that zj(p0) = 0. Set
f0 = f(p0). Near p0 we have a Taylor expansion

f(z) = f0 +
1
2

�

jk

�
ajkzjzk + bjkz̄j z̄k + cjkzj z̄k

�
+ · · · .

Since f is real valued, we deduce

bjk = ājk, cjk = c̄kj = (∂zj ∂z̄kf)(0).

Given real vectors

U =
�

j

(uj∂zj + ūj∂z̄j ) ∈ Tp0M, V =
�

k

(vk∂zk + v̄k∂z̄k ),

we set H(U) := H(U, U), and we have

H(U) =
�

jk

�
ajkujuk + bjkūj ūk + cjkuj ūk

�
.

Using the polarization formula

H(U, V ) =
1
4
�
H(U + V )−H(U − V )

�

we deduce

H(U, V ) =
�

j,k

�
ajkujvk + bjkūj v̄k) +

1
2

�

j,k

cjk(uj v̄k + ūjvk).
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Using (3.1) we deduce

H(JU, JV ) = −
�

j,k

�
ajkujvk + bjkūj v̄k) +

1
2

�

j,k

cjk(uj v̄k + ūjvk),

so that

Cf (U, V ) = H(U, V ) + H(JU, JV ) =
�

j,k

cjk(uj v̄k + ūjvk).

Using (3.1) again we conclude that

C(U, JV ) =
�

j,k

cjk(−iuj v̄k + iūjvk)

= −i
�

j,k

cjk(uj v̄k − ūjvk)
(3.3)
= −i∂∂̄f(U, V ).

Replacing V by −JV in the above equality we obtain the desired conclusion.
��

Lemma 3.10 (Pseudoconvexity). Consider the function

f : Cν → R, f(ζ) =
1
2
|ζ|2.

Then for every q ∈ Cν and every real tangent vector U ∈ TqCν we have

i(∂∂̄f)q(U, JU) = |U |2.

Proof. We have

f =
1
2

�

k

ζk ζ̄k, ∂∂̄f =
1
2

�

k

dζk ∧ dζ̄k.

If
U =

�

k

( uk∂ζk + ūk∂
ζ̄k ) ∈ TqCν ,

then
JU = i

�

k

( uk∂ζk − ūk∂
ζ̄k )

and
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(∂∂̄f)p0(U, JU) =
1
2

�

k

dζk ∧ dζ̄k(U, JU)

=
1
2

�

k

����
dζk(U) dζk(JU)
dζ̄k(U) dζ̄k(JU)

����

=
1
2

�

k

�
dζk(U)dζ̄k(JU)− dζk(JU)dζ̄k(U)

�

= −i
�

k

ukūk = −i|U |2.

��

Proof of Theorem 3.7 Let M �→ Cν be a Stein manifold of complex
dimension m and suppose f : Cν → R, f(ζ) = 1

2 |ζ|
2 restricts to a Morse

function on M . Suppose p0 is a critical point of f |M and denote by H the
Hessian of f |M at p0. We want to prove that λ(f, p0) ≤ m. Equivalently, we
have to prove that if S ⊂ Tp0M is a real subspace such that the restriction of
H to S is negative definite, then

dimR S ≤ m.

Denote by J : TM → TM the associated almost complex structure. We will
first prove that S ∩ JS = 0. We argue by contradiction.

Suppose S ∩ JS �= 0. Then there exists U ∈ S \ 0 such that JU ∈ S. Then

H(U, U) < 0, H(JU, JU) < 0 =⇒ Cf (U,U) = H(U, U) + H(JU, JU) < 0.

Lemma 3.9 implies

0 > Cf (U, U) = i(∂∂̄f |M )p0(U, JU) = i(∂∂̄f)p0(U, JU),

while the pseudoconvexity lemma implies

0 > i(∂∂̄f)p0(U, JU) = |U |2,

which is clearly impossible. Hence S ∩ JS = 0 and we deduce

2m = dimR Tp0M ≥ dimR S + dimR JS = 2dimR S. ��

Let us discuss a classical application of Theorem 3.7. Suppose V ⊂ CPν

is a smooth complex submanifold of complex dimension m described as the
zero set of a finite collection of homogeneous polynomials2

Q1, . . . , Qr ∈ C[z0, . . . , zν ].

2 By Chow’s theorem, every complex submanifold of CPν can be described in this
fashion [GH, I.3].
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Consider a hyperplane H ⊂ CPn. Modulo a linear change in coordinates we
can assume that it is described by the equation z0 = 0. Its complement can be
identified with Cν with coordinates ζk = z

k

z0 . Denote by M the complement
of V∞ := V ∩H in V ,

M = V \ V∞.

Let us point out that V∞ need not be smooth. Notice that M is a submanifold
of Cν described as the zero set of the collection of polynomials

Pj(ζ1, . . . , ζν) = Qj(1, ζ1, . . . , ζν),

and thus it is an affine algebraic submanifold of Cν . In particular, M is a Stein
manifold. By Theorem 3.7 we deduce

Hm+k(M, Z) = 0, ∀k > 0.

On the other hand, we have the Poincaré–Lefschetz duality isomorphism [Spa,
Theorem 6.2.19]3

Hj(V \ V∞, Z) → H2m−j(V, V∞; Z),

and we deduce
Hm−k(V, V∞; Z) = 0, ∀k > 0.

The long exact sequence cohomological sequence of the pair (V, V∞),

· · ·→ Hm−k(V, V∞; Z) → Hm−k(V, Z) → Hm−k(V∞; Z) δ→
→ Hm−(k−1)(V, V∞; Z) → · · · ,

implies that the natural morphism

Hm−k(V, Z) → Hm−k(V∞; Z)

is an isomorphism if k > 1, and it is an injection if k = 1. Note that

k > 1 ⇐⇒ m− k <
1
2

dimR V∞, k = 1 ⇐⇒ m− k =
1
2

dimR V∞.

We have obtained the celebrated Lefschetz hyperplane theorem.

Theorem 3.11 (Lefschetz). If V is a projective algebraic manifold and V∞
is the intersection of V with a hyperplane ,then the natural restriction mor-
phism

Hj(V, Z) → Hj(V∞, Z)

is an isomorphism for j < 1
2 dimR V∞ and an injection for j = 1

2 dimR V∞. ��

3 This duality isomorphism does not require V∞ to be smooth. Only V \ V∞ needs
to be smooth; V∞ is automatically tautly embedded, since it is triangulable.
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3.3 Symplectic Manifolds and Hamiltonian Flows

A symplectic pairing on a finite dimensional vector space V is, by definition,
a nondegenerate skew-symmetric bilinear form ω on V . The nondegeneracy
means that the induced linear map

Iω : V → V ∗, v �→ ω(v, •),

is an isomorphism. We will identify a symplectic pairing with an element of
Λ2V ∗ called a symplectic form.

Suppose ω is a symplectic pairing on the vector space V . An almost complex
structure tamed by ω is an R-linear operator J : V → V such that J2 = − V

and the bilinear form

g = gω,J : V × V → R, g(u, v) = ω(u, Jv)

is symmetric and positive definite. We denote by Jω the space of almost com-
plex structures tamed by ω.

Proposition 3.12. Suppose ω is a symplectic pairing on the real vector space
V . Then Jω is a nonempty contractible subset of End(V ). In particular, the
dimension of V is even, dim V = 2n, and for every J ∈ Jω there exists a
gω,J -orthonormal basis (e1, f1, . . . , en, fn) of V such that

Jei = fi, Jfi = −ei, ∀i and ω(u, v) = g(Ju, v),∀u, v ∈ V.

We say that the basis (ei, fi) is adapted to ω.

Proof. Denote by MV the space of Euclidean metrics on V , i.e., the space of
positive definite, symmetric bilinear forms on V . Then MV is a contractible
space.

Any h ∈ MV defines a linear isomorphism Ah : V → V uniquely deter-
mined by

ω(u, v) = h(Ahu, v).

We say that h is adapted to ω if A2
h

= − V . We denote by Mω the space of
metrics adapted to ω. We have thus produced a homeomorphism

Mω → Jω, h �→ Ah,

and it suffices to show that Mω is nonempty and contractible. More precisely,
we will show that Mω is a retract of MV .

Fix a metric h ∈ MV . For every linear operator B : V → V we denote by
B∗ the adjoint of B with respect to h. Since ω is skew-symmetric, we have

A∗
h

= −Ah.

Set Th = (A∗
h
Ah)1/2 = (−A2

h
)1/2. Observe that Ah commutes with Th. We

define a new metric
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ĥ(u, v) := h(Thu, v) ⇐⇒ h(u, v) = ĥ(T−1
h

u, v).

Then
ω(u, v) = h(Ahu, v) = ĥ(T−1

h
Ahu, v) =⇒ A

ĥ
= T−1

h
Ah.

We deduce that
A2

ĥ
= T−2

h
A2

h
= − V ,

so that ĥ ∈ Mω and therefore Mω �= ∅. Now observe that ĥ = h ⇐⇒ h ∈ Mω.
This shows that the correspondence h �→ ĥ is a retract of MV onto Mω. ��

If ω is a symplectic pairing on the vector space V and (ei, fi) is a basis of
V adapted to ω, then

ω =
�

i

ei ∧ f i,

where (ei, f i) denotes the dual basis of V ∗. Observe that

1
n!

ωn = e1 ∧ f1 ∧ · · · ∧ en ∧ fn.

Definition 3.13. (a) A symplectic structure on a smooth manifold M is a
2-form ω ∈ Ω2T ∗M satisfying
• dω = 0.
• For every x ∈ M the element ωx ∈ Λ2T ∗

x
M is a symplectic pairing on TxM .

We will denote by Iω : TM → T ∗M the bundle isomorphism defined by ω
and we will refer to it as the symplectic duality.
(b) A symplectic manifold is a pair (M,ω), where ω is a symplectic form on
the smooth manifold M . A symplectomorphism of (M,ω) is a smooth map
f : M → M such that

f∗ω = ω. ��

Observe that if (M, ω) is a symplectic manifold, then M must be even
dimensional, dim M = 2n, and the form dvω := 1

n!ω
n is nowhere vanishing.

We deduce that M is orientable. We will refer to dvω as the symplectic volume
form, and we will refer to the orientation defined by dvω as the symplectic
orientation. Note that if f : M → M is symplectomorphism then

f∗(dvω) = dvω.

In particular, f is a local diffeomorphism.

Example 3.14 (The standard model). Consider the vector space Cn with
Euclidean coordinates zj = xj + iyj . Then

Ω =
n�

j=1

dxj ∧ dyj =
i

2

n�

j=1

dzj ∧ dz̄j = − Im

�

j

dzj ⊗ dz̄j
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defines a symplectic structure on Cn. We will refer to (Cn,Ω) as the standard
model.

Equivalently, the standard model is the pair ( R2n,Ω ), where Ω is as above.
��

Example 3.15 (The classical phase space). Suppose M is a smooth man-
ifold. The classical phase space, denoted by Φ(M), is the total space of the
cotangent bundle of M . The space Φ(M) is equipped with a canonical sym-
plectic structure. To describe it denote by π : Φ(M) → M the canonical
projection. The differential of π is a bundle morphism

Dπ : TΦ(M) → π∗TM.

Since π is a submersion, we deduce that Dπ is surjective. In particular, its
dual

(Dπ)t : π∗T ∗M → T ∗Φ(M)

is injective, and thus we can regard the pullback π∗T ∗M of T ∗M to Φ(M) as
a subbundle of T ∗Φ(M).

The pullback π∗T ∗M is equipped with a tautological section θ defined as
follows. If x ∈ M and v ∈ T ∗

x
M , so that (v, x) ∈ Φ(M), then

θ(v, x) = v ∈ T ∗
x
M = (π∗T ∗M)(v,x).

Since π∗T ∗M is a subbundle of T ∗Φ(M), we can regard θ as a 1-form on T ∗M .
We will refer to it as the tautological 1-form on the classical phase space.

If we choose local coordinates (x1, . . . , xn) on M we obtain a local frame
(dx1, . . . , dxn) of T ∗M . Any point in ϕ ∈ T ∗M is described by the num-
bers (ξ1, . . . , ξn, x1, . . . , xn), where x = (xi) are the coordinates of π(ϕ) and�

ξidxi describes the vector in T ∗
π(ϕ)M corresponding to ϕ. The tautological

1-form is described in the coordinates (ξi, xj) by

θ =
�

i

ξidxi.

Set ω = −dθ. Clearly ω is closed. Locally,

ω =
�

i

dxi ∧ dξi,

and we deduce that ω defines a symplectic structure on Φ(M). The pair
(Φ(M), ω) is called the classical symplectic phase space.

Let us point out a confusing fact. Suppose M is oriented, and the orienta-
tion is described locally by the n-form dx1∧ · · ·∧dxn. This orientation induces
an orientation on T ∗M , the topologists orientation ortop described locally by
the fiber-first convention
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dξ1 ∧ · · · ∧ dξn ∧ dx1 ∧ · · · ∧ dxn.

This can be different from the symplectic orientation orsymp defined by

dx1 ∧ dξ1 ∧ · · · ∧ dxn ∧ dξn.

This discrepancy is encoded in the equality

ortop = (−1)n(n+1)/2
orsymp. ��

Example 3.16 (Kähler manifolds). Suppose M is a complex manifold. A
Hermitian metric on M is then a Hermitian metric h on the complex vector
bundle TM1,0. At every point x ∈ M the metric h defines a complex valued
R-bilinear map

hx : TxM1,0 × TxM1,0 → C

such that for X,Y ∈ TxM1,0 and z ∈ C we have

zhx(X,Y ) = hx(zX, Y ) = hx(X, z̄Y ),

hx(Y,X) = hx(X,Y ), hx(X,X) > 0, if X �= 0.

We now have an isomorphism of real vector spaces TxM → TxM1,0 given by

TxM � X �→ X1,0 =
1
2
(X − iJX) ∈ TM1,0,

where J ∈ End(TM) denotes the almost complex structure determined by
the complex structure. Now define

gx, ωx : TxM × TxM → R

by setting

gx(X,Y ) = Rehx(X1,0, Y 1,0) and ωx(X,Y ) = − Imhx(X1,0, Y 1,0),

where gx is symmetric and ωx is skew-symmetric. Note that

ωx(X, JX) = − Imhx(X1,0, (JX)1,0)

= − Imhx(X1,0, iX1,0) = Rehx(X1,0, X1,0).

Thus ωx defines a symplectic pairing on TxM , and the almost complex struc-
ture J is tamed by ωx.

Conversely, if ω ∈ Ω2(M) is a nondegenerate 2-form tamed by the complex
structure J , then we obtain a Hermitian metric on M .

A Kähler manifold is a complex Hermitian manifold (M, h) such that the
associated 2-form ωh = − Imh is symplectic.

By definition, a Kähler manifold is symplectic. Moreover, any complex
submanifold of a Kähler manifold has an induced symplectic structure.
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For example, the Fubini–Study form on the complex projective space CPn

defined in projective coordinates z = [z0, z1, . . . , zn] by

ω = i∂∂̄ log |z|2, |z|2 =
n�

k=0

|zk|2,

is tamed by the complex structure, and thus CPn is a Kähler manifold. In
particular, any complex submanifold of CPn has a symplectic structure. The
complex submanifolds of CPn are precisely the projective algebraic manifolds,
i.e., the submanifolds of CPn defined as the zero sets of a finite family of
homogeneous polynomials in n + 1 complex variables. ��

Example 3.17 (Codajoint orbits). To understand this example we will
need a few basic facts concerning homogeneous spaces. For proofs and more
information we refer to [Helg, Chapter II].

A smooth right action of a Lie group G on the smooth manifold M is a
smooth map

M ×G → M, G×M � (x, g) �→ Rg(x) := x · g

such that

R1 = M , (x · g) · h = x · (gh), ∀x ∈ M, g, h ∈ G.

The action is called effective if Rg �= M , ∀g ∈ G \ {1}.
Suppose G is a compact Lie group and H is a subgroup of G that is closed

as a subset of G. Then H carries a natural structure of a Lie group such
that H is a closed submanifold of G. The space H\G of right cosets of H
equipped with the quotient topology carries a natural structure of a smooth
manifold. Moreover, the right action of G on H\G is smooth, transitive, and
the stabilizer of each point is a closed subgroup of G conjugated to H.

Conversely, given a smooth and transitive right action of G on a smooth
manifold M , then for every point m0 ∈ M there exists a G-equivariant dif-
feomorphism M → Gm0\G, where Gm0 denotes the stabilizer of m0. Via this
isomorphism the tangent space of M at m0 is identified with the quotient
T1G/T1Gm0 .

Suppose G is a compact connected Lie group. We denote by LG the Lie
algebra of G, i.e., the vector space of left invariant vector fields on G. As a
vector space it can be identified with the tangent space T1G. The group G
acts on itself by conjugation,

Cg : G → G, h �→ ghg−1.

Note that Cg(1) = 1. Denote by Adg the differential of Cg at 1. Then Adg is
a linear isomorphism Adg : LG → LG. The induced group morphism

Ad : G → AutR(LG), g �→ Adg,
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is called the adjoint representation of G. Observe that Ad∗
gh

= Ad∗
h
◦Ad∗

g
,

and thus we have a right action of G on L∗
G

L∗
G
×G−→L∗

G
, (α, g) �→ α · g := Ad∗

g
α.

This is called the coadjoint action of G.
For every X ∈ LG and α ∈ L∗

G
we set

X�(α) :=
d

dt
|t=0 Ad∗

etX α ∈ TαL∗
G

= L∗
G

.

More explicitly, we have

�X�(α), Y � = �α, [X,Y ]�, ∀Y ∈ LG, (3.4)

where �•, •� is the natural pairing L∗
G
× LG → R.

Indeed,

�X�(α), Y � =
� d

dt
|t=0 Ad∗

etX (α), Y
�

=
�

α,
d

dt
|t=0 AdetX Y

�
= �α, [X,Y ]�.

For every α ∈ L∗
G

we denote by Oα ⊂ L∗
G

the orbit of α under the coadjoint
action of G, i.e.,

Oα :=
�
Ad∗

g
(α); g ∈ G

�
.

The orbit Oα is a compact subset of L∗
G

. Denote by Gα the stabilizer of α
with respect to the coadjoint action,

Gα :=
�
g ∈ G; Ad∗

g
(α) = α

�
.

The stabilizer Gα is a Lie subgroup of G, i.e., a subgroup such that the subset
Gα is a closed submanifold of G. We denote by Lα its Lie algebra. The obvious
map

G → Oα, g �→ Ad∗
g
(α),

is continuous and surjective, and it induces a homeomorphism from the space
Gα\G of right cosets of Gα (equipped with the quotient topology) to Oα given
by

Φ : Gα\G � Gα · g �→ Ad∗
g
(α) ∈ Oα.

For every g ∈ G denote by [g] the right coset Gα · g. The quotient Gα\G is a
smooth manifold, and the induced map

Φ : Gα\G → L∗
G

is a smooth immersion, because the differential at the point [1] ∈ Gα\G is
injective. It follows that Oα is a smooth submanifold of L∗

G
. In particular, the

tangent space TαOα can be canonically identified with a subspace of L∗
G

.
Set

L⊥
α

:=
�

β ∈ L∗
G

; �β,X� = 0, ∀X ∈ Lα

�
.
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We claim that
TαOα = L⊥

α
.

Indeed, let β̇ ∈ TαOα ⊂ L∗
G

. This means that there exists X = Xβ ∈ LG such
that

β̇ =
d

dt
|t=0 Ad∗exp(tXβ) α = X�

β
(α).

Using (3.4) we deduce that

�β̇, Y � = �α, [Xβ , Y ]�, ∀Y ∈ LG.

On the other hand, α is Gα-invariant, so that

Z�(α) = 0, ∀Z ∈ Lα

(3.4)
=⇒�Z�(α), X� = �α, [Z, X]� = 0, ∀X ∈ LG, ∀Z ∈ Lα.

If we choose X = Xβ in the above equality, we deduce

�β̇, Z� = �α, [Xβ , Z]�, ∀Z ∈ LGα =⇒ β̇ ∈ L⊥
α

.

This shows that TαOα ⊂ L⊥
α

. The dimension count

TαOα = dim Oα = dim Gα\G = dimLG − dim Lα = dimL⊥
α

implies
TαOα = L⊥

α
.

The differential of Φ : Gα\G → Oα at [1] induces an isomorphism

Φ∗ : T[1]Gα\G → TαOα

and thus a linear isomorphism

Φ∗ : T[1]Gα\G = L/Lα−→L⊥
α

, X modLα �→ X�(α).

Observe that the vector space L⊥
α

is naturally isomorphic to the dual of
LG/Lα. The above isomorphism is then an isomorphism (L⊥

α
)∗ → L⊥

α
. We

obtain a nondegenerate bilinear pairing

ωα : L⊥
α
× L⊥

α
→ R, ωα(β̇, γ̇) = �β̇,Φ−1

∗ γ̇ �.

Equivalently, if we write

β̇ = X�

β
(α), γ̇ = X�

γ
(α), Xβ , Xγ ∈ LG,

then
ωα(β̇, γ̇) = �X�

β
(α) , Xγ) = �α, [Xβ , Xγ ]�. (3.5)

Observe that ωα is skew-symmetric, so that ωα is a symplectic pairing. The
group Gα acts on TαOα and ωα is Gα-invariant. Since G acts transitively on
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Oα and ωα is invariant with respect to the stabilizer of α, we deduce that
ωα extends to a G-invariant, nondegenerate 2-form ω ∈ Ω2(Oα). We want to
prove that it is a symplectic form, i.e., dω = 0.

Observe that the differential dω is also G-invariant and thus it suffices to
show that

(dω)α = 0.

Let Yi = X�

i
(α) ∈ TαOα, Xi ∈ LG, i = 1, 2, 3. We have to prove that

(dω)α(Y1, Y2, Y3) = 0.

We have the following identity [Ni, Section 3.2.1]

dω(X1, Y2, Y3) = Y1ω(Y2, Y3)− Y2ω(Y3, Y1) + Y3ω(Y1, Y2)
+ω(Y1, [Y2, Y3])− ω(Y2, [Y3, Y1]) + ω(Y3, [Y1, Y2]).

Since ω is G-invariant we deduce

ω(Yi, Yj) = const ∀i, j,

so the first row in the above equality vanishes. On the other hand, at α we
have the equality

ω(Y1, [Y2, Y3])− ω(Y2, [Y3, Y1]) + ω(Y3, [Y1, Y2])
= �α, [X1, [X2, X3]]− [X2, [X3, X2]] + [Y3, [X1, X2]] �.

The last term is zero due to the Jacobi identity. This proves that ω is a
symplectic form on Oα.

Consider the special case G = U(n). Its Lie algebra u(n) consists of skew-
Hermitian n× n matrices and it is equipped with the Ad-invariant metric

(X,Y ) = Re tr(XY ∗).

This induces an isomorphism u(n)∗ → u(n). The coadjoint action of U(n) on
u(n)∗ is given by

Ad∗
T
(X) = T ∗XT = T−1XT, ∀T ∈ U(n). ∀X ∈ u(n) ∼= u(n)∗.

Fix S0 ∈ u(n). We can assume that S0 has the diagonal form

S0 = S0(λ) = iλ1 Cn1 ⊕ · · ·⊕ iλk Cnk , λj ∈ R,

with n1 + · · · + nk = n and the λ’s. The coadjoint orbit of S0 consists of
all the skew-Hermitian matrices with the same spectrum as S0, multiplicities
included.

Consider a flag of subspaces of type ν := (n1, . . . , nk), i.e. an increasing
filtration F of Cn by complex subspaces
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0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk = Cn

such that nj = dimC Vj/Vj−1. Denote by Pj = Pj(F) the orthogonal projection
onto Vj . We can now form the skew-Hermitian operator

Aλ(F) =
�

j

iλj(Pj − Pj−1).

Observe that the correspondence F �→ Aλ(F) is a bijection from the set of
flags of type ν to the coadjoint orbit of S0(λ). We denote this set of flags
by FlC(ν). The natural smooth structure on the codajoint orbit induces a
smooth structure on the set of flags. We will refer to this smooth manifold as
the flag manifold of type ν := (n1, . . . , nk). Observe that

FlC(1, n− 1) = CPn−1,

FlC(k, n− k) = Gk(Cn) = the Grassmannian of k-planes in Cn.

The diffeomorphism Aλ defines by pullback a U(n)-invariant symplectic form
on FlC(ν), depending on λ. However, since U(n) acts transitively on the flag
manifold, this symplectic form is uniquely determined up to a multiplicative
constant. ��

Proposition 3.18. Suppose (M, ω) is a symplectic manifold. We denote by
JM,ω the set of almost complex structures on M tamed by ω, i.e., endomor-
phisms J of TM satisfying the following conditions

• J2 = − TM .
• The bilinear form gω,J defined by

g(X,Y ) = ω(X, JY ), ∀X,Y ∈ Vect(M)

is a Riemannian metric on M .

Then the set Jω,M is nonempty and the corresponding set of metrics
{gω,J ; J ∈ JM,ω} is a retract of the space of metrics on M .

Proof. This is a version of Proposition 3.12 for families of vector spaces with
symplectic pairings. The proof of Proposition 3.12 extends word for word to
this more general case. ��

Suppose (M,ω) is a symplectic manifold. Since ω is nondegenerate, we
have a bundle isomorphism Iω : TM → T ∗M defined by

�IωX,Y � = ω(X,Y ) ⇐⇒ �α, Y � = ω(I−1
ω

α, Y �,
∀α ∈ Ω1(M), ∀X,Y ∈ Vect(M).

(3.6)

One can give an alternative description of the symplectic duality.
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For every vector field X on M we denote by X or iX the contraction by
X, i.e., the operation X : Ω•(M) → Ω•−1(M) defined by

(X η) (X1, . . . ,Xk) = η(X,X1, . . . ,Xk),

∀X1, . . . ,Xk ∈ Vect(M), η ∈ Ωk+1(M).

Then
Iω = ω ⇐⇒ IωX = X ω, ∀X ∈ Vect(M). (3.7)

Indeed,
�IωX,Y � = ω(X,Y ) = (X ω) (Y ), ∀Y ∈ Vect(M).

Lemma 3.19. Suppose J is an almost complex structure tamed by ω. Denote
by g the associated Riemannian metric and by Ig : TM → T ∗M the metric
duality isomorphism. Then

Iω = Ig ◦ J ⇐⇒ I−1
ω

= −J ◦ I−1
g

. (3.8)

Proof. Denote by �•, •� the natural pairing between T ∗M and TM . For any
X,Y ∈ Vect(M) we have

, �IωX,Y � = ω(X,Y ) = g(JX, Y ) = �Ig(JX), Y �

so that Iω = Ig ◦ J . ��

For every vector field X on M we denote by ΦX

t
the (local) flow it defines.

We have the following result.

Proposition 3.20. Suppose X ∈ Vect(M). The following statements are
equivalent:
(a) ΦX

t
is a symplectomorphism for all sufficiently small t.

(b) The 1-form IωX is closed.

Proof. (a) is equivalent to LXω = 0, where LX denotes the Lie derivative
along X. Using Cartan’s formula LX = diX + iXd and the fact that dω = 0
we deduce

LXω = diXω = d(IωX).

Hence LXω = 0 ⇐⇒ d(IωX) = 0. ��

Definition 3.21. For every smooth function H : M → R we denote by ∇ωH
the vector field

∇ωH := I−1
ω

(dH).

The vector field ∇ωH is a called the Hamiltonian vector field associated with
H, or the symplectic gradient of H. The function H is called the Hamiltonian
of ∇ωH. The flow generated by ∇ωH is called the Hamiltonian flow generated
by H. ��
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Proposition 3.20 implies the following result.

Corollary 3.22. A Hamiltonian flow on the symplectic manifold (M, ω) pre-
serves the symplectic forms, and thus it is a one-parameter group of symplec-
tomorphisms.

Lemma 3.23. Suppose (M,ω) is a symplectic manifold, J is an almost com-
plex structure tamed by ω, and g is the associated metric. Then for every
smooth function H on M we have

∇ωH = −J∇gH, (3.9)

where ∇gH denotes the gradient of H with respect to the metric g.

Proof. Using (3.8) we have

Ig∇gH = dH = Iω∇ωH = IgJ∇ωH =⇒ J∇ωH = ∇gH. ��

Example 3.24 (The harmonic oscillator). Consider the standard sym-
plectic plane C with coordinate z = q + ip and symplectic form Ω = dq ∧ dp.
Let

H(p, q) =
1

2m
p2 +

k

2
q2, k,m > 0.

The standard complex structure J given by

J∂q = ∂p, J∂p = −∂q

is tamed by Ω, and the associated metric is the canonical Euclidean metric
g = dp2 + dq2. Then

∇gH =
p

m
∂p + kq∂q, ∇ΩH = −J∇gH =

p

m
∂q − kq∂p.

The flow lines of ∇ΩH are obtained by solving the Hamilton equations
�

q̇ = p

m

ṗ = −kq
, p(0) = p0, q(0) = q0.

Note that mq̈ = −kq, which is precisely the Newton equation of a harmonic
oscillator with elasticity constant k and mass m. Furthermore, p = mq̇ is
the momentum variable. The Hamiltonian H is the sum of the kinetic energy
1

2m
p2 and the potential (elastic) energy kq

2

2 . If we set4 ω :=
�

k

m
, then we

deduce

q(t) = q0 cos(ωt) +
p0

mω
sin(ωt), p(t) = −q0mω sin(ωt) + p0 cos(ωt).

4 The overuse of the letter ω in this example is justified only by the desire to stick
with the physicists’ traditional notation.
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The period of the oscillation is T = 2π

ω
. The total energy H = 1

2m
p2 + kq

2

2
is conserved during the motion, so that all the trajectories of this flow are
periodic and are contained in the level sets H = const, which are ellipses.
The motion along these ellipses is clockwise and has constant angular velocity
ω. For more on the physical origins of symplectic geometry we refer to the
beautiful monograph [Ar]. ��

Definition 3.25. Given two smooth functions f, g on a symplectic manifold
(M,ω) we define the Poisson bracket of f and g to be the Lie derivative of
g along the symplectic gradient vector field of f . We denote it by {f, g}, so
that5

{f, g} := L∇ωf g. ��

We have an immediate corollary of the definition.

Corollary 3.26. The smooth function f on the symplectic manifold (M, ω)
is conserved along the trajectories of the Hamiltonian flow generated by H ∈
C∞(M) if and only if {H, f} = 0. ��

Lemma 3.27. If (M,ω) is a symplectic manifold and f, g ∈ C∞(M) then

{f, g} = −ω(∇ωf,∇ωg), ∇ω{f, g} = [∇ωf,∇ωg]. (3.10)

In particular, {f, g} = −{g, f} and {f, f} = 0.

Proof. Set Xf = ∇ωf , Xg = ∇ωg. We have

{f, g} = dg(Xf )
(3.6)
= ω(I−1

ω
dg,Xf ) = −ω(Xf , Xg).

For every smooth function u on M we set Xu := ∇ωu. We have

X{f,g}u = {{f, g}, u} = −{u, {f, g}} = −Xu{f, g} = Xuω(Xf , Xg).

Since LXuω = 0, we deduce

Xuω(Xf , Xg) = ω([Xu, Xf ], Xg) + ω(Xf , [Xu, Xg])
= −[Xu, Xf ]g + [Xu, Xg]f = −XuXfg + XfXug + XuXgf −XgXuf.

The equality {f, g} = −{g, f} is equivalent to Xgf = −Xfg, and we deduce

X{f,g}u = −XuXfg + XfXug + XuXgf −XgXuf

= −2XuXfg −XfXgu + XgXfu = 2X{f,g}u− [Xf , Xg]u.

5 Warning: The existing literature does not seem to be consistent on the right
choice of sign for {f, g}. We refer to [McS, Remark 3.3] for more discussions on
this issue.
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Hence

X{f,g}u = [Xf , Xg]u, ∀u ∈ C∞(M) ⇐⇒ X{f,g} = [Xf , Xg]. ��

Corollary 3.28 (Conservation of energy). Suppose (M, ω) is a symplectic
manifold and H is a smooth function. Then any trajectory of the Hamiltonian
flow generated by H is contained in a level set H = const. In other words, H
is conserved by the flow.

Proof. Indeed, {H,H} = 0. ��

Corollary 3.29. The Poisson bracket defines a Lie algebra structure on the
vector space of smooth functions on a symplectic manifold. Moreover, the sym-
plectic gradient map

∇ω : C∞(M) → Vect(M)

is a morphism of Lie algebras.

Proof. We have

{{f, g}, h} + {g, {f, h}} = X{f,g}h + XgXfh = [Xf , Xg]h + XgXfh

= XfXgh = {f, {g, h}}.

��

Example 3.30 (The standard Poisson bracket). Consider the standard
model (Cn,Ω) with coordinates zj = qj + ipj and symplectic form Ω =�

j
dqj ∧ dpj . Then for every smooth function f on Cn we have

∇Ωf = −
�

j

(∂pj f)∂qj +
�

j

(∂qj f)∂pj ,

so that
{f, g} =

�

j

�
(∂qj f)(∂pj g)− (∂pj f)(∂qj g)

�
. ��

Suppose we are given a smooth right action of a Lie group G on a sym-
plectic manifold (M,ω),

M ×G → M, G×M � (x, g) �→ Rg(x) := x · g.

The action of G is called symplectic if R∗
g
ω = ω, ∀g ∈ G.

Denote by LG the Lie algebra of G. Then for any X ∈ LG we denote by
X� ∈ Vect(M) the infinitesimal generator of the flow ΦX

t
(z) = z · etX , z ∈ M ,

t ∈ R. We denote by �•, •� the natural pairing L∗
G
× LG → R.
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Definition 3.31. A Hamiltonian action of the Lie group G on the symplectic
manifold (M,ω) is a smooth right symplectic action of G on M together with
an R-linear map

ξ : LG → C∞(M), LG � X �→ ξX ∈ C∞(M),

such that
∇ωξX = X�, {ξX , ξY } = ξ[X,Y ], ∀X,Y ∈ LG.

The induced map µ : M → L∗
G

defined by

�µ(x), X� := ξX(x), ∀x ∈ M, X ∈ LG,

is called the moment map of the Hamiltonian action. ��

Example 3.32 (The harmonic oscillator again). Consider the action of
S1 on C = R2 given by

C× S1 � (z, eiθ) �→ z ∗ eiθ := e−iθz.

Using the computations in Example 3.24 we deduce that this action is Hamil-
tonian with respect to the symplectic form Ω = dx ∧ dy = i

2dz ∧ dz̄. If we
identify the Lie algebra of S1 with the Euclidean line R via the differential
of the natural covering map t �→ eit, then we can identify the dual of the Lie
algebra with R, and then the moment map of this action is µ(z) = 1

2 |z|
2. ��

Lemma 3.33. Suppose we have a Hamiltonian action

M ×G → M, (x, g) �→ x · g,

of the compact connected Lie group G on the symplectic manifold (M,ω).
Denote by µ : M → L∗

G
the moment map of this action. Then

µ(x · g) = Ad∗
g
µ(x), ∀g ∈ G, x ∈ M.

Proof. Set ξX = �µ, X�. Since G is compact and connected, it suffices to prove
the identity for g of the form g = etX . Now observe that

(X�µ)(x) =
d

dt
|t=0µ(x · etX) and X�(µ(x)) =

d

dt
|t=0 Ad∗

etX µ(x),

and we have to show that

(X�µ)(x) = X�
�
µ(x)

�
, ∀X ∈ LG, x ∈ M.

For every Y ∈ LG we have

d

dt
|t=0�µ(x · etX), Y � = X� · �µ(x), Y � = {ξX , ξY } = ξ[X,Y ]

= �µ(x), [X,Y ]� (3.4)
= �X�(µ(x)), Y �.

��
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Example 3.34 (Coadjoint orbits again). Suppose G is a compact con-
nected Lie group. Fix α ∈ L∗

G
\ {0} and denote by Oα the coadjoint orbit of

α. Denote by ω the natural symplectic structure on Oα described by (3.5).
We want to show that the natural right action of G on (Oα, ω) is Hamiltonian
and that the moment map of this action µ : Oα → L∗

G
is given by

Oα � β �→ −β ∈ L∗
G

.

Let X ∈ LG. Set h = hX : L∗
G
→ R, h(β) = −�β,X�, where as usual �•, •�

denotes the natural pairing L∗
G
×LG → R. In this case X� = X�. We want to

prove that
X� = ∇ωhX , (3.11)

that is, for all β ∈ Oα and all β̇ ∈ TβOα we have

ω(X�, β̇) = dhX(β̇).

We can find Y ∈ LG such that β̇ = Y �(β). Then using (3.5) we deduce

ω(X�, β̇) = �β, [X,Y ]�.

On the other hand,

dhX(Y )|β =
d

dt
|t=0�Ad∗

etY β,X� =
d

dt
|t=0�β,AdetY X� = −�β, [X,Y ]�.

This proves that X� is the hamiltonian vector field determined by hX . More-
over,

{hX , hY }|β = −ω(X�, Y �)|β = −�β, [X�, Y �]� = h[X,Y ](β).

This proves that the natural right action of G on Gα is Hamiltonian with
moment map µ(β) = −β. ��

Proposition 3.35. Suppose we are given a Hamiltonian action of the com-
pact Lie group G on the symplectic manifold. Then there exists a G-invariant
almost complex structure tamed by ω. We will say that J and its associated
metric

h(X,Y ) = ω(X,JY ), ∀X,Y ∈ Vect(M)

are G-tamed by ω.

Proof. Fix an invariant metric on G, denote by dVg the associated volume
form, and denote by |G| the volume of G with respect to this volume form.

Note first that there exist G-invariant Riemannian metrics on M . To find
such a metric, pick an arbitrary metric g on M and then form its G-average
ĝ,

ĝ(X,Y ) :=
1
|G|

�

G

u∗g(X,Y )dVu, ∀X,Y ∈ Vect(M).
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By construction, ĝ is G-invariant. As in the proof of Proposition 3.12 Ddefine
B = Bĝ ∈ End(TM) by

ĝ(BX,Y ) = ω(X,Y ), ∀X,Y ∈ Vect(M).

Clearly B is G-invariant because ω is G-invariant. Now define a new G-
invariant metric h on M by

h(X,Y ) := ĝ((B∗B)1/2X,Y ), ∀X,Y ∈ Vect(M).

Then h defines a skew-symmetric almost complex structure J on TM by

ω(X,Y ) = h(JX, Y ), ∀X,Y ∈ Vect(M).

By construction J is a G-invariant almost complex structure tamed by ω. ��

Example 3.36 (A special coadjoint orbit). Suppose (M, ω) is a compact
oriented manifold with a Hamiltonian action of the compact Lie group G.
Denote by µ : M → L∗

G
the moment map of this action. If T is a subtorus of

G, then there is an induced Hamiltonian action of T on M with moment map
µT obtained as the composition

M
µ−→ L∗

G
� ∗,

where L∗
G

� ∗ denotes the natural projection obtained by restricting to the
subspace a linear function on LG.

Consider the projective space CPn. As we have seen, for every λ ∈ R∗ we
obtain a U(n + 1)-equivariant identification of CPn with a coadjoint orbit of
U(n + 1) given by

Ψλ := CPn � L �→ iλPL ∈ u(n + 1),

where PL denotes the unitary projection onto the complex line L, and we have
identified u(n + 1) with its dual via the Ad-invariant metric

(X,Y ) = Re tr(XY ∗), X, Y ∈ u(n + 1).

We want to choose λ such that the natural complex structure on CPn is
adapted to the symplectic structure Ωλ = Ψ∗

λ
ωλ, where ωλ is the natural

symplectic structure on the coadjoint orbit Oλ := Ψλ(CPn). Due to the U(n+
1) equivariance, it suffices to check this at L0 = [1, 0, . . . , 0].

Note that if L = [z0, . . . , zn] then PL is described by the Hermitian matrix
(pjk)0≤j,k≤n, where

pjk =
1

|z|2 zj z̄k, ∀0 ≤ j, k ≤ n.

In particular, PL0 = Diag(1, 0, . . . , 0).
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If Lt := [1, tz1, . . . , tzn] ∈ CPn, then

Ṗ =
d

dt
|t=0Ψλ(PLt) = iλ





0 z̄1 · · · z̄n

z1 0 · · · 0
...

...
...

...
zn 0 · · · 0




.

On the other hand, let X = (xij)0≤i,j≤n ∈ u(n + 1). Then xji = −x̄ij , ∀i, jm
and X defines a tangent vector X� ∈ TL0Oλ

X� := iλ
d

dt
|t=0e

−tXPL0e
tX = −iλ[PL0 , X] = iλ





0 x̄10 · · · x̄n0

x10 0 · · · 0
...

...
...

...
xn0 0 · · · 0




.

These two computations show that if we identify X� with the column vector
(x10, . . . , xn0)t, then the complex J structure on TL0CPn acts on X� via the
usual multiplication by i.

Given X,Y ∈ u(n + 1) we deduce from (3.5) that at L0 ∈ Oλ we have

ωλ(X�, Y �) = Re tr(iλPL0 · [X,Y ]∗) = λ Im[X,Y ]∗0,0,

where [X,Y ]∗0,0 denotes the (0, 0) entry of the matrix [X,Y ]∗ = [Y ∗, X∗] =
[Y,X] = −[X,Y ]. We have

[X,Y ]0,0 =
n�

k=0

(x0kyk0 − y0,kxk0) = −
n�

k=1

(x̄k0yk0 − xk0ȳk0).

Then
ω(X�, JX�) = 2λ

�

k

|x0k|2

Thus, if λ is positive, then Ωλ is tamed by the canonical almost complex
structure on CPn. In the sequel we will choose λ = 1.

We thus have a Hamiltonian action of U(n+1) on (CPn, Ω1). The moment
map µ of this action is the opposite of the inclusion

Ψ1 : CPn �→ u(n + 1), L �→ iPL,

so that
µ(L) = −Ψ1(L) = −iPL.

The right action of U(n + 1) on CPn is described by

CPn × U(n + 1) � (L, T ) �−→ T−1L

because PT−1L = T−1PLT .
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Consider now the torus Tn ⊂ U(n + 1) consisting of diagonal matrices of
determinant equal to 1, i.e.,6 matrices of the form

A(t) = Diag(e−i(t1+···+tn), eit1 , . . . , eitn
�
, t = (t1, . . . , tn) ∈ Rn.

Its action on CPn is described in homogeneous coordinates by

[z0, . . . , zn]A(t) = [ei(t1+···+tn)z0, e
−it1z1, . . . , e

−itnzn].

This action is not effective since the elements Diag(ζ−n, ζ, . . . , ζ), ζn+1 = 1
act trivially. We will explain in the next section how to get rid of this minor
inconvenience.

The Lie algebra n ⊂ u(n + 1) of this torus can be identified with the
vector space of skew-Hermitian diagonal matrices with trace zero.

We can identify the Lie algebra of Tn with its dual using the Ad-invariant
metric on u(n + 1). Under this identification the moment map of the action
of Tn is the map µ̂ defined as the composition of the moment map

µ : CPn → u(n + 1)

with the orthogonal projection u(n + 1) → n. Since trPL = dimC L = 1 we
deduce

µ̂(L) = −Diag(iPL) +
i

n + 1 Cn+1 ,

where Diag(PL) denotes the diagonal part of the matrix representing PL. We
deduce

µ̂([z0, . . . , zn]) = − i

|z|2 Diag(|z0|2, . . . , |zn|2) +
i

n + 1 Cn+1 .

Thus the opposite action of Tn given by

[z0, . . . , zn]A(t) = [e−i(t1+...+tn)z0, e
it1z1, . . . , e

itnzn]

is also Hamiltonian, and the moment map is

µ(L) =
i

|z|2 Diag(|z0|2, . . . , |zn|2)−
i

n + 1 Cn+1 .

We now identify the Lie algebra n with the vector space7

W :=
�

w = (w0, . . . , wn) ∈ Rn+1;
�

i

wi = 0
�

.

A vector w ∈ W defines the Hamiltonian flow on CPn,

6 Tn is a maximal torus for the subgroup SU(n + 1) ⊂ U(n + 1).
7 In down-to-earth terms, we get rid of the useless factor i in the above formulæ.
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eit ∗w [z0, . . . , zn] = [eiw0tz0, e
iw1tz1, . . . , e

iwntzn],

with the Hamiltonian function

ξw([z0, . . . , zn]) =
1

|z|2
n�

j=0

wj |zj |2.

The flow does not change if we add to ξw a constant

c =
c

|z|2
n�

j=1

|zj |2.

Thus the Hamiltonian flow generated by ξw is identical to the Hamiltonian
flow generated by

f =
1

|z|2
n�

j=0

w�
j
|zj |2, w�

j
= wj + c.

Note that if we choose w�
j

= j (so that c = n

2 ), we obtain the perfect Morse
function we discussed in Example 2.21. In the next two sections we will show
that this “accident” is a manifestation of a more general phenomenon. ��

3.4 Morse Theory of Moment Maps

In this section we would like to investigate in greater detail the Hamiltonian
actions of a torus

Tν := S1 × · · ·× S1
� �� �

ν

on a compact symplectic manifold (M,ω). As was observed by Atiyah in [A]
the moment map of such an action generates many Morse–Bott functions.
Following [A] we will then show that this fact alone imposes surprising con-
straints on the structure of the moment map. In the next section we will prove
that these Morse–Bott functions are in fact perfect.

Theorem 3.37. Suppose (M, ω) is a symplectic manifold equipped with a
Hamiltonian action of the torus T = Tν . Let µ : M → ∗ be the moment
map of this action, where denotes the Lie algebra of T. Then for every
X ∈ the function

ξX : M → R, ξX(x) = �µ(x), X�

is a Morse–Bott function. The critical submanifolds are symplectic submani-
folds of M , and all the Morse indices and coindices are even.
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Proof. Fix an almost complex structure J and metric h on TM that are
equivariantly tamed by ω.

For every subset A ⊂ T we denote by FixA(M) the set of points in M
fixed by all the elements in A, i.e.

FixA(M) =
�
x ∈ M ; x · a = x, ∀a ∈ A

�
.

Lemma 3.38. Suppose G is a subgroup of T. Denote by Ḡ its closure. Then

FixG(M) = FixḠ(M)

is a union of T-invariant symplectic submanifolds of M .

Proof. Clearly FixG(M) = FixḠ(M). Since T is commutative, the set FixG(M)
is T-invariant. Let x ∈ FixG(M) and g ∈ G\{1}. Denote by Ag the differential
at x of the smooth map

M � y �→ y · g ∈ M.

The map Ag is a unitary automorphism of the Hermitian space (TxM,h, J).
Define

Fixg(TxM) := ker( −Ag) and FixG(TxM) =
�

g∈G

Fixg(TxM).

Consider the exponential map defined by the equivariantly tamed metric h,

exp
x

: TxM → M.

Fix r > 0 such that exp
x

is a diffeomorphism from
�

v ∈ TxM ; |v|h < r
�

onto an open neighborhood of x ∈ M .
Since g is an isometry, it maps geodesics to geodesics and we deduce that

∀v ∈ TxM such that |v|h < r we have

(exp
x
(v)) · g = exp(Agv).

Thus exp(v) is a fixed point of g if and only if v is a fixed point of Ag, i.e., v ∈
Fixg(TxM). We deduce that the exponential map induces a homeomorphism
from a neighborhood of the origin in the vector space FixG(TxM) to an open
neighborhood of x ∈ FixG(M). This proves that FixG(M) is a submanifold of
M and for every x ∈ FixG(M) we have

Tx FixG(M) = FixG(TxM).

The subspace FixG(TxM) ⊂ TxM is J-invariant, which implies that FixG(M)
is a symplectic submanifold. ��

Let X ∈ \ {0} and denote by GX the one parameter subgroup
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GX =
�

etX ∈ T; t ∈ R}.

Its closure is a connected subgroup of T, and thus it is a torus TX of positive
dimension. Denote by X its Lie algebra. Consider the function

ξX(x) = �µ(x), X�, x ∈ M.

Lemma 3.39. CrξX = FixTX (M).

Proof. Let X� = ∇ωξX . From (3.9) we deduce

X� = ∇ωξX = −J∇hξX .

This proves that x ∈ CrξX ⇐⇒ x ∈ FixGX (M). ��

We can now conclude the proof of Theorem 3.37. We have to show that
the components of FixTX (M) are nondegenerate critical manifolds.

Let F be a connected component of FixTX (M) and pick x ∈ F . As in the
proof of Lemma 3.38, for every t ∈ R we denote by At : TxM → TxM the
differential at x of the smooth map

M � y �→ y · etX =: ΦX

t
(y) ∈ M.

Then At is a unitary operator and

ker( −At) = TxF, ∀t ∈ R.

We let
Ȧ :=

d

dt

���
t=0

At.

Then Ȧ is a skew-hermitian endomorphism of (TxM,J), and we have

At := etȦ and TxF = ker Ȧ.

Observe that

Ȧu = [U,X�]x, ∀u ∈ TxM, ∀U ∈ Vect(M), U(x) = u. (3.12)

Indeed,

Ȧu =
d

dt

���
t=0

Atu =
d

dt

���
t=0

�
(ΦX

t
)∗U

�

x

= −(LX�U)x = [U, X�, U ]x.

Consider the Hessian Hx of ξX at x. For U1, U2 ∈ Vect(M) we set

ui := Ui(x) ∈ TxM,

and we have
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Hx(u1, u2) =
�
U1(U2ξX)

�
|x.

On the other hand,

U1(U2ξX) = U1dξX(U2) = U1ω(X�, U2)

= (LU1ω)(X�, U2) + ω([U1, X
�], U2) + ω(X�, [U1, U2]).

At x we have
[U1, X

�]x = Ȧu1, X�(x) = 0,

and we deduce

Hx(u1, u2) = ω(Ȧu1, u2) = h(JȦu1, u2). (3.13)

Now observe that B = JȦ is a symmetric endomorphism of TxM which
commutes with J . Moreover,

kerB = ker Ȧ = TxF.

Thus B induces a symmetric linear isomorphism B : (TxF )⊥ → (TxF )⊥.
Since it commutes with J , all its eigenspaces are J-invariant and in particular
even-dimensional. This proves that F is a nondegenerate critical submanifold
of ξX , and its Morse index is even, thus completing the proof of Theorem 3.37.

��

Note the following corollary of the proof of Lemma 3.39.

Corollary 3.40. Let X ∈ . Then for every critical submanifold C of ξX and
every x ∈ C we have

TxC =
�

u ∈ TxM ; ∃U ∈ Vect(M), [X�, U ]x = 0, U(x) = u
�
,

where X� = ∇ωξX . ��

We want to present a remarkable consequence of the result we have just
proved known as the moment map convexity theorem. For an alternative proof
we refer to [GS].

Recall that a (right) action X ×G → X, (g, x) �→ Rg(x) = x · g of a group
G on a set X is called effective if Rg �= X , ∀g ∈ G \ {1}.

We have the following remarkable result of Atiyah [A] and Guillemin and
Sternberg [GS] that generalizes an earlier result of Frankel [Fra].

Theorem 3.41 (Atiyah–Guillemin–Sternberg). Suppose we are given a
Hamiltonian action of the torus T = Tν on the compact connected symplectic
manifold (M,ω). Denote by µ : M → ∗ the moment map of this action and
by {Cα; α ∈ A} the components of the fixed point set FixT(M). Then the
following hold.
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(a) µ is constant on each component Cα.
(b) If µα ∈ ∗ denotes the constant value of µ on Cα, then µ(M) ⊂ ∗ is the
convex hull of the finite set {µα; α ∈ A} ⊂ ∗.
(c) If the action of the torus is effective, then µ(M) has nonempty interior.

Proof. For every x ∈ M we denote by Stx the stabilizer of x,

Stx :=
�

g ∈ T; x · g = x
�
.

Then Stx is a closed subgroup of T. The connected component of 1 ∈ Stx is
a subtorus Tx ⊂ T. We denote by x its Lie algebra.

The differential of µ defines for every point x ∈ M a linear map

µ̇x : TxM → ∗.

We denote its transpose by µ̇∗
x
. It is a linear map

µ̇∗
x

: → T ∗
x
M.

Observe that for every X ∈ we have

µ̇∗
x
(X) = (dξX)x, where ξX = �µ, X� : M → R. (3.14)

Lemma 3.42. For every x ∈ M we have ker µ̇∗
x

= x.

Proof. From the equality (3.14) we deduce that X ∈ ker µ̇∗
x

if and only if
d�µ, X� vanishes at x. Since X� is the Hamiltonian vector field determined by
�µ, X�, we deduce that

X ∈ ker µ̇∗
x
⇐⇒ X�(x) = 0 ⇐⇒ X ∈ T1Stx = x. ��

Lemma 3.42 shows that µ is constant on the connected components Cα

of FixT(M) because (the transpose of) its differential is identically zero along
the fixed point set.

There are finitely many components since these components are the critical
submanifolds of a Morse–Bott function ξX , where X ∈ T is such that TX = T.

To prove the convexity statement it suffices to prove that if all the points
µα lie on the same side of an affine hyperplane in ∗, then any other point
η ∈ µ(M) lies on the same side of that hyperplane.

Any hyperplane in ∗ is determined by a vector X ∈ \ 0, unique up to a
multiplicative constant. Let X ∈ \ 0 and set

cX = min
�
�µα, X�; α ∈ A

�
, mX = min

x∈X

ξX(x) = min
x∈M

�µ(x), X�.

We have to prove that mX = cX .
Clearly mX ≤ cX . To prove the opposite inequality observe that mX is

a critical value of ξX . Since ξX is a Morse–Bott function we deduce that its
lowest level set
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{x ∈ M ; ξX(x) = mX}
is a union of critical submanifolds. Pick one such critical submanifold C.

If we could prove that C ∩ FixT(M) �= ∅, then we could conclude that
Cα ⊂ C for some α and thus cX ≤ mX .

The submanifold C is a connected component of FixTX (M). It is a sym-
plectic submanifold of M , and the torus T⊥ := T/TX acts on C. Moreover,

FixT⊥(C) = C ∩ FixT(M),

so it suffices to show that
FixT⊥(C) �= ∅.

Denote by ⊥ the Lie algebra of T⊥ and by X the Lie algebra of TX . Observe
that ∗

⊥ is naturally a subspace of ∗,

∗
⊥ = ⊥

X
:=

�
ν ∈ ∗; �ν, Y � = 0, ∀Y ∈ X

�
.

Lemma 3.42 shows that for every Y ∈ X the restriction of �µ, Y � to C is
a constant ϕ(Y ) depending linearly on Y . In other words, it is an element
ϕ ∈ ∗

X
. Choose a linear extension ϕ̃ : → R of ϕ and set

µ⊥ := µ|C − ϕ̃.

Observe that for every Y ∈ X we have �µ⊥, Y � = 0, and thus µ⊥ is valued
in ⊥

X
= ∗

⊥. For every Z ∈ we have (along C)

∇ω�µ, Z� = ∇ω�µ⊥, Z�,

and we deduce that the action of T⊥ on C is Hamiltonian with µ⊥ as moment
map.

Choose now a vector Z ∈ ⊥ such that the one-parameter group etZ is
dense in T⊥. Lemma 3.39 shows that the union of the critical submanifolds
of the Morse–Bott function ξ⊥

Z
= �µ⊥, Z� on C is fixed point set of T⊥. In

particular, a critical submanifold corresponding to the minimum value of ξ⊥
Z

is a connected component of FixT⊥(C). This proves the convexity statement.
Note one consequence of the above argument.

Corollary 3.43. For every X ∈ T the critical values of ξX are
�
�µα, X�; α ∈ A

�
=

�
µ
�
FixT(M)

�
, X

�
.

Proof. If MX is a critical submanifold of X, then the above proof shows that it
must contain at least one of the Cα’s. Conversely, every Cα lies in the critical
set of ξX . ��

To prove that µ(M) has nonempty interior if the action of T is effective
we use the following result.
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Lemma 3.44. The set of points x ∈ M such that µ̇x : TxM → ∗ is surjective,
open, and dense in M .

Proof. Recall that an integral weight of T is a vector w ∈ such that

e2πw = 1 ∈ T.

The integral weights define a lattice LT ⊂ . This means that L is a discrete
Abelian subgroup of of rank equal to dimR . Observe that we have a natural
isomorphism of Abelian groups

LT → Hom(S1, T), LT � w �→ ϕw ∈ Hom(S1, T), ϕw(eit) = etw.

Any primitive8 sublattice L� of LT determines a closed subtorus TΛ :=
{etw; w ∈ Λ}, and any closed subtorus is determined in this fashion. This
shows that there are at most countably many closed subtori of T.

If T� ⊂ T is a nontrivial closed subtorus, then it acts effectively on M , and
thus its fixed point set is a closed proper subset of M . Baire’s theorem then
implies that

Z := M \
�

{1} �=T�⊂T
FixT�(M) =

�
z ∈ M ; z = 0

�

is a dense subset of M . Lemma 3.42 shows that for any z ∈ Z the map
µ̇∗

z
: → T ∗

z
M is one-to-one, or equivalently that µ̇z is onto. The lemma now

follows from the fact that the submersiveness is an open condition. ��

The image of the moment map contains a lot of information about the
action.

Theorem 3.45. Let (M,ω), µ and T be as above. Assume that T acts effec-
tively. For any face F of the polyhedron µ(M) we set

F⊥ :=
�
X ∈ ; ∃c ∈ R : �η, X� = c, ∀η ∈ F

�
.

Observe that F⊥ is a vector subspace of whose dimension equals the codi-
mension of F . It is called the conormal space of the face F . Then the following
hold.
(a) For any face F of the convex polyhedron µ(M) of positive codimension k
the closed set

MF := µ−1(F )

is a connected symplectic submanifold of M of codimension 2k, i.e.,

codim MF = 2codim F.

Moreover, if we set
8 The sublattice L

� ⊂ L is called primitive if L/L
� is a free Abelian group.
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StF :=
�

g ∈ T; x · g = x, ∀x ∈ MF

�
,

then
T1StF = F⊥

and thus the identity component of StF is a torus TF of dimension k. In
particular, if F is a zero dimensional face, we deduce that

2 dim ∗ = codimMF ≤ dim M.

(b) Conversely, for any nontrivial subtorus T� of T and any connected com-
ponent C of the fixed point set FixT�(M) there exists a face F of µ(M) such
that C = MF . Moreover, T� ⊂ TF .

Proof. A key ingredient in the proof is the following topological result.

Lemma 3.46 (Connectivity lemma). Suppose f : M → R is a Morse–
Bott function on the compact connected manifold M such that Morse index
and coindex of any critical submanifold are not equal to 1. Then for every
c ∈ R the level set {f = c} is connected or empty.

To keep the flow of arguments uninterrupted we will present the proof of
this result after we have completed the proof of the theorem.

Suppose F is a proper face of µ(M) of codimension k > 0. Then there
exists X ∈ T which defines a proper supporting hyperplane for the face F ,
i.e.,

�η, X� ≤ �η�, X�, ∀η ∈ F, η� ∈ µ(M),

with equality if and only if η� ∈ F . Consider then the Morse–Bott function
ξX = �µ, X� and denote by mX its minimum value on M . Then

MF = µ−1(F ) = {ξX = mX}.

Lemma 3.46 shows that MF is connected. It is clearly included in the critical
set of ξX , so that MF is a critical submanifold of ξX . It is thus a component
of the fixed point set of TX .

Form the torus T⊥ := T/StF and denote by ⊥ its Lie algebra. Note that

⊥ = / F .

The dual of the Lie algebra ⊥ can be identified with a subspace of ∗,

∗
⊥ = ⊥

F
= {η ∈ ∗; �η, F � = 0} ⊂ ∗.

As in the proof of Theorem 3.41 we deduce that for every X ∈ F the function
�µ, X� is constant along MF . The action of T⊥ on MF is Hamiltonian, and
as moment map we can take

µ⊥ = µ|MF − ϕ,
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where ϕ is an arbitrary element in ∗ satisfying

�ϕ, X� = �µ(z), X�, ∀z ∈ MF , X ∈ F .

Then
µ⊥(MF ) = F − ϕ ⊂ ⊥

F
= ∗

⊥.

Since the action of T⊥ on MF is effective, we deduce that the relative interior
of µ⊥(MF ) is open. Thus, the relative interior of F −ϕ as a subset of ⊥

F
⊂ ∗

is nonempty, and by duality we deduce that

F⊥ = ( ⊥
F

)⊥ = F .

This proves that TF is a torus of the same dimension as F⊥, which is the
codimension of F .

Let us prove that

codim MF = 2codim F = 2dim F⊥.

Since the action of T is effective, we deduce that the action of T/StF on MF

is effective. Using Lemmas 3.44 and 3.42 we deduce that there exists a point
z ∈ MF such that its stabilizer with respect to the T/StF -action is finite.
This means that the stabilizer of z with respect to the T-action is a closed
subgroup whose identity component is TF , i.e., z = F .

We set Vz := TzMF and we denote by Ez the orthogonal complement of
Vz in TzM with respect to a metric h on M equivariantly adapted to the
Hamiltonian action as in the proof of Theorem 3.37. Then Ez is a complex
Hermitian vector space. Let m := dimC Ez ,so that 2m = codimR MF .

We will prove that
m = dimF⊥ = dim TF .

The torus TF acts unitarily on Ez, and thus we have a morphism

TF � g → Ag ∈ U(m) = Aut(Ez, h).

We claim that its differential

F � X → ȦX =
d

dt

���
t=0

AetX ∈ u(m) = T1U(m)

is injective.
Indeed, let X ∈ F \ 0. Then z is a critical point of ξX . Denote by Hz the

Hessian of ξZ at z. Arguing exactly as in the proof of (3.13) we deduce

Hz(u1, u2) = ω(ȦXu1, u2) = h(JȦXu1, u2), ∀u1, u2 ∈ Ez.

Since ξX is a nonconstant Morse–Bott function, we deduce that Hz|Ez �= 0,
and thus ȦX �= 0. This proves the claim.

Thus the image T̂F of TF in U(m) is a torus of the same dimension as TF ,
and since the maximal tori of U(m) have dimension m we deduce
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codim F = dim TF ≤ m =
1
2
codimR (MF ).

If k = dim TF < m, then T̂F can be included in a maximal torus Tm of U(m)
which has strictly larger dimension.

We can now choose a unitary basis e1, . . . , em of Ez such that T̂F acts
trivially on all the vectors ej , j > k. Then for t > 0 sufficiently small and
j > k the points exp

z
(tej) ∈ M are fixed by TF . These points should therefore

belong to the path component of FixTF (M) containing z.
On the other hand, the path component of FixTF (M) containing z is MF .

Indeed, if X ∈ TF defines a proper supporting hyperplane for the face F . If
we set GX = {etX ; t ∈ R}, then FixGX (M) ⊃ FixTF (M). The connected
components of FixGX (M) are the critical submanifolds of ξX = �µ, X� and
one of them is MF .

We have now reached a contradiction, since the geodesics exp
z
(tej), j > k

are perpendicular to MF at z. Hence

k = dim TF = m =
1
2
codim (MF ).

This proves (a).
Let us prove (b). Consider a nontrivial subtorus T� and a connected com-

ponent C of FixT�(M). Set

StC := {g ∈ T; x · g = x, ∀x ∈ C}

and denote by TC the identity component of StC . Then C is a critical sub-
manifold of ξX for any vector X ∈ such that TX = TC . We have to prove
that there exists a face F of µ(M) such that C = MF .

Lemma 3.47. There exists X ∈ such that TX = TC and such that C
consists of the local minima of ξX .

Assume the validity of the lemma. The linear function

�X : ∗ � η �→ �η, X� ∈ R

has a unique local minimum on the convex polyhedron µ(M), which is
achieved exactly along a face F of µ(M). This local minimum must there-
fore be a global minimum. This proves two things.

• The submanifold C consists of global minimum points of ξX since µ(C) ⊂
µ(M) consists of local minima of �X .

• The set of global minimum points of ξX is MF . Indeed, x is a global
minimum of ξX if and only if µ(x) is a global minimum of �X .

On the other hand, the connectivity lemma (Lemma 3.46) shows that the
set of global minima of ξX is a critical submanifold of ξX . Since C is also a
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critical submanifold of ξX , we deduce that C = MF , because by definition,
the critical submanifolds are connected.
Proof of Lemma 3.47. Choose a point z ∈ C such that z = C . We denote
by Ez the orthogonal complement of TzC in TzM with respect to a metric
h adapted to the Hamiltonian action. As in the proof of (a) we obtain an
immersive morphism

TC → Aut(Ez, h), g �→ Ag.

For every X ∈ T we set

ȦXu :=
d

dt

���
t=0

AetX u, ∀u ∈ Ez.

The Hessian Hz of ξX at z satisfies the equality (3.13), so that

Hz(u1, u2) = h(JȦXu1, u1).

If TX = TC then Hz is nondegenerate along Ez, and from the equality
�

g∈TC

ker( −Ag) = 0

we deduce as in the proof of (a) that

dimR TC = dimC Ez.

In particular, this means that the image T̂C of TC in Aut(Ez, h) is a maximal
torus of Aut(Ez, h).

The eigenvalues of ȦX are purely imaginary ,and λ ∈ R is an eigenvalue
of Hz if and only if −iλ is an eigenvalue of ȦX . Now choose X such that

• the eigenvalues of ȦX have negative imaginary part and
• TX = TC , i.e., the eigenvalues of ȦX are linearly independent over Q.

Then the Hessian Hz is positive definite along Ez. This proves that C is a
strict local minimum of ξX . ��

To complete the proof of Theorem 3.45 we need to prove the connectivity
Lemma 3.46.

Proof of Lemma 3.46. For c1 < c2 we set

M c2
c1

= {c1 ≤ f ≤ c2}, M c2 = {f ≤ c2}, Mc1 = {f ≥ c1}, Lc1 = {f = c1}.

For any critical submanifold S of f we denote by E+
S

(respectively E−
S

) the
stable (respectively unstable) part of the normal bundle of S spanned by
eigenvectors of the Hessian corresponding to positive/negative eigenvalues.
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Denote by D±
S

the unit disk bundle of E±
S

with respect to some metric on
E±

S
.
Since the Morse index and coindex of S are not equal to 1, we deduce that

∂D±
S

is connected. Thus, if we attach D±
S

to a compact CW -complex X along
∂D±

S
, then the resulting space will have the same number of path components

as X.
Let fmin := minx∈M f(x) and fmax = maxx∈M f(x). Observe now that if

ε > 0 then { f ≤ fmin + ε } has the same number of connected components as
{f = fmin}.

Indeed, if C1, . . . , Ck are the connected components of { f = fmin }, then
since f is a Morse–Bott function, we deduce that for ε > 0 sufficiently small
the sublevel set { f ≤ fmin + ε } is a disjoint union of tubular neighborhoods
of the Ci’s.

The manifold M is homotopic to a space obtained from the sublevel set
{ f ≤ fmin +ε } via a finite number of attachments of the above type. Thus M
must have the same number of components as { f = fmin }, so that { f = fmin }
is path connected. We deduce similarly that for every regular value c of f the
sublevel set M c is connected. The same argument applied to −f shows that
the level set {f = fmax} is connected and the supralevel sets Mc are connected.

To proceed further we need the following simple consequence of the above
observations:

M c2
c1

is path connected if Lc1 is path connected . (3.15)

Indeed, if p0, p1 ∈ M c2
c1

, then we can find a path connecting them inside M c2 .
If this path is not in M c2

c1
, then there is a first moment t0 when it intersects

Lc1 and a last moment t1 when it intersects this level set. Now choose a path
β in Lc1 connecting γ(t0) to γ(t1). The path

p0
γ−→ γ(t0)

β−→ γ(t1)
γ−→ p1

is a path in M c2
c1

connecting p0 to p1.
Consider the set

C :=
�

c ∈ [fmin, fmax]; Lc� is path connected ∀c� ≤ c
�
⊂ R.

We want to prove that C = [fmin, fmax].
Note first that C �= ∅ since fmin ∈ C. Set c0 = supC. We will prove that

c0 ∈ C and c0 = fmax.
If c0 is a regular value of f , then Lc0

∼= Lc0−ε for all ε > 0 sufficiently
small, so that Lc0 is path connected and thus c0 ∈ C.

Suppose c0 is a critical value of f . Since Lc0+ε is path connected, we deduce
from (3.15) that M c0+ε

c0−ε
is path connected for all ε > 0.

On the other hand, the level set Lc0 is a Euclidean neighborhood retract
(see for example [Do, IV.8] or [Ha, Theorem A.7]), and we deduce (see [Do,
VIII.6] or [Spa, Section 6.9]) that
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lim−→εH
•(M c0+ε

c0−ε
, Q) = H•(Lc0 , Q),

where H• denotes the singular cohomology.9 Hence

H0(Lc0 , Q) = H0(M c0+ε

c0−ε
, Q) = Q, ∀0 < ε � 1.

Hence Lc0 is path connected. This proves c0 ∈ C.
Let us prove that if c0 < fmax then c0+ε ∈ C, contradicting the maximality

of c0. Clearly this happens if c0 is a regular value, since in this case Lc0+ε
∼=

Lc0
∼= Lc0−ε, ∀0 < ε � 1. Thus we can assume that c0 is a critical value.
Observe that since Lc0 is connected, then no critical submanifold of f in

the level set Lc0 is a local maximum of f . Indeed, if S were such a critical
submanifold then because f is Bott nondegenerate, S would be an isolated
path component of Lc0 and thus Lc0 = S. On the other hand, Mc0 is path
connected and thus one could find a path inside this region connecting a point
on S to a point on { f = fmax }. Since c0 < fmax, this would contradict the
fact S is a local maximum of f .

We deduce that for any critical submanifold S in Lc0 the rank of E+
S

is
at least 2, because it cannot be either zero or one. In particular, the Thom
isomorphism theorem implies that

H1(D+
S

, ∂D+
S

; Z/2) = 0,

and this implies that

H1(M c0+ε

c0−ε
, Lc0+ε; Z/2) ∼= H1(Mc0−ε, Mc0+ε; Z/2)

∼=
�

S

H1(D+
S

, ∂D+
S

; Z/2) = 0,

where the summation is taken over all the critical submanifolds contained in
the level set Lc0 , the first isomorphism is given by excision, and the second
from the structural theorem Theorem 2.43. The long cohomological sequence
of the pair (M c0+ε

c0−ε
, Lc0+ε) then implies that the morphism

H0(M c0+ε

c0−ε
, Z/2) → H0(Lc0+ε, Z/2)

is onto. Using (3.15) we deduce that H0(M c0+ε

c0−ε
, Z/2) = Z/2, so that Lc0+ε is

path connected. ��

Theorem 3.48. Suppose (M,ω) is equipped with an effective Hamiltonian
action of the torus T with moment map µ : M → ∗. Then every η in the
interior of µ(M) is a regular value of µ; the fiber µ−1(η) is connected and
T-invariant, and the stabilizer of every point z ∈ µ−1(η) is finite.
9 The point of this emphasis is that only the singular cohomology H

0 counts the
number of path components. Other incarnations of cohomology count only com-
ponents.
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Proof. Let η ∈ intµ(M) and z ∈ µ−1(η). Denote by Tz the identity component
of Stz. We want to prove that Stz is finite, i.e., Tz = 1.

Indeed, if Tz �= 1 then z is a fixed point of a nontrivial torus. Denote by Cz

the component of FixTz (M) containing z. From Theorem 3.45(b) we deduce
that Cz = µ−1(F ) for some proper face F of µ(M) and thus η = µ(z) ∈ F .
This contradicts the choice of η as an interior point of µ(M).

Denote by µ̇z : TzM → Tη
∗ the differential of µ. Lemma 3.42 implies

ker µ̇∗
z

= z = 0 so that µ̇z is surjective, i.e., η is a regular value of µ. Hence
µ−1(η) is a smooth submanifold of M of codimension equal to dim T. Set

n := dimR T, 2m := dimR M.

Choose a basis X1, . . . ,Xn of such that for every i = 1, . . . , n the hyperplane

Hi :=
�

ζ ∈ ∗; �ζ,Xi� = ηi := �η, Xi�
�

does not contain10 any of the vertices of µ(M). Corollary 3.43 shows that
this condition is equivalent to the requirement that ηi be a regular value of
ξi := ξXi , ∀i = 1, . . . , n. The fiber µ−1(η) is therefore the intersection of
regular level sets of the functions ξi,

µ−1(η) =
�
z ∈ M ; ξi(z) = ηi, ∀i = 1, . . . , n

�
=

n�

i=1

{ξi = ηi}.

Since {ξi, ξj} = 0, ∀i, j, we deduce from Corollary 3.26 that ξi is constant
along the trajectories of X�

j
= ∇ωξj . This proves that any intersection of

level sets of ξi’s is a union of flow lines of all of the X�

j
’s. Hence µ−1(η) is

T-invariant.
For k = 1, . . . , n set

Mk :=
�

z ∈ M ; ξi = ηi, ∀i = 1, . . . , k
�
.

Denote by Tk ⊂ T the k-dimensional closed subtorus generated by
�

etiXi ; i ≤ k, ti ∈ R}.

We will prove by induction on k that Mk is connected.
For k = 1 this follows from the connectivity lemma as M1 is the level set of

the Morse–Bott function ξ1 whose Morse indices and co-indices are all even.
Assume now that Mk is connected. We will prove that Mk+1 is connected

as well.
Since Mk+1 is a level set of ξk+1|Mk , it suffices to show that the restriction

of ξk+1|Mk is a Morse–Bott function whose Morse indices and coindices are
all even. For notational simplicity we set ξ := ξk+1|Mk

10 The space of hyperplanes containing η and a vertex v of µ(M) is rather “thin”.
The normals of such hyperplanes must be orthogonal to the segment [η, v], so
that a generic hyperplane will not contain these vertices.
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Observe first that since ξi is T-invariant, its critical set is also T-invariant.
Suppose z ∈ Mk is a critical point of ξ. This means that there exist scalars
λ1, . . . ,λk ∈ R such that

dξk+1(z) =
k�

i=1

λidξi(z) ⇐⇒ X�

k+1(z)−
k�

i=1

λiX
�

i
(z) = 0.

Thus if we set

X := Xk+1 −
k�

i=1

λiXi,

we deduce that z is a fixed point of TX . Denote by Cz the component of
FixTX (M) containing z. Then Cz is a nondegenerate critical submanifold of
ξX .

Lemma 3.49. Cz intersects Mk transversally.

Let us take the lemma for granted. Set Cz,k := Cz ∩Mk. We then have11

TCz,kMk
∼= TCzM,

so that Cz,k is a nondegenerate critical submanifold of ξX |Mk with the same
index and co-index as the critical submanifold Cz of ξX : M → R. Since

ξX = ξk+1 −
k�

i=1

λiξi

we deduce that ξX |Mk −ξk+1|Mk = const so that Cz,k is a nondegenerate crit-
ical submanifold of ξk+1|Mk with even index and co-index. Thus, to complete
the proof of Theorem 3.48 it suffices to prove Lemma 3.49.

Proof of Lemma 3.49. It suffices to show that Cz and Mk intersect
transversally at z. Thus we need to prove that

(TzMk)⊥ ∩ (TzCz)⊥ = 0,

where the orthogonal complements are defined in terms of a metric h equiv-
ariantly tamed by ω. Denote by J the associated almost complex structure.
Observe that

11 We are using the following sequence of canonical isomorphisms of vector bundles
over Cz,k:

TCz,kMk := TMk/TCz,k = TMk/(TMk ∩ TCz) ∼= (TM + TCz)/TCz,

TCz M := TM/TCz = (TM + TCz)/TCz.
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(TzMk)⊥ = spanR{∇hξi(z); i = 1, . . . k} = JspanR{X�

i
(z); i = 1, . . . k}.

Since J is T-invariant, we deduce that LX�J = 0, and since [X�, X�

i
] =

[X,Xi]� = 0 we deduce that

LX�(JX�

i
) = J(LX�X�

i
) = 0.

Corollary 3.40 implies that JXi ∈ TzCz, so that (TzMk)⊥ ⊂ TzCz and there-
fore

(TzMk)⊥ ∩ (TzCz)⊥ = 0. ��

Definition 3.50. A toric symplectic manifold is a symplectic manifold (M, ω)
equipped with an effective Hamiltonian action of a torus of dimension 1

2 dim M .
��

Theorem 3.51. Suppose (M,ω) is a toric symplectic manifold of dimension
on 2m. We denote by T the m-dimensional torus acting on M and by µ the
moment map of this action. The the following hold:
(a) For every face F of µ(M) the submanifold MF = µ−1(F ) is a toric man-
ifold of dimension 2 dimF .
(b) For every η in the interior of µ(M) the fiber Mη = µ−1(η) is diffeomorphic
to T.

Proof. As in Theorem 3.45 we set

StF := {g ∈ T; gx = x, ∀x ∈ MF }.

Theorem 3.45 shows that StF is a closed subgroup of T and

dimStF = codimF = m− dim F.

Thus T⊥ = T/StF is a torus of dimension MF acting effectively on the sym-
plectic manifold MF of dimension 2(m− k).

For part (b) observe that Mη is a connected T-invariant submanifold of
M of dimension m. Let O denote an orbit of T on Mη. Then O is a compact
subset of Mη. Denote by G the stabilizer of a point in O, so that

O = T/G.

On the other hand, by Theorem 3.48, G is a finite group, and since dim T =
m = dim Mη, we deduce that the orbit O is an open subset of Mη. Hence
O = Mη because O is also a closed subset of Mη and Mη is connected. The
isomorphism O = T/G shows that Mη is a finite (free) quotient of T so that
Mη

∼= T. ��

Example 3.52 (A toric structure on CP2
). Consider the action of the

two torus T = S1×S1 on CP2 described in Example 3.36. More precisely, we
have
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[z0, z1, z2] · (eit1 , eit2) = [e−i(t1+t2)z0, e
it1z1, e

it2z2]

= [z0, e
(2t1+t2)iz1, e

(t1+2t2)iz2],
(3.16)

with Hamiltonian function

µ([z0, z1, z2]) =
1

|z|2 (|z0|2, |z1|2, |z2|2)−
1
3
(1, 1, 1) ∈ .

Set b := 1
3 (1, 1, 1).

This action is not effective because the subgroup

G = {(ρ, ρ) ∈ T; ρ3 = 1} ∼= Z/3

acts trivially. To obtain an effective action we need to factor out this subgroup
and look at the action of T2/G. We will do this a bit later.

The Lie algebra of T is identified with the subspace

=
�
w ∈ R3; w0 + w1 + w2 = 0

�
.

The vector w ∈ generates the Hamiltonian flow

Φλ
t
([z0, z1, z2]) = [eiw0tz0, e

iw1tz1, e
iw2tz2]

with Hamiltonian function

ξw =
w0|z0|2 + w1|z1|2 + w2|z2|2

|z|2 .

We can now explain how to concretely factor out the action of G. This is done
in two steps as follows.
Step 1. Construct a smooth surjective morphism of two dimensional tori
ϕ : T → T0 such that kerϕ = G.
Step 2. Define a new action of T0 on CP2 by setting

[z0, z1, z2] · g = [z0, z1, z2] · ϕ−1(g), g ∈ T0,

where ϕ−1(g) denotes an element h ∈ T such that ϕ(h) = g. The choice of h
is irrelevant since two different choices differ by an element in G which acts
trivially on CP2.

Step 1 does not have a unique solution, but formula (3.16) already suggests
one. Define

ϕ : T → T0 = S1 × S1, T � (eit1 , eit2) �−→ (ei(2t1+t2), ei(t1+2t2)) ∈ T0.

To find its “inverse” it suffices to find the inverse of A = Dϕ|1 : → 0. Using
the canonical bases of T given by the identifications T = S1 × S1 = T0 we
deduce

A =
�

2 1
1 2

�
, A−1 =

1
3

�
2 −1

−1 2

�
,
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and
T0 � (eis1 , eis2) ϕ

−1

�−→
�

ei(2s1−s2)/3 , ei(−s1+2s2)/3
�
∈ T.

The action of T0 on CP2 is then given by

[z0, z1, z2] · (eis1 , eis2) =
�
e−(s1+s2)i/3z0 , e(2s1−s2)i/3z1 , e(−s1+2s2)i/3z2

�

=
�
z0 , es1iz1 , es2iz2

�
.

(3.17)

Note that
0 � ∂s1

A
−1

�−→ w1 =
1
3
(−1, 2,−1� �� �

first column of A
−1

) ∈ ,

and
0 � ∂s2

A
−1

�−→ w2 =
1
3
(−1, −1, 2� �� �

second column of A
−1

) ∈ .

The vector ∂si generates the Hamiltonian flow Ψ i

t
= Φwi

t
with Hamiltonian

function χi := ξwi . More explicitly,

χ1 =
−|z0|2 + 2|z1|2 − |z2|2

3|z|2 , χ2 =
−|z0|2 − |z1|2 + 2|z2|2

3|z|2 .

Using the equality |z|2 = |z0|2 + |z1|2 + |z2|2, we deduce12

χi =
|zi|2

|z|2 −
1
3
, i = 1, 2.

We can thus take as moment map of the action of T0 on CP2 the function

ν([z0, z1, z2]) = (ν1, ν2), νi = χi +
1
3

because the addition of a constant to a function changes neither the Hamil-
tonian flow it determines nor the Poisson brackets with other functions.

For the equality (3.17) we deduce that the fixed points of this action are

P0 = [1, 0, 0], P1 = [0, 1, 0], P2 = [0, 0, 1].

Set νi = ν(Pi), so that

ν0 = (0, 0), ν1 = (1, 0), ν2 = (0, 1).

The image of the moment map µ is the triangle ∆ in 0 with vertices ν0ν1ν2.
Denote by Ei the edge of ∆ opposite the vertex νi. We deduce that ν−1(Ei)
is the hyperplane in CP2 described by z0 = 0.
12 Compare this result with the harmonic oscillator computations in Example 3.32.
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As explained in Theorem 3.45, the line �i through the origin of and per-
pendicular to Ei generates a 1-dimensional torus TEi and Ei = FixTEi

(CP2).
We have

TE0 = {(esi, esi); s ∈ R}, TE1 = {(1, esi); s ∈ R}, TE2 =
�

(esi, 1); s ∈ R
�
.

Observe that the complex manifold

X := ν−1
�
int∆ ) = CP2 \

�
µ−1(E0) ∪ µ−1(E1) ∪ µ−1(E2)

�

is biholomorphic to the complexified torus Tc

0 = C∗×C∗ via the T0-equivariant
map

X � [z0, z1, z2]
Φ�−→ (ζ1, ζ2) = (z1/z0, z2/z1) ∈ C∗ × C∗.

For ρ = (ρ1, ρ2) ∈ int (∆) we have

ν−1(ρ) =
�

[1, z1, z2] ∈ CP2; |zi|2 = ρi(1 + |z1|2 + |z2|2
�

=
�

[1, z2, z2]; |zi|2 = ri

�
, ri =

ρi(ρ1 + ρ2)
1− (ρ1 + ρ2)

.

This shows what happens to the fiber ν−1(ρ) as ρ approaches one of the edges
Ei. For example, as ρ approaches the edge E1 given by ρ1 = 0, the torus
ν−1(ρ) is shrinking in one direction since the codimension one cycle |z1|2 = r1

on ν−1(ρ) degenerates to a point as ρ → 0. ��

3.5 S1
-Equivariant Localization

The goal of this section is to prove that the Morse–Bott functions determined
by the moment map of aHamiltonian torus action are perfect. We will use the
strategy in [Fra] based on a result of P. Conner (Corollary 3.69) relating the
Betti numbers of a smooth manifold equipped with a smooth S1-action to the
Betti numbers of the fixed point set.

To prove Conner’s result we use the equivariant localization theorem of
Atiyah and Bott [AB2] which will require a brief digression into S1-equivariant
cohomology. For simplicity we write H•(X) := H•(X, C) for any topological
space X.

Denote by S∞ the unit sphere in an infinite dimensional, separable, com-
plex Hilbert space. It is well known (see e.g. [Ha, Example 1.B.3]) that S∞ is
contractible. Using the identification

S1 =
�
z ∈ C; |z| = 1

�

we see that there is a tautological right free action of S1 on S∞. The quotient
BS1 := S∞/S1 is the infinite dimensional complex projective space CP∞.
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Its cohomology ring with complex coefficients is isomorphic to the ring of
polynomials with complex coefficients in one variable of degree 2,

H•(BS1) ∼= C[τ ], deg τ = 2.

We obtain a principal S1-bundle S∞ → BS1. To any principal S1-bundle
S1 �→ P � B and any linear representation ρ : S1 → Aut(C) = C∗ we can
associate a complex line bundle Lρ → B whose total space is given by the
quotient

P ×ρ C = (P × C)/S1,

where the right action of S1 on P × C is given by

(p, ζ) · eiϕ := (p · eiϕ, ρ(e−iϕ)ζ), ∀(p, ζ) ∈ P × C, eiϕ ∈ S1.

Lρ is called the complex line bundle associated with the principal S1-bundle
P � B and the representation ρ. When ρ is the tautological representation
given by the inclusion S1 → C∗ we will say simply that L is the complex line
bundle associated with the principal S1-bundle.

Example 3.53. Consider the usual action of S1 on S2n+1 ⊂ Cn+1. The quo-
tient space is CPn and the S1-bundle S2n+1 → CPn is called the Hopf bundle.
Consider the identity morphism

ρ1 : S1 → S1 ⊂ Aut(C), eit �→ eit.

The associated line bundle

S2n+1 ×ρ1 C → CPn

can be identified with the tautological line bundle Un → CPn.
To see this, note that we have an S1-invariant smooth map

S2n+1 × C → CPn × Cn+1,

given by

S2n+1 × C � (z0, . . . , zn, z) �→ ([z0, . . . , zn], (zz0, . . . , zzn) )

which produces the desired isomorphism between S2n+1×ρ1 C and the tauto-
logical line bundle Un.

More generally, for every integer m we denote by O(m) → CPn the line
bundle associated with the Hopf bundle and the representation

ρ−m : S1 → S1, eit �→ e−mit.

Thus O(−1) ∼= Un.
Observe that the sections of O(m) are given by smooth maps
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σ : S2n+1 → C

satisfying
σ(eitv) = emitσ(v).

Thus, if m ≥ 0, and P ∈ C[z0, . . . , zn] is a homogeneous polynomial of degree
m, then the smooth map

S2n+1 � (z0, . . . , zn) �→ P (z0, . . . , zm)

defines a section of O(m). ��

We denote by U∞ → BS1 the complex line bundle associated with the
S1-bundle S∞ → BS1. The space BS1 is usually referred to as the classifying
space of the group S1, while U∞ is the called the universal line bundle. To
explain the reason behind this terminology we need to recall a few classical
facts.

To any complex line bundle L over a CW -complex X we can associate a
cohomology class e(L) ∈ H2(X) called the Euler class of L. It is defined by

e(L) := i∗τL,

where i : X → L denotes the zero section inclusion, DL denotes the unit
disk bundle of L, and τL = H2(DL, ∂DL; C) denotes the Thom class of L
determined by the canonical orientation defined by the complex structure on
L.

The Euler class is natural in the following sense. Given a continuous map
f : X → Y between CW -complexes and a complex line bundle L → Y , then

e(f∗L) = f∗e(L),

where f∗L → X denotes the pullback of L → Y via f .
Often the following result is very useful in determining the Euler class.

Theorem 3.54 (Gauss–Bonnet–Chern). Suppose X is a compact oriented
smooth manifold, L → X is a complex line bundle over X, and σ : X → L is
a smooth section of L vanishing transversally. This means that near a point
x0 ∈ σ−1(0) the section σ can be represented as a smooth map σ : X → C that
is a submersion at x0. Then S := σ−1(0) is a smooth submanifold of X. It has
a natural orientation induced from the orientation of TX and the canonical
orientation of L via the isomorphism

L|S ∼= (TX)|S/TS.

Then [S] determines a homology class That is Poincaré dual to e(L). ��
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For a proof we refer to [BT, Proposition 6.24].

Example 3.55. The Euler class of the line bundle O(1) → CPn is the
Poincaré dual of the homology class determined by the zero set of the section
described in Example 3.53. This zero set is the hyperplane

H =
�

[z0, z1, . . . , zn]; z0 = 0
�
.

Its Poincaré dual is the canonical generator of H•(CPn). ��

The importance of BS1 stems from the following fundamental result [MS,
§14].

Theorem 3.56. Suppose X is a CW -complex. Then for every complex line
bundle L → X there exists a continuous map f : X → BS1 and a line bundle
isomorphism f∗U∞ ∼= L. Moreover,

e(L) = f∗e(U∞) = −f∗(τ) ∈ H2(X),

where τ is the canonical generator13 of H2(CP∞). ��

The cohomology of the total space of a circle bundle enters into a long
exact sequence known as the Gysin sequence. For the reader’s convenience we
include here the statement and the proof of this result.

Theorem 3.57 (Gysin). Suppose S1 �→ P
π→ B is a principal S1-bundle

over a CW -complex. Denote by L → B the associated complex line bundle
and by e = e(L) ∈ H2(B, C) its Euler class. Then we have the following long
exact sequence:

· · ·→ H•(P ) π!−→ H•−1(B) e∪·−→ H•+1(B) π
∗

−→ H•+1(P ) → · · · . (3.18)

The morphism π! : H•(P ) → H•−1(B) is called the Gysin map.

Proof. Denote by DL the unit disk bundle of L determined by a Hermitian
metric on L. Then ∂DL is isomorphic as an S1-bundle to P . Denote by i :
B → L the zero section inclusion. We have a Thom isomorphism

i! : H•(B) → H•+2(DL, ∂DL),

H•(B) � β �→ τL ∪ π∗β ∈ H•+2(DL, ∂DL).

Consider now the following diagram, in which the top row is the long exact
cohomological sequence of the pair (DL, ∂DL), all the vertical arrows are
isomorphisms ,and r, q are restriction maps (i.e., pullbacks by inclusions)
13 The minus sign in the above formula comes from the fact that the Euler class

of the tautological line bundle over CP1 ∼= S
2 is the opposite of the generator of

H
2(CP1) determined by the orientation of CP1 as a complex manifold.
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q→ H•(∂DL) H•+1(DL, ∂DL) H•+1(DL) q→

H•(P ) H•−1(B) H•+1(B)

δ r

i
∗j i!

The bottom row can thus be completed to a long exact sequence, where the
morphism H•−1(B) → H•+1(B) is given by

i∗ri!(α) = i∗(τL ∪ π∗α) = i∗(τL) ∪ i∗π∗(α) = e ∪ α, ∀α ∈ H•−1(B). ��

Definition 3.58. (a) We define a left (respectively right) S1-space to be a
topological space X together with a continuous left (respectively right) S1-
action. The set of orbits of a left (resp. right) action is denoted by S1\X
(respectively X/S1).
(b) An S1-map between left S1-spaces X,Y is a continuous S1-equivariant
map X → Y .
(c) If X is a left S1-space we define

XS1 := (S∞ ×X)/S1,

where the right action of S1 on PX := (S∞ ×X) is given by

(v, x) · eit := (v · eit, e−itx), ∀(v, x) ∈ S∞ ×X, t ∈ R.

(d)We define the S1-equivariant cohomology of X to be

H•
S1(X) := H•(XS1). ��

Remark 3.59 (Warning!). Note that to any left action of a group G on a set
S,

G×X → S, (g, s) �−→ g · s,
there is an associated right action

S ×G → S, (s, g) �→ s ◦ g := g−1 · s.

We will refer to it as the right action dual to the left action. Note that these
two actions have the same sets of orbits, i.e.,

G\S = S/G.

If S is a topological space and the left action of G is continuous then the spaces
S/G and G\S with the quotient topologies are tautologically homeomorphic.

The differences between right and left actions tend to be blurred even
more when the group G happens to be Abelian, because in this case there is
another right action

S ×G → S, (s, g) �→ s ∗ g = g · s.

The ◦ and ∗ actions are sometime confused leading to sign errors in compu-
tations of characteristic classes. ��
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In the sequel we will work exclusively with left S1-spaces, and therefore
we will refer to them simply as S1-spaces.

The natural S1-equivariant projection S∞×X → S∞ induces a continuous
map

Ψ : XS1 → BS1.

We denote by LX the complex line bundle Ψ∗U∞ → XS1 .

Proposition 3.60. LX is isomorphic to the complex line bundle associated
with the principal S1-bundle

S1 �→ PX → XS1

Proof. Argue exactly as in Example 3.53. ��

We set z := e(LX) ∈ H2(XS1). The ∪-product with z defines a structure
of a C[z]-module on H•

S1(X). In fact, when we think of the equivariant coho-
mology of an S1-space, we think of a C[z]-module because it is through this
additional structure that we gain information about the action of S1.

The module H•
S1(X) has a Z/2-grading given by the parity of the degree

of a cohomology class, and the multiplication by z preserves this parity. We
denote by H±

S1(X) its even/odd part. Let us point out that H•
S1(X) is not

Z-graded as a C[z]-module.
Any S1- map between S1-spaces f : X → Y induces a morphism of C[z]-

modules
f∗ : H•

S1(Y ) → H•
S1(X),

and given any S1-invariant subset Y of an S1-space X we obtain a long exact
sequence of C[z]-modules

· · ·→ H•
S1(X,Y ) → H•

S1(X) → H•
S1(Y ) δ→ H•+1

S1 (X,Y ) → · · · ,

where
H•

S1(X,Y ) := H•(XS1 , YS1).

Moreover, any S1-maps that are equivariantly homotopic induce identical
maps in equivariant cohomology.

Example 3.61. (a) Observe that if X is a point ∗, then

H•
S1(∗) ∼= H•(BS1) = C[τ ].

Any S1-space X is equipped with a collapse map cX : X → {∗} that induces
a morphism

c∗
X

: C[τ ] → H•
S1(X).

We see that c∗
X

induces the canonical C[z]-module structure on H•
S1(X), where

z = c∗
X

(−τ).
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(b) Suppose that S1 acts trivially on X. Then

XS1 = BS1 ×X, H•
S1(X) ∼= H•(BS1)⊗H•(X) ∼= C[τ ]⊗H•(X)

and z = −τ . Hence H•
S1(X) is a free C[z]-module.

(c) Suppose X is a left S1-space such that S1 acts freely on X. The natural
map (S∞×X) → X is equivariant (with respect to the right action on S∞×X
and the dual right action on X) and induces a map

XS1 = (S∞ ×X)/S1 → X/S1.

If X and X/S1 are a reasonable spaces (e.g., are locally contractible), then the
map π : XS1 → X/S1 is a fibration with fiber S∞. The long exact homotopy
sequence of this fibration shows that π is a weak homotopy equivalence and
thus induces an isomorphism in homology (see [Ha, Proposition 4.21]). In
particular, H•

S1(X) ∼= H•(X/S1).
If e(X/S1) denotes the Euler class of the S1-bundle X → X/S1, then the

multiplication by z is given by the cup product with e(X/S1). In particular,
z is nilpotent. For example, if

X = S2n+1 =
�

(z0, z1, . . . , zn) ∈ Cn+1;
�

k

|zk|2 = 1
�
,

and the action of S1 is given by

eit · (z0, . . . , zn) =
�
eitz0, . . . , e

itzn

�
,

then X/S1 = CPn and

H•
S1(X) = H•(CPn) ∼= C[z]/(zn+1), deg z = 2.

(d) For every nonzero integer k denote by [S1, k] the circle S1 equipped with
the action of S1 given by

S1 × [S1, k] � (z, u) �→ zk · u.

Equivalently, we can regard [S1, k] as the quotient S1/Z/k equipped with the
natural action of S1. We want to prove that

H•
S1([S1, k]) = H0(∗) = C,

where ∗ denotes a space consisting of a single point. We have a fibration

Z/k �→ (S∞ × S1)/S1

� �� �
:=L1

π� (S∞ × [S1, k])/S1

� �� �
:=Lk

.

In other words, L1 is a cyclic covering space of Lk.
Note that L1

∼= S∞ is contractible and
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H•(Lk) = H•
S1([S1, k]).

We claim that
Hm(Lk, C) = 0, ∀m > 0, (3.19)

so that H•
S1([S1, k]) = H0(∗) = C.

To prove the claim, observe first that the action of Z/k induces a free
action on the set of singular simplices in L1 and thus a linear action on the
vector space C•(L1, C) of singular chains in L1 with complex coefficients. We
denote this action by

Z/k × c � (ρ, c) �→ ρ ◦ c.

We denote by C̄•(L1, C) the subcomplex of C•(L1, X) consisting of Z/k-
invariant chains.

We obtain by averaging a natural projection,

a := C•(L1, C) → C̄•(L1, C), c �−→ a(c) :=
1
k

�

ρ∈Z/k

ρ ◦ c.

This defines a morphism of chain complexes

a : C•(L1, C) → C•(L1, C),

with image C̄•(L1, C).
Each singular m-simplex σ in Lk admits precisely k-lifts to L1,

σ̃1, . . . , σ̃k : ∆m → L1.

These lifts form an orbit of the Z/k action on the set of singular simplices in
L1. We define a map

Cm(Lk, C) → Cm(L1, C), c =
�

α

zασα �→ ĉ =
�

α

zασ̂α,

where

σ̂ :=
1
k

k�

i=1

σ̃i, ∀σ : ∆m → Lk.

Clearly ĉ is Z/k-invariant and

�∂c = ∂ĉ.

We have thus produced a morphism of chain complexes

π! : C•(Lk, C) → C̄•(L1, C), c �→ ĉ.

Denote by π∗ the morphism of chain complexes C•(L1, C) → C•(Lk, C) in-
duced by the projection π : L1 → Lk. Observe that
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π! ◦ π∗ = a.

This shows that the restriction of the morphism π∗ to the subcomplex
C̄•(L1, C) of invariant chains is injective.

Suppose now that c is a singular chain in Cm(Lk, Z) such that ∂c = 0.
Then

π∗ĉ = c, π∗(∂ĉ) = ∂π∗ĉ = ∂c = 0.

Since ∂ĉ is an invariant chain and π∗ is injective on the space of invariant
chains we deduce ∂c̄ = 0.

On the other hand, L1 is contractible, so there exists û ∈ Cm−1(L1, C)
such that ∂û = ĉ. Thus

c = π∗ĉ = π∗∂û = ∂π∗û.

This shows that every m-cycle in Lk is a boundary.
(e) Suppose X = C and S1 acts on X via

S1 × C � (eit, z) �→ e−mitz.

Then XS1 is the total space of the complex line bundle O(m) → CP∞. ��

Remark 3.62. The spaces Lk in Example 3.61(c) are the Eilenberg–Mac Lane
spaces K(Z/k, 1) while BS1 is the Eilenberg-Mac Lane space K(Z, 2). We
have (see [Ha, Example 2.43])

Hm(Lk, Z) =






Z if m = 0,
0 if m is even and positive,

Z/k if m is odd.
��

We will say that a topological space X has finite type if its singular ho-
mology with complex coefficients is a finite dimensional vector space, i.e.,

�

k

bk(X) < ∞.

An S1-space is said to be of finite type if its equivariant cohomology is a
finitely generated C[z]-module.

Proposition 3.63. If X is a reasonable space (e.g., a Euclidean neighbor-
hood retract, ENR14) and X has finite type, then for any S1-action on X the
resulting S1-space has finite type.

14 For example, any compact CW -complex is an ENR or the zero set of an analytic
map F : Rn → Rm is an ENR. For more details we refer to the appendix of [Ha].



144 3 Applications

Proof. XS1 is the total space of a locally trivial fibration

X �→ XS1 � BS1

and the cohomology of XS1 is determined by the Leray–Serre spectral se-
quence of this fibration whose E2-term is

Ep,q

2 = Hp(BS1)⊗Hq(X).

The complex E2 has a natural structure of a finitely generated C[z]-module.
The class z lives in E2,0

2 , so that d2z = 0. Since the differential d2 is an odd
derivation with respect to the ∪-product structure on E2 (see [BT, Theorem
15.11]), we deduce that d2 commutes with multiplication by z, so that d2 is a
morphism of C[z]-modules. Hence the later terms Er of the spectral sequence
will be finitely generated C[z]-modules since they are quotients of submodules
of finitely generated C[z]-modules. If we let r > 0 denote the largest integer
such that br(X) �= 0, we deduce that

Er+1 = Er+2 = · · · = E∞.

Hence E∞ is a finitely generated C[z]-module. This proves that H•
S1(X) is an

iterated extension of a finitely generated C[z]-module by modules of the same
type. ��

The finitely generated C[z]-modules have a simple structure. Any such
module M fits in a short (split) exact sequence of C[z]-modules

0 → Mtors → M → Mfree → 0.

If M is Z/2-graded, and z is even, then there are induced Z/2-gradings in
Mfree and Mtors, so that the even/odd parts of the above sequence are also
exact sequences.

The free part Mfree has the form ⊕r

i=1C[z], where the positive integer r
is called the rank of M and is denoted by rankC[z]M . The classification of
finitely generated torsion C[z]-modules is equivalent to the classification of
endomorphisms of finite dimensional complex vector spaces according to their
normal Jordan form.

If T is a finitely generated torsion C[z]-module then as a C-vector space
T is finite dimensional. The multiplication by z defines a C-linear map

Az : T → T, T � t �→ z · t.

Denote by Pz(λ) the characteristic polynomial of Az, Pz(λ) = det(λ T −Az).
The support of T is defined by

supp T :=
�
a ∈ C; Pz(a) = 0}.

For a free C[z]-module M we define supp M := C. For an arbitrary C[z]-
module M we now set
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supp M = suppMtors ∪ supp Mfree.

Thus a finitely generated C[z]-module M is torsion if and only if its support
is finite. Note that for such a module we have the equivalence

supp M = {0}⇐⇒ ∃n ∈ Z>0 : zn · m = 0, ∀m ∈ M.

We say that a C[z]-module M is negligible if it is finitely generated and
supp M = {0}. Similarly, an S1-space X is called negligible if it has finite
type and H•

S1(X) is a negligible C[z]-module

supp M = {0}.

The negligible modules are pure torsion modules. Example 3.61 shows that if
the action of S1 on X is free and of finite type then X is negligible, while if
S1 acts trivially on X then H•

S1(X)tors = 0.
For an S1-action on a compact smooth manifold M the equivariant local-

ization theorem of A. Borel [Bo] and Atiyah–Bott [AB2] essentially says that
the free part of H•

S1(M) is due entirely to the fixed point set of the action.

Theorem 3.64. Suppose S1 acts smoothly and effectively on the compact
smooth manifold M . Denote by F = FixS1(M) the fixed point set of this
action,

F =
�
x ∈ M ; eit · x = x, ∀t ∈ R

�
.

Then the kernel and cokernel of the morphism i∗ : H•
S1(M) → H•

S1(F ) are
negligible C[z]-modules. In particular,

rankC[z]H
±
S1(M) = dimC H±(F ), (3.20)

where for any topological space X we set

H±(X) :=
�

k=even/odd

Hk(X).

Proof. We follow [AB2], which is in essence a geometrical translation of the
spectral sequence argument employed in [Bo, Hs]. We equip M with an S1-
invariant metric, so that S1 acts by isometries. Arguing as in the proof of
Lemma 3.39, we deduce that F is a (possibly disconnected) smooth subman-
ifold of M . To proceed further we need to use the following elementary facts.

Lemma 3.65. (a) If A
f→ B

g→ C is an exact sequence of finitely generated
C[z]-modules, then

supp B ⊂ supp A ∪ supp C. (3.21)

In particular, if the sequence 0 → A → B → C → 0 is exact and two of the
three modules in it are negligible, then so is the third.
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(b) Suppose f : X → Y is an equivariant map between S1-spaces of finite type
such that Y is negligible. Then X is negligible as well. In particular, if X is
a finite type S1-space that admits an S1-map f : X → [S1, k], k > 0, then X
is negligible.
(c) Any finite type invariant subspace of a negligible S1-space is negligible.
(d) If U and V are negligible invariant open subsets of an S1 space, then their
union is also negligible.

Proof. Part (a) is a special case of a classical fact of commutative algebra, [S,
I.5]. For the reader’s convenience we present the simple proof of this special
case.

Clearly the inclusion (3.21) is trivially satisfied when either Afree or Cfree

is nontrivial. Thus assume A = Ators and C = Ctors. Observe that we have a
short exact sequence

0 → ker f → B → Im g → 0. (3.22)

Note that supp ker f ⊂ supp A and supp Im g ⊂ supp C. We then have an
isomorphism of vector spaces

B ∼= ker f ⊕ Im g.

Denote by αz the linear map induced by multiplication by z on ker f , by βz

the linear map induced on B, and by γz the linear map induced on Im g. Using
the exactness (3.22) we deduce that βz, regarded as a C-linear endomorphism
of ker f ⊕ Im g, has the upper triangular block decomposition

βz =
�

αz ∗
0 γz

�
,

where ∗ denotes a linear map Im g → ker f . Then

det(λ − βz) = det(λ − αz) det(λ − γz),

which shows that

supp B = supp ker f ∪ supp Im g ⊂ supp A ∪ supp C.

(b) Consider an S1-map f : X → Y . Note that cX = cY ◦ f , and we have a
sequence

C[τ ] = H•
S1(∗)

c
∗
Y−→ H•

S1(Y ) f
∗

−→ H•
S1(X).

On the other hand, since suppH•
S1(Y ) = {0}, we deduce that c∗

Y
(τ)n = 0 for

some positive integer n. We deduce that c∗
X

(τ) = 0, so that suppH•
S1(X) =

{0}. If Y = [S1, k], then we know from Example 3.61(c) that suppH•
S1(Y ) =

{0}.
(c) If U is an invariant subset of the negligible S1-space X, then applying (b)
to the inclusion U �→ X we deduce that U is negligible.
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(d) Finally, if U, V are negligible invariant open subsets of the S1-space X,
then the Mayer–Vietoris sequence yields the exact sequence

H•−1
S1 (U ∩ V ) → H•

S1(U ∪ V ) → H•
S1(U)⊕H•

S1(V ).

Part (c) shows that U ∩ V is negligible. The claim now follows from (a). ��

Our next result will use Lemma 3.65 to produce a large supply of negligible
invariant subsets of M .

Lemma 3.66. Suppose that the stabilizer of x ∈ M is the finite cyclic group
Z/k. Then for any open neighborhood U of the orbit Ox of x there exists
an open S1-invariant neighborhood Ux of Ox contained in U that is of finite
type and is equipped with an S1-map f : Ux → [S1, k]. In particular, Ux is
negligible.

Proof. Fix an S1-invariant metric g on M . The orbit Ox of x is equivariantly
diffeomorphic to [S1, k]. For r > 0 we set

Ux(r) = {y ∈ M ; dist (y,Ox) < r}.

Since S1 acts by isometries, Ux(r) is an open S1-invariant set.
For every y ∈ Ox we denote by TyO⊥

x
the orthogonal complement of TyOx

in TyM . We thus obtain a vector bundle TO⊥
x
→ Ox. Denote by D⊥

r
the

associated bundle of open disks of radius r. If r > 0 is sufficiently small then
the exponential map determined by the metric g defines a diffeomorphism

exp : D⊥
r
→ Ux(r).

In this case, arguing exactly as in the proof of the classical Gauss lemma
in Riemannian geometry (see [Ni, Lemma 4.1.22]), we deduce that for every
y ∈ Ux(r) there exists a unique π(y) ∈ Ox such that

dist
�
y, π(y)

�
= dist (y,Ox).

The resulting map π : Ux(r) → Ox = [S1, k] is continuous and equivariant.
Clearly, Ux(r) is of finite type for r > 0 sufficiently small, and for every
neighborhood U of Ox we can find r > 0 such that Ux(r) ⊂ U . ��

Remark 3.67. Observe that the assumption that the stabilizer of a point x is
finite is equivalent to the fact that x is not a fixed point of the S1-action. ��

For every ε > 0 sufficiently small we define the S1-invariant subset of M

M̄ε := {y ∈ M ; dist (y, F ) ≥ ε}, Uε = M \ M̄ε.

Observe that M̄ε is the complement of an open thin tube Uε around the fixed
point set F .
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Lemma 3.68. For all ε > 0 sufficiently small, the set M̄ε is negligible.

Proof. Cover M̄ε by finitely many negligible open sets of the type Ux described
in Lemma 3.66. Denote them by U1, . . . , , Uν . Proposition 3.63 implies that
Vi = Ui ∩ M̄ε is of finite type and we deduce from Lemma 3.65 and Lemma
3.66 that

supp H•
S1(Vi) = suppH•

S1(U1) = {0}.

Now define recursively

W1 = U1, Wi+1 = Wi ∪ Vi+1, 1 ≤ i < ν.

Using Lemma 3.65(d) we deduce inductively that M̄ε is negligible. ��

Observe that the natural morphism H•
S1(Uε) → H•

S1(F ) is an isomorphism
for all ε > 0 sufficiently small, so we need to understand the kernel and
cokernel of the map

H•
S1(M) → H•

S1(Uε).

The long exact sequence of the pair (M, Uε) shows that these are submodules
of H•

S1(M,Uε). Thus, it suffices to show that H•
S1(M,Uε) is a negligible C[z]-

module. By excision we have

H•
S1(M,Uε) = H•

S1(M̄ε, ∂M̄ε).

Lemma 3.65(c) implies that ∂M̄ε is negligible.
Using the long exact sequence of the pair (M̄ε, ∂M̄ε) we obtain an exact

sequence
H∓

S1(∂M̄ε)−→H±
S1(M̄ε, ∂M̄ε)−→H±

S1(M̄ε).

Since the two extremes of this sequence are negligible, we deduce from Lemma
3.65(a) that the middle module is negligible as well. This proves that both the
kernel and the cokernel of the morphism H•

S1(M) → H•
S1(F ) are negligible

C[z]-modules.
On the other hand, according to Example 3.61(d), the C[z]-module H•

S1(F )
is free and thus

ker
�

H•
S1(M) → H•

S1(F )
�

= H•
S1(M)tors.

We thus have an injective map H•
S1(M)free → H•

S1(F ) whose cokernel is a
torsion module. We deduce that

rankC[z]H
±
S1(M) = rankC[z]H

±
S1(F ) = dimC H±(F ). ��

From the localization theorem we deduce the following result of P. Conner
[Co]. For a different approach we refer to [Bo, IV.5.4].
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Corollary 3.69. Suppose the torus T acts on the compact smooth manifold
M . Let M and F be as in Theorem 3.64. Then

dimC H±(M)) ≥ dimC H±�
FixT(M)

�
. (3.23)

Proof. We will argue by induction on dim T. To start the induction, assume
first that T = S1. Consider the S1-bundle PM = S∞ ×M → MS1 . Since S∞

is contractible the Gysin sequence of this S1-bundle can be rewritten as

· · ·→ H•(M) → H•−1
S1 (M) z∪−→ H•+1

S1 (M) → H•+1(M) → · · · .

In particular we deduce that we have an injection

H±
S1(M)/zH±

S1(M) �→ H±(M).

Using a (noncanonical) direct sum decomposition

H±
S1(M) = H±

S1(M)tors ⊕H±
S1(M)free

we obtain an injection

H±
S1(M)free/zH±

S1(M)free �→ H±(M).

The above quotient is a finite dimensional complex vector space of dimension
equal to the rank of H±

S1(M), and from the localization theorem we deduce

dimC H±(F ) = dimC H±
S1(M)free/zH±

S1(M)free
≤ dimC H±(M) = dimC H±(M).

��

Suppose now that T is an n-dimensional torus such that T� = T× S1 acts
on M . Let F � denote the fixed point set of T� and let F denote the fixed point
set of T. They are both submanifolds of M and F � ⊂ F . The component S1

acts on F , and we have
F � = FixS1(F ).

The induction hypothesis implies

dimC H±(M) ≥ dimC H±(F ),

while the initial step of the induction shows that

dimC H±(F ) ≥ dimC H±( FixS1(F ) ) = dimC H±(F �). ��

Theorem 3.70. Suppose (M,ω) is a compact symplectic manifold equipped
with a Hamiltonian action of a torus T with moment map µ : M → ∗. Then
for every X ∈ the function ξX : M → R given by ξX(x) = �µ(x), X�, x ∈ M ,
is a perfect Morse–Bott function.
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Proof. We use the strategy in [Fra]. We already know from Theorem 3.37 that
ξX is a Morse–Bott function. Moreover, its critical set is the fixed point set F
of the closed torus TX ⊂ T generated by etX . Denote by {Fα} the connected
components of this fixed point set and by λα the Morse index of the critical
submanifold Fα. We then have the Morse–Bott inequalities

�

α

tλαPCα(t) � PM (t). (3.24)

If we set t = 1 we deduce
�

k

bk(F ) =
�

α

�

k

bk(Fα) ≥
�

k

bk(M). (3.25)

The inequality (3.23) shows that we actually have equality in (3.25), and this
in turn implies that we have equality in (3.24), i.e., f is a perfect Morse–Bott
function. ��

Remark 3.71. (a) The perfect Morse–Bott functions on complex Grassman-
nians used in the proof of Proposition 3.1 are of the type discussed in the
above theorem. For a very nice discussion of Morse theory, Grassmannians
and equivariant cohomology we refer to the survey paper [Gu]. For more
refined applications of equivariant cohomology to Morse theory we refer to
[AB1, B2].
(b) In the proof of Theorem 3.70 we have shown that for every Hamiltonian
action of a torus T on a compact symplectic manifold we have

�

k

dim Hk
�
FixT(M)

�
=

�

k

Hk(M).

Such actions of T are called equivariantly formal and enjoy many interesting
properties. We refer to [Bo, XII] and [GKM] for more information on these
types of actions. ��



4

Basics of Complex Morse Theory

In this final chapter we would like to introduce the reader to the complex
version of Morse theory that has proved to be very useful in the study of the
topology of complex projective varieties, and more recently in the study of
the topology of symplectic manifolds.

The philosophy behind complex Morse theory is the same as that for the
real Morse theory we have investigated so far. Given a complex submanifold
M of a projective space CPN we consider a (complex) 1-dimensional family
of (projective) hyperplanes Ht, t ∈ CP1 and we study the the family of slices
Ht∩M . These slices are in fact the fibers of a holomorphic map f : M → CP1.

In this case the “time variable” is complex, and we cannot speak of sublevel
sets. However, the whole setup is much more rigid, since all the objects in-
volved are holomorphic, and we can still extract nontrivial information about
the family of slices Ht∩M from a finite collection of data, namely the behavior
of the family near the singular slices, i.e., near those parameters τ such that
Hτ does not intersect M transversally.

In the complex case the parameter t can approach a singular value τ in a
more sophisticated way, and the right information is no longer contained in one
number (index of a Hessian) but in a morphism of groups called monodromy,
which encodes how the homology of a slice Ht∩M changes as t moves around
a small loop surrounding a singular value τ .

We can then use this local information to obtain surprising results relating
the topology of M to the topology of a generic slice Ht∩M and the singularities
of the family.

To ease notation, in this chapter we will write PN instead of CPN . For every
complex vector space V we will denote by P(V ) its projectivization, i.e., the
space of complex one dimensional subspaces in V . Thus PN = P(CN+1). The
dual of P(V ) is P(V ∗), and it parametrizes the (projective) hyperplanes in
P(V ). We will denote the dual of P(V ) by P̌(V ).

We will denote by Pd,N the vector space of homogeneous complex polyno-
mials of degree d in the variables z0, . . . , zN . Note that
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dimC Pd,N =
�

d + N

d

�
.

We denote by P(d,N) the projectivization of Pd,N . Observe that P(1, N) =
P̌N .

4.1 Some Fundamental Constructions

Loosely speaking, a linear system on a complex manifold is a holomorphic
family of divisors (i.e., complex hypersurfaces) parametrized by a projective
space. Instead of a formal definition we will analyze a special class of examples.
For more information we refer to [GH].

Suppose X �→ PN is a compact submanifold of dimension n. Each poly-
nomial P ∈ Pd,N \ {0} determines a (possibly singular) hypersurface

ZP :=
�

[z0 : . . . : zN ] ∈ PN ;P (z0, . . . , zN ) = 0
�

.

The intersection XP := X ∩ ZP is a degree d hypersurface (thus a divisor)
on X. Observe that ZP and XP depend only on the image [P ] of P in the
projectivization P(d,N) of Pd,N .

Each projective subspace U ⊂ P(d,N) defines a family (XP )[P ]∈U of hy-
persurfaces on X. This is a linear system.1 When dimU = 1, i.e., U is a
projective line, we say that the family (XP )P∈U is a pencil. The intersection

B = BU :=
�

P∈U

XP

is called the base locus of the linear system. The points in B are called base
points.

Any point x ∈ X \ B determines a hyperplane Hx ⊂ U described by the
equation

Hx :=
�

P ∈ U ; P (x) = 0
�
.

The hyperplane Hx determines a point in the dual projective space Ǔ . (Ob-
serve that if U is 1-dimensional then U = Ǔ .)

We see that a linear system determines a holomorphic map

fU : X∗ := X \ B → Ǔ , x �→ Hx.

We define the modification of X determined by the linear system (XP )P∈U

to be the variety

X̂ = X̂U =
�

(x,H) ∈ X × Ǔ ; P (x) = 0, ∀P ∈ H ⊂ U
�

.

1 To be accurate, what we call a linear system is what algebraic geometers refer to
as an ample linear system.
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Equivalently, the modification of X determined by the linear system is the
closure in X × Ǔ of the graph of fU . Very often, B and X̂U are not smooth
objects.

When dimU = 1 the modification has the simpler description

X̂ = X̂U =
�

(x, P ) ∈ X × U ; x ∈ ZP

�
.

We have a pair of holomorphic maps πX and f̂U induced by the natural
projections:

X̂U ⊂ X × Ǔ

X Ǔ

πX f̂U

fU

When dimU = 1 the map f̂ : X̂ → Ǔ can be regarded as a map to U .
The projection πX induces a biholomorphic map X̂∗ := π−1

X
(X∗) → X∗

and we have a commutative diagram

X̂∗

X∗ Ǔ

πX f̂U

fU

.

Remark 4.1. When studying linear systems defined by projective subspaces
U ⊂ P(d,N) it suffices to consider only the case d = 1, i.e. linear systems of
hyperplanes.

To see this, define for z ∈ CN+1 \ {0} and ω = (ω0, . . . ,ωN ) ∈ ZN+1
+

|ω| =
N�

i=0

ωi, z
ω =

N�

i=0

zωi
i
∈ P|ω|,N .

Any P =
�

|ω|=d
pωz

ω ∈ Pd,N defines a hyperplane in P̌(d,N),

HP =
�

[zω] ∈ P̌(d,N);
�

|ω|=d

pωzω = 0
�

.

We have the Veronese embedding

Vd,N : PN �→ P̌(d,N), [z] �→ [(zω)] := [(zω)|ω|=d]. (4.1)

Observe that V(ZP ) ⊂ HP , so that V(X ∩ ZP ) = V(X) ∩HP . ��
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Definition 4.2. A Lefschetz pencil on X �→ PN is a pencil determined by a
one dimensional projective subspace U �→ P(d,N) with the following proper-
ties.

(a) The base locus B is either empty or it is a smooth, complex codimension
two submanifold of X.
(b) X̂ is a smooth manifold.
(c) The holomorphic map f̂ : X̂ → U is a nonresonant Morse function,
i.e., no two critical points correspond to the same critical value and for every
critical point x0 of f̂ there exist holomorphic coordinates (zj) near x0 and a
holomorphic coordinate u near f̂(x0) such that

u ◦ f̂ =
�

j

z2
j
.

The map X̂ → S is called the Lefschetz fibration associated with the Lef-
schetz pencil. If the base locus is empty, B = ∅, then X̂ = X and the Lefschetz
pencil is called a Lefschetz fibration. ��

We have the following genericity result. Its proof can be found in [Lam,
Section 2].

Theorem 4.3. Fix a compact complex submanifold X �→ PN . Then for any
generic projective line U ⊂ P(d,N), the pencil (XP )P∈U is Lefschetz. ��

According to Remark 4.1, it suffices to consider only pencils generated by
degree 1 polynomials. In this case, the pencils can be given a more visual
description.

Suppose X �→ PN is a compact complex manifold. Fix a codimension
two projective subspace A �→ PN called the axis. The hyperplanes containing
A form a one dimensional projective space U ⊂ P̌N ∼= P(1, N). It can be
identified with any line in PN that does not intersect A. Indeed, if S is such
a line (called a screen), then any hyperplane H containing A intersects S in
a single point s(H). We have thus produced a map

U � H �→ s(H) ∈ S.

Conversely, any point s ∈ S determines an unique hyperplane [As] containing
A and passing through s. The correspondence

S � s �→ [As] ∈ U

is the inverse of the above map; see Figure 4.1.
The base locus of the linear system
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A

S

s

s
X

B

[As]

Fig. 4.1. Projecting onto the “screen” S.

�
Xs = [As] ∩X

�
s∈S

is B = X ∩ A. All the hypersurfaces Xs pass through the base locus B. For
generic A this is a smooth codimension 2 submanifold of X. We have a natural
map

f : X \ B → S, X \ Bx �−→ S ∩ [Ax] ∈ S.

We can now define the elementary modification of X to be the incidence
variety

X̂ :=
�

(x, s) ∈ X × S; x ∈ Xs

�
.

The critical points of f̂ correspond to the hyperplanes through A that contain
a tangent (projective) plane to X. We have a diagram

X̂

X S

π f̂

f

We define B̂ := π−1(B). Observe that

B̂ =
�

(b, s) ∈ B × S; b ∈ [As]
�

= B × S,
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and the natural projection π : B̂ → B coincides with the projection B × S �
B. Set X̂s := f̂−1(s).

The projection π induces a homeomorphism X̂s → Xs.

Example 4.4 (Pencils of lines). Suppose X is the projective plane

{z3 = 0} ∼= P2 �→ P3.

Assume A is the line z1 = z2 = 0 and S is the line z0 = z3 = 0. The base
locus consists of the single point B = [1 : 0 : 0 : 0] ∈ X. The pencil obtained
in this fashion consists of all lines passing through B.

Observe that S ⊂ X ∼= P2 can be identified with the line at ∞ in P2. The
map f : X \ {B}→ S determined by this pencil is simply the projection onto
the line at ∞ with center B. The modification of X defined by this pencil is
called the blowup of P2 at B. ��

Example 4.5 (Pencils of cubics). Consider two homogeneous cubic poly-
nomials A, B ∈ P3,2 (in the variables z0, z1, z2). For generic A, B these are
smooth cubic curves in P2. (The genus formula in Corollary 4.14 will show
that they are homeomorphic to tori.) By Bézout’s theorem, these two general
cubics meet in 9 distinct points, p1, . . . , p9. For t := [t0 : t1] ∈ P1 set

Ct := {[z0 : z1 : z2] ∈ P2; t0A(z0, z1, z2) + t1B(z0, z1, z2) = 0}.

The family Ct, t ∈ P1, is a pencil on X = P2. The base locus of this sys-
tem consists of the nine points p1, . . . , p9 common to all these cubics. The
modification

X̂ :=
�

([z0, z1, z2], t) ∈ P2 × P1; t0A(z0, z1, z2) + t1B(z0, z1, z2) = 0
�

is isomorphic to the blowup of X at these nine points,

X̂ ∼= X̂p1,...,p9 .

For general A, B the induced map f̂ → P1 is a Morse map, and its generic
fiber is an elliptic curve. The manifold X̂ is a basic example of an elliptic
fibration. It is usually denoted by E(1). ��

4.2 Topological Applications of Lefschetz Pencils

All of the results in this section originate in the remarkable work of S. Lefschetz
[Lef] in the 1920s. We follow the modern presentation in [Lam]. In this section,
unless otherwise stated, H•(X) (respectively H•(X)) will denote the integral
singular homology (respectively cohomology) of the space X.

Before we proceed with our study of Lefschetz pencils we want to mention
two important results, frequently used in the sequel. The first one is called
the Ehresmann fibration theorem [Ehr].
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Theorem 4.6. Suppose Φ : E → B is a smooth map between two smooth
manifolds such that
• Φ is proper, i.e., Φ−1(K) is compact for every compact K ⊂ B.
• Φ is a submersion.
• If ∂E �= ∅ then the restriction ∂Φ of Φ to ∂E continues to be a submersion.

Then Φ : (E, ∂E) → B is a locally trivial, smooth fiber bundle. ��

The second result needed in the sequel is a version of the excision theorem
for singular homology, [Spa, Theorems 6.6.5 and 6.1.10].

Theorem 4.7 (Excision). Suppose f(X,A) → (Y,B) is a continuous map-
ping between compact ENR pairs2 such that

f : X \ A → Y \ B

is a homeomorphism. Then f induces an isomorphism

f∗ : H•(X,A; Z) → H•(Y,B; Z). ��

Remark 4.8. For every compact oriented, m-dimensional manifold M denote
by PDM the Poincaré duality map

Hq(M) → Hm−q(M), u �→ u ∩ [M ].

The sign conventions for the ∩-product follow from the definition

�v ∪ u, c� = �v, u ∩ c�,

where �−,−� denotes the Kronecker pairing between singular cochains and
chains.

Observe that if f : X → Y is a continuous map between topological spaces,
then for every chain c in X and cochains u, v in Y ,

�v, u ∩ p∗(c)� = �u ∪ v, p∗(c)� = �p∗(u) ∪ p∗(v), c�
= �p∗(v), p∗(u) ∩ c� = � v, p∗(p∗(u) ∩ c) �,

so that we obtain the projection formula

p∗(p∗(u) ∩ c) = u ∩ p∗(c). (4.2)

��

Suppose X �→ PN is an n-dimensional algebraic manifold, and S ⊂ P(d,N)
is a one dimensional projective subspace defining a Lefschetz pencil (Xs)s∈S

on X. As usual, denote by B the base locus
2 E.g., (X, A) is a compact ENR pair if X is a compact CW -complex and A is a

subcomplex.
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B =
�

s∈S

Xs

and by X̂ the modification

X̂ =
�

(x, s) ∈ X × S; x ∈ Xs

�
.

We have an induced Lefschetz fibration f̂ : X̂ → S with fibers X̂s := f̂−1(s),
and a surjection p : X̂ → X that induces homeomorphisms X̂s → Xs. Observe
that deg p = 1. Set

B̂ := p−1(B).

We have a tautological diffeomorphism

B̂ ∼= B × S, B̂ � (x, s) �→ (x, s) ∈ B × S.

Since S ∼= S2 we deduce from Künneth’s theorem that we have an isomorphism

Hq(B̂) ∼= Hq(B)⊕Hq−2(B)

and a natural injection

Hq−2(B) → Hq(B̂), Hq−2(B) � c �→ c× [S] ∈ Hq(B̂).

Using the inclusion map B̂ → X̂ we obtain a natural morphism

κ : Hq−2(B) → Hq(X̂).

Lemma 4.9. The sequence

0 → Hq−2(B) κ→ Hq(X̂) p∗→ Hq(X) → 0 (4.3)

is exact and splits for every q. In particular, X̂ is connected iff X is connected
and

χ(X̂) = χ(X) + χ(B).

Proof. The proof will be carried out in several steps.

Step 1 p∗ admits a natural right inverse. Consider the Gysin morphism

p! : Hq(X) → Hq(X̂), p! = PD
X̂

p∗PD−1
X

,

so that the diagram below is commutative:

H2n−q(X) Hq(X)

H2n−q(X̂) Hq(X̂)

∩[X]

p
∗

p
!

∩[X̂]
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We will show that p∗p! = . Let c ∈ Hq(X) and set u := PD−1
X

(c), that is,
u ∩ [X] = c. Then

p!(c) = PD
X̂

p∗u = p∗(u) ∩ [X̂]

and

p∗p
!(c) = p∗

�
p∗(u) ∩ [X̂]

� (4.2)
= u ∩ p∗([X̂]) = deg p(u ∩ [X]) = c.

Step 2. Conclusion. We use the long exact sequences of the pairs (X̂, B̂),
(X,B) and the morphism between them induced by p∗. We have the following
commutative diagram:

Hq+1(X̂) Hq+1(X̂, B̂) Hq(B)⊕Hq−2(B)−→

Hq+1(X) Hq+1(X,B) Hq(B)−→

p∗

∂

p
�
∗ pr

∂

· · ·−→Hq(X̂) Hq(X̂, B̂)

· · ·−→Hq(X) Hq(X,B)

p∗ p
�
∗

The excision theorem shows that the morphisms p�∗ are isomorphisms.
Moreover, p∗ is surjective. The conclusion in the lemma now follows by dia-
gram chasing. ��

Decompose the projective line S into two closed hemispheres

S := D+ ∪D−, E = D+ ∩D−, X̂± := f̂−1(D±), X̂E := f̂−1(E)

such that all the critical values of f̂ : X̂ → S are contained in the interior of
D+. Choose a point ∗ on the equator E = ∂D+

∼= ∂D− ∼= S1. Denote by r
the number of critical points (= the number of critical values) of the Morse
function f̂ . In the remainder of this chapter we will assume the following fact.
Its proof is deferred to a later section.

Lemma 4.10.

Hq(X̂+, X̂∗) ∼=
�

0 if q �= n = dimC X,
Zr if q = n.
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Remark 4.11. The number r of nondegenerate singular points of a Lefschetz
pencil defined by linear polynomials is a projective invariant of X called the
class of X. For more information about this projective invariant we refer to
[GKZ]. ��

Using the Ehresmann fibration theorem we deduce

X̂− ∼= X̂∗ ×D−, ∂X̂± ∼= X̂∗ × ∂D−,

so that
(X̂−, X̂E) ∼= X̂∗ × (D−, E).

Clearly, X̂∗ is a deformation retract of X̂−. In particular, the inclusion X̂∗ �→
X̂− induces isomorphisms

H•(X̂∗) ∼= H•(X̂−).

Using excision and the Künneth formula we obtain the sequence of isomor-
phisms

Hq−2(X̂∗)
×[D−,E]−→ Hq(X̂∗ × (D−, E)) ∼= Hq(X̂−, X̂E) excis−→ Hq(X̂, X̂+). (4.4)

Consider now the long exact sequence of the triple (X̂, X̂+, X̂∗),

· · ·→ Hq+1(X̂+, X̂∗) → Hq+1(X̂, X̂∗) → Hq+1(X̂, X̂+) ∂→ Hq(X+, X̂∗) → · · · .

If we use Lemma 4.10 and the isomorphism (4.4) we deduce that we have the
isomorphisms

L : Hq+1(X̂, X̂∗) → Hq−1(X̂∗), q �= n, n− 1, (4.5)

and the 5-term exact sequence

0 → Hn+1(X̂, X̂∗) → Hn−1(X̂∗) → Hn(X̂+, X̂∗) →
→ Hn(X̂, X̂∗) → Hn−2(X̂∗) → 0.

(4.6)

Here is a first nontrivial consequence.

Corollary 4.12. If X is connected and n = dimC X > 1, then the generic
fiber X̂∗ ∼= X∗ is connected.

Proof. Using (4.5) we obtain the isomorphisms

H0(X̂, X̂∗) ∼= H−2(X̂∗) = 0, H1(X̂, X̂∗) ∼= H−1(X̂∗) = 0.

Using the long exact sequence of the pair (X̂, X̂∗) we deduce that H0(X̂∗) ∼=
H0(X̂). Since X is connected, Lemma 4.9 now implies H0(X̂) = 0, thus prov-
ing the corollary. ��
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Corollary 4.13.

χ(X̂) = 2χ(X̂∗) + (−1)nr, χ(X) = 2χ(X∗)− χ(B) + (−1)nr.

Proof From (4.3) we deduce χ(X̂) = χ(X) + χ(B). On the other hand, the
long exact sequence of the pair (X̂, X̂∗) implies

χ(X̂)− χ(X̂∗) = χ(X̂, X̂∗).

Using (4.5), (4.6), and the Lemma 4.10 we deduce

χ(X̂, X̂∗) = χ(X̂∗) + (−1)nr.

Thus

χ(X̂) = 2χ(X̂∗) + (−1)nr and χ(X) = 2χ(X̂∗)− χ(B) + (−1)nr. ��

Corollary 4.14 (Genus formula). For a generic degree d homogeneous
polynomial P ∈ Pd,2, the plane curve

CP :=
�

[z0, z1, z2] ∈ P2; P (z0, z1, z2) = 0
�

is a smooth Riemann surface of genus

g(CP ) =
(d− 1)(d− 2)

2
.

Proof Fix a projective line L ⊂ P2 and a point c ∈ P2 \ (CP ∪L). We get a
pencil of projective lines {[c�]; � ∈ L} and a projection map f = fc : CP → L,
where for every x ∈ CP the point f(x) is the intersection of the projective line
[cx] with L. In this case we have no base locus, i.e., B = ∅ and X = X̂ = VP .
Since every generic line intersects CP in d points, we deduce that f is a degree
d holomorphic map. A point x ∈ CP is a critical point of fc if and only if the
line [cx] is tangent to CP .

For generic c the projection fc defines a Lefschetz fibration. Modulo a
linear change of coordinates we can assume that all the critical points are
situated in the region z0 �= 0 and c is the point at infinity [0 : 1 : 0].

In the affine plane z0 �= 0 with coordinates x = z1/z0, y = z2/z0, the point
c ∈ P2 corresponds to the point at infinity on the lines parallel to the x-axis
(y = 0). In this region the curve CP is described by the equation

F (x, y) = 0,

where F (x, y) = P (1, x, y) is a degree d inhomogeneous polynomial.
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The critical points of the projection map are the points (x, y) on the curve
F (x, y) = 0 where the tangent is horizontal,

0 =
dy

dx
= −F �

x

F �
y

.

Thus, the critical points are solutions of the system of polynomial equations
�

F (x, y) = 0,
F �

x
(x, y) = 0.

The first polynomial has degree d, while the second polynomial has degree
d− 1. For generic P this system will have exactly d(d− 1) distinct solutions.
The corresponding critical points will be nondegenerate. Using Corollary 4.13
with X = X̂ = CP , r = d(d−1), and X∗ a finite set of cardinality d we deduce

2− 2(g(CP ) = χ(CP ) = 2d− d(d− 1)

so that
g(CP ) =

(d− 1)(d− 2)
2

. ��

Example 4.15. Consider again two generic cubic polynomials A, B ∈ P3,2 as
in Example 4.5 defining a Lefschetz pencil on P2 �→ P3. We can use the above
Corollary 4.13 to determine the number r of singular points of this pencil.
More precisely, we have

χ(P2) = 2χ(X∗)− χ(B) + r.

We have seen that B consists of 9 distinct points. The generic fiber is a degree
3 plane curve, so by the genus formula it must be a torus. Hence χ(X∗) = 0.
Finally, χ(P2) = 3. We deduce r = 12, so that the generic elliptic fibration
P̂2

p1,...,p9
→ P1 has 12 singular fibers. ��

We can now give a new proof of the Lefschetz hyperplane theorem.

Theorem 4.16. Suppose X ⊂ PN is a smooth projective variety of (complex)
dimension n. Then for any hyperplane H ⊂ PN intersecting X transversally
the inclusion X ∩H �→ X induces isomorphisms

Hq(X ∩H) → Hq(X)

if q < 1
2 dimR(X ∩H) = n− 1 and an epimorphism if q = n− 1. Equivalently,

this means that
Hq(X,X ∩H) = 0, ∀q ≤ n− 1.
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Proof. Choose a codimension two projective subspace A ⊂ PN such that the
pencil of hyperplanes in PN containing A defines a Lefschetz pencil on X. Then
the base locus B = A∩X is a smooth codimension two complex submanifold
of X and the modification X̂ is smooth as well.

A transversal hyperplane section X∩H is diffeomorphic to a generic divisor
X∗ of the Lefschetz pencil, or to a generic fiber X̂∗ of the associated Lefschetz
fibration f̂ : X̂ → S, where S denotes the projective line in P̌N = P(1, N)
dual to A.

Using the long exact sequence of the pair (X,X∗) we see that it suffices
to show that

Hq(X,X∗) = 0, ∀q ≤ n− 1.

We analyze the long exact sequence of the triple (X̂, X̂+ ∪ B̂, X̂∗ ∪ B̂). We
have

Hq(X̂, X̂+ ∪ B̂) = Hq(X̂, X̂+ ∪B ×D−)
excis∼= Hq(X̂−, X̂E ∪B ×D−)

(use the Ehresmann fibration theorem)

∼= Hq

�
(X∗, B)× (D−, E)

� ∼= Hq−2(X∗, B).

Using the excision theorem again we obtain an isomorphism

p∗ : Hq(X̂, X̂∗ ∪ B̂) ∼= Hq(X,X∗).

Finally, we have an isomorphism

H•(X̂+ ∪ B̂, X̂∗ ∪ B̂) ∼= H•(X̂+, X̂∗). (4.7)

Indeed, excise B × Int (D−) from both terms of the pair (X̂+ ∪ B̂, X̂∗ ∪ B̂).
Then

X̂+ ∪ B̂ \ (B × Int (D−) ) = X̂+,

and since X̂∗ ∩ B̂ = {∗}×B, we deduce

X̂∗ ∪ B̂ \ (B × Int (D−) ) = X̂∗ ∪
�
D+ ×B

�
.

Observe that X̂∗∩
�
D+×B

�
= {∗}×B and that D+×B deformation retracts

to {∗} × B. Hence X̂∗ ∪
�
D+ × B

�
is homotopically equivalent to X̂∗ thus

proving (4.7).
The long exact sequence of the triple (X̂, X̂+ ∪ B̂, X̂∗ ∪ B̂) can now be

rewritten

· · ·→ Hq−1(X∗, B) ∂→ Hq(X̂+, X̂∗)→Hq(X,X∗) → Hq−2(X∗, B) ∂→ · · · .

Using the Lemma 4.10 we obtain the isomorphisms
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L� : Hq(X,X∗) → Hq−2(X∗, B), q �= n, n + 1, (4.8)

and the 5-term exact sequence

0 → Hn+1(X,X∗) → Hn−1(X∗, B) → Hn(X̂+, X̂∗) →
→ Hn(X,X∗) → Hn−2(X∗, B) → 0.

(�)

We now argue by induction on n. The result is obviously true for n = 1.
For the inductive step, observe first that B is a transversal hyperplane

section of X∗, dimC X∗ = n− 1 and thus by induction we deduce that

Hq(X∗, B) = 0, ∀q ≤ n− 2.

Using (4.8) we deduce

Hq(X,X∗) ∼= Hq−2(X∗, B) ∼= 0, ∀q ≤ n− 1. ��

Corollary 4.17. If X is a hypersurface in Pn, then

bk(X) = bk(Pn), ∀k ≤ n− 2.

In particular, if X is a hypersurface in P3, then b1(X) = 0. ��

Consider the connecting homomorphism

∂ : Hn(X̂+, X̂∗) → Hn−1(X̂∗).

Its image

V(X∗) := ∂
�
Hn(X̂+, X̂∗)

�
= ker

�
Hn−1(X̂∗) → Hn−1(X̂)

�
⊂ Hn−1(X̂∗)

is called the module of vanishing3 cycles.
Using the long exact sequences of the pairs (X̂+, X̂∗) and (X,X∗) and

Lemma 4.10 we obtain the following commutative diagram:

Hn(X̂+, X̂∗) Hn−1(X̂∗) Hn−1(X̂+) 0

Hn(X,X∗) Hn−1(X∗) Hn−1(X) 0

∂

p1 ∼= p2 ∼= p3

∂

All the vertical morphisms are induced by the map p : X̂ → X. The morphism
p1 is onto because it appears in the sequence (�), where Hn−2(X∗, B) = 0
by the Lefschetz hyperplane theorem. Clearly p2 is an isomorphism since p

3 The are called vanishing because they “melt” when pushed inside X̂.



4.2 Topological Applications of Lefschetz Pencils 165

induces a homeomorphism X̂∗ ∼= X∗. Using the refined five lemma [Mac,
Lemma I.3.3] we conclude that p3 is an isomorphism. The above diagram
shows that

V(X∗) = ker
�
i∗ : Hn−1(X∗) → Hn−1(X)

�

= Image
�
∂ : Hn(X,X∗) → Hn−1(X∗)

�
,

(4.9a)

rankHn−1(X∗) = rank V(X∗) + rank Hn−1(X). (4.9b)

Let us observe that Lemma 4.10 and the universal coefficients theorem implies
that

Hn(X̂+, X̂∗) = Hom
�
Hn( X̂+, X̂∗), Z

�
.

The Lefschetz hyperplane theorem and the universal coefficients theorem show
that

Hn(X,X∗) = HomZ
�
Hn(X,X∗), Z

�
.

We obtain a commutative cohomological diagram with exact rows:

Hn(X̂+, X̂∗) Hn−1(X̂∗) Hn−1(X̂+) 0

Hn(X,X∗) Hn−1(X∗) Hn−1(X) 0

δ

mono

δ

∼=

i
∗

This diagram shows that

I(X∗)v := ker
�

δ : Hn−1(X̂∗) → Hn(X̂+, X̂∗)
�

∼= ker
�
δ : Hn−1(X∗) → Hn(X,X∗)

�

∼= Im
�
i∗ : Hn−1(X) → Hn−1(X∗)

�
.

Define the module of invariant cycles to be the Poincaré dual of I(X∗)v,

I(X∗) :=
�

u ∩ [X∗]; u ∈ I(X∗)v
�
⊂ Hn−1(X∗),

or equivalently,

I(X∗) = Image
�
i! : Hn+1(X) → Hn−1(X∗)

�
, i! := PDX∗ ◦ i∗ ◦ PD−1

X
.

The last identification can be loosely interpreted as saying that an invariant
cycle is a cycle in a generic fiber X∗ obtained by intersecting X∗ with a cycle
on X of dimension 1

2 dimR X = dimC X. The reason these cycles are called
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invariant has to do with the monodromy of the Lefschetz fibration and it is
elaborated in greater detail in a later section.

Since i∗ is one-to-one on Hn−1(X), we deduce i! is one-to-one, so that

rank I(X∗) = rank Hn+1(X) = rank Hn−1(X)

= rank Im
�
i∗ : Hn−1(X∗) → Hn−1(X)

�
.

(4.10)

Using the elementary fact

rankHn−1(X∗) = rank ker
�
Hn−1(X∗)

i∗−→ Hn−1(X)
�

+ rank Im
�
i∗ : Hn−1(X∗)

i∗−→ Hn−1(X)
�
,

we deduce the following result.

Theorem 4.18 (Weak Lefschetz theorem). For every projective manifold
X �→ PN of complex dimension n and for a generic hyperplane H ⊂ PN , the
Gysin morphism

i! : Hn+1(X) → Hn−1(X ∩H)

is injective, and we have

rankHn−1(X ∩H) = rank I(X ∩H) + rank V(X ∩H),

where

V(X ∩H) = ker
�

Hn−1(X ∩H) → Hn−1(X)
�
, I(X ∩H) = Image i!. ��

The module of invariant cycles can be given a more geometric description.
Using Lemma 4.10, the universal coefficients theorem, and the equality

I(X∗)v = ker
�
δ : Hn−1(X̂∗) → Hn(X̂+, X̂∗)

�
,

we deduce

I(X∗)v =
�

ω ∈ Hn−1(X̂∗); �ω, v� = 0, ∀v ∈ V(X∗)
�

.

Observe that n− 1 = 1
2 dim X̂∗ and thus the Kronecker pairing on Hn−1(X∗)

is given by the intersection form. This is nondegenerate by Poincaré duality.
Thus

I(X∗) :=
�

y ∈ Hn−1(X∗); y · v = 0, ∀v ∈ V(X∗)
�

. (4.11)

We have thus proved the following fact.

Proposition 4.19. A middle dimensional cycle on X∗ is invariant if and only
if its intersection number with any vanishing cycle is trivial.
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4.3 The Hard Lefschetz Theorem

The last theorem in the previous section is only the tip of the iceberg. In this
section we delve deeply into the anatomy of an algebraic manifold and try to
understand the roots of the weak Lefschetz theorem.

In this section, unless specified otherwise, H•(X) denotes the homology
with coefficients in R. For every projective manifold X �→ PN we denote by
X � its intersection with a generic hyperplane. Define inductively

X(0) = X, X(q+1) := (X(q))�, q ≥ 0.

Thus X(q+1) is a generic hyperplane section of X(q).
Denote by ω ∈ H2(X) the Poincaré dual of the hyperplane section X �, i.e.

[X �] = ω ∩ [X].

If a cycle c ∈ Hq(X) is represented by a smooth (real) oriented submanifold of
dimension q then its intersection with a generic hyperplane H is a (q−2)-cycle
in X ∩ H = X �. This intuitive operation c �→ c ∩ H is none other than the
Gysin map

i! : Hq(X) → Hq−2(X �)

related to ω∩ : Hq(X) → Hq−2(X) via the commutative diagram

Hq(X) Hq−2(X �)

Hq−2(X)

i
!

ω∩
i∗

Proposition 4.20. The following statements are equivalent.

HL1. V(X �) ∩ I(X �) = 0.
HL2. V(X �)⊕ I(X �) = Hn−1(X �)
HL3. The restriction of i∗ : Hn−1(X �) → Hn−1(X) to I(X �) is an isomorphism.
HL4. The map ω∩ : Hn+1(X) → Hn−1(X) is an isomorphism.
HL5. The restriction of the intersection form on Hn−1(X �) to V(X �) stays non-

degenerate.
HL6. The restriction of the intersection form to I(X �) stays nondegenerate.

Proof. • The weak Lefschetz theorem shows that HL1 ⇐⇒ HL2.
• HL2 =⇒ HL3. From the equality

V(X �) = ker
�
i∗ : Hn−1(X �) → Hn−1(X)

�

and HL2 we deduce that the restriction of i∗ to I(X �) is an isomorphism
onto the image of i∗. On the other hand, the Lefschetz hyperplane theorem
shows that the image of i∗ is Hn−1(X).
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• HL3 =⇒ HL4. Theorem 4.18 shows that i! : Hn+1(X) → Hn−1(X �) is a
monomorphism with image I(X �). By HL3, i∗ : I(X �) → Hn−1(X) is an
isomorphism, and thus ω∩ = i∗ ◦ i! is an isomorphism.

• HL4 =⇒ HL3 If i∗ ◦ i! = ω∩ : Hn+1(X) → Hn−1(X) is an iso-
morphism then we conclude that i∗ : Im (i!) = I(X �) → Hn−1(X) is
onto. Using (4.10) we deduce that dim I(X �) = dimHn−1(X), so that
i∗ : Hn−1(X �) → Hn−1(X) must be one-to-one. The Lefschetz hyperplane
theorem now implies that i∗ is an isomorphism.

• HL2 =⇒ HL5, HL2 =⇒ HL6. This follows from (4.11), which states
that I(X �) is the orthogonal complement of V(X �) with respect to the
intersection form.

• HL5 =⇒ HL1, HL6 =⇒ HL1. Suppose we have a cycle

c ∈ V(X �) ∩ I(X �).

Then
c ∈ I(X �) =⇒ c · v = 0, ∀v ∈ V(X �),

while
c ∈ V(X �) =⇒ c · z = 0, ∀z ∈ I(X �).

When the restriction of the intersection to either V(X �) or I(X �) is non-
degenerate, the above equalities imply c = 0, so that V(X �) ∩ I(X �) = 0.

��

Theorem 4.21 (The hard Lefschetz theorem). The equivalent state-
ments HL1, . . . ,HL6 above are true (for the homology with real coefficients).

This is a highly nontrivial result. Its complete proof requires sophisticated
analytical machinery (Hodge theory) and is beyond the scope of this book. We
refer the reader to [GH, Section 0.7] for more details. In the remainder of this
section we will discuss other topological facets of this remarkable theorem.

We have a decreasing filtration

X = X(0) ⊃ X � ⊃ X(2) ⊃ · · · ⊃ X(n) ⊃ ∅,

so that dimC X(q) = n−q, and X(q) is a generic hyperplane section of X(q−1).
Denote by Iq(X) ⊂ Hn−q(X(q)) the module of invariant cycles

Iq(X) = Image
�

i! : Hn−q+2(X(q−1)) → Hn−q(X(q))
�
.

Its Poincaré dual (in X(q)) is

Iq(X)v = Image
�
i∗ : Hn−q(X(q−1)) → Hn−q(X(q)

�
= PD−1

X(q)(Iq(X)).

The Lefschetz hyperplane theorem implies that the morphisms

i∗ : Hk(X(q)) → Hk(X(j)), q ≥ j, (4.12)
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are isomorphisms for k < dimC X(q) = (n− q). We conclude by duality that

i∗ : Hk(X(j)) → Hk(X(q)), j ≤ q,

is an isomorphism if k + q < n.
Using HL3 we deduce that

i∗ : Iq(X) → Hn−q(X(q−1))

is an isomorphism. Using the Lefschetz hyperplane section isomorphisms in
(4.12), we conclude that

i∗ maps Iq(X) isomorphically onto Hn−q(X). (†)

Using the equality

Iq(X)v = Image
�
i∗ : Hn−q(X(q−1)) → Hn−1(X(q))

�

and the Lefschetz hyperplane theorem we obtain the isomorphisms

Hn−q(X) i
∗
→ Hn−q(X �) i

∗
→ · · · i

∗
→ Hn−q(X(q−1)).

Using Poincaré duality we obtain

i! maps Hn+q(X) isomorphically onto Iq(X). (††)

Iterating HL6 we obtain

The restriction of the intersection form of Hn−q(X) to Iq(X)
is nondegenerate.

(†††)

The isomorphism i∗ carries the intersection form on Iq(X) to a nondegener-
ate form on Hn−q(X) ∼= Hn+q(X). When n−q is odd this is a skew-symmetric
form, and thus the nondegeneracy assumption implies

dim Hn−q(X) = dim Hn+q(X) ∈ 2Z.

We have thus proved the following result.

Corollary 4.22. The odd dimensional Betti numbers b2k+1(X) of X are even.
��

Remark 4.23. The above corollary shows that not all even dimensional mani-
folds are algebraic. Take for example X = S3 × S1. Using Künneth’s formula
we deduce

b1(X) = 1.

This manifold is remarkable because it admits a complex structure, yet it is
not algebraic! As a complex manifold it is known as the Hopf surface (see [Ch,
Chapter 1]). ��
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The qth exterior power ωq is Poincaré dual to the fundamental class

[X(q)] ∈ H2n−2q(X)

of X(q). Therefore we have the factorization

Hk(X) Hk−2q(X(q))

Hk−2q(X)

i
!

ω
q∩

i∗

Using (††) and (†) we obtain the following generalization of HL4.

Corollary 4.24. For q = 1, 2, · · · , n the map

ωq∩ : Hn+q(X) → Hn−q(X)

is an isomorphism. ��

Clearly, the above corollary is equivalent to the hard Lefschetz theorem. In
fact, we can formulate an even more refined version.

Definition 4.25. (a) An element c ∈ Hn+q(X), 0 ≤ q ≤ n, is called primitive
if

ωq+1 ∩ c = 0.

We will denote by Pn+q(X) the subspace of Hn+q(X) consisting of primitive
elements.
(b) An element z ∈ Hn−q(X) is called effective if

ω ∩ z = 0.

We will denote by En−q(X) the subspace of effective elements. ��

Observe that

c ∈ Hn+q(X) is primitive ⇐⇒ ωq ∩ c ∈ Hn−q(X) is effective.

Roughly speaking, a cycle is effective if it does not intersect the “part at
infinity of X”, X ∩ hyperplane.

Theorem 4.26 (Lefschetz decomposition). (a) Every element c ∈ Hn+q(X)
decomposes uniquely as

c = c0 + ω ∩ c1 + ω2 ∩ c2 + · · · , (4.13)

where cj ∈ Hn+q+2j(X) are primitive elements.
(b) Every element z ∈ Hn−q(X) decomposes uniquely as

z = ωq ∩ z0 + ωq+1 ∩ z1 + · · · , (4.14)

where zj ∈ Hn+q+2j(X) are primitive elements.
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Proof. Observe that because the above representations are unique and since

(4.14) = ωq ∩ (4.13),

we deduce that Corollary 4.24 is a consequence of the Lefschetz decomposition.
Conversely, let us show that (4.13) is a consequence of Corollary 4.24. We

will use a descending induction starting with q = n.
A dimension count shows that

P2n(X) = H2n(X), P2n−1(X) = H2n−1(X),

and (4.13) is trivially true for q = n, n− 1. The identity

α ∩ (β ∩ c) = (α ∪ β) ∩ c, ∀α,β ∈ H•(X), c ∈ H•(X),

shows that for the induction step it suffices to prove that every element c ∈
Hn+q(X) can be written uniquely as

c = c0 + ω ∩ c1, c1 ∈ Hn+q+2(X), c0 ∈ Pn+q(X).

According to Corollary 4.24 there exists a unique z ∈ Hn+q+2(X) such that

ωq+2 ∩ z = ωq+1 ∩ c,

so that
c0 := c− ω ∩ z ∈ Pn+q(X).

To prove the uniqueness of the decomposition assume

0 = c0 + ω ∩ c1, c0 ∈ Pn+q(X).

Then

0 = ωq+1 ∩ (c0 + ω ∩ c1) =⇒ ωq+2 ∩ c1 = 0 =⇒ c1 = 0 =⇒ c0 = 0. ��

The Lefschetz decomposition shows that the homology of X is completely
determined by its primitive part. Moreover, the above proof shows that

0 ≤ dim Pn+q = bn+q − bn+q+2 = bn−q − bn−q−2,

which implies the unimodality of the Betti numbers of an algebraic manifold,

1 = b0 ≤ b2 ≤ · · · ≤ b2�n/2�, b1 ≤ b3 ≤ · · · ≤ b2�(n−1)/2�+1,

where �x� denotes the integer part of x. These inequalities introduce additional
topological restrictions on algebraic manifolds. For example, the sphere S4

cannot be an algebraic manifold because b2(S4) = 0 < b0(S4) = 1.
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4.4 Vanishing Cycles and Local Monodromy

In this section we finally give the promised proof of Lemma 4.10.
Recall we are given a Morse function f̂ : X̂ → P1 and its critical values

t1, . . . , tr are all located in the upper closed hemisphere D+. We denote the
corresponding critical points by p1, . . . , pr, so that

f̂(pj) = tj , ∀j.

We will identify D+ with the unit closed disk at 0 ∈ C. Let j = 1, . . . , r.

• Denote by Dj a closed disk of very small radius ρ centered at tj ∈ D+. If
ρ � 1 these disks are disjoint.
• Connect ∗ ∈ ∂D+ to tj+ρ ∈ ∂Dj by a smooth path �j such that the resulting
paths �1, . . . , �r are disjoint (see Figure 2.7). Set kj := �j ∪Dj , � =

�
�j and

k = ∪kj .
• Denote by Bj a small closed ball of radius R in X̂ centered at pj .

x

x

x 1

1 1

t

t

t

2

2

2

33
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l
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DD
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+

Fig. 4.2. Isolating the critical values.

The proof of Lemma 4.10 will be carried out in several steps.

Step 1. Localizing around the singular fibers. Set

L := f−1(�), K := f̂−1(k).

We will show that X̂∗ is a deformation retract of L, and K is a deformation
retract of X̂+ ,so that the inclusions

(X̂+, X̂∗) �→ (X̂+, L) ←� (K, L)

induce isomorphisms of all homology (and homotopy) groups.
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Observe that k is a strong deformation retract of D+ and ∗ is a strong
deformation retract of �. Using the Ehresmann fibration theorem we deduce
that we have fibrations

f : L → �, f̂ : X̂+ \ f̂−1{t1, . . . , tr}→ D+ \ {t1, . . . , tr}.

Using the homotopy lifting property of fibrations (see [Ha, Section 4.3]) we
obtain strong deformation retractions

L → X̂∗, X̂+ \ f̂−1{t1, . . . , tr}→ K \ f̂−1{t1, . . . , tr}.

Fig. 4.3. Isolating the critical points.

Step 2. Localizing near the critical points. Set

X̂Dj := f̂−1(Dj), X̂j := f−1(tj + ρ),

Ej := X̂Dj ∩Bj , Fj := X̂j ∩Bj ,

E := ∪jEj , F := ∪jFj .

The excision theorem shows that the inclusions (X̂Dj , X̂j) → (K, L) induce
an isomorphism

r�

j=1

H•(X̂Dj , X̂j) → H•(K, L) ∼= H•(X̂+, X̂∗).
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Now define
Yj := X̂Dj \ int (Bj), Zj := Fj \ int (Bj).

The map f̂ induces a surjective submersion f̂ : Yj → Dj , and by the Ehres-
mann fibration theorem it defines a trivial fibration with fiber Zj . In particu-
lar, Zj is a deformation retract of Yj , and thus X̂j = Fj ∪Zj is a deformation
retract of Fj ∪ Yj . We deduce

H•(X̂Dj , X̂j) ∼= H•(X̂Dj , Fj ∪ Yj) ∼= H•(Ej , Fj),

where the last isomorphism is obtained by excising Yj .
Step 3. Conclusion. We will show that for every j = 1, . . . , r we have

Hq(Ej , Fj) =
�

0 if q �= dimC X = n
Z if q = n.

.

At this point we need to use the nondegeneracy of pj . To simplify the presen-
tation, in the sequel we will drop the subscript j.

By making B even smaller we can assume that there exist holomorphic
coordinates (zk) on B, and u near f̂(p), such that f̂ is described in these coor-
dinates by z2

1 + · · ·+ z2
n
. Then E and F can be given the explicit descriptions

E =
�
z = (z1, . . . , zn);

�

i

|zi|2 ≤ r2,
��
�

i

z2
i

�� < ρ
�

,

F = Fρ :=
�

z ∈ E;
�

i

z2
i

= ρ
�

.
(4.15)

The region E can be contracted to the origin because z ∈ E =⇒ tz ∈ E, ∀t ∈
[0, 1]. This shows that the connecting homomorphism Hq(E,F ) → Hq−1(F )
is an isomorphism for q �= 0. Moreover, H0(E,F ) = 0. Lemma 4.10 is now a
consequence of the following result.

Lemma 4.27. Fρ is diffeomorphic to the disk bundle of the tangent bundle
TSn−1.

Proof. Set

zj := xj + iyj , x := (x1, . . . , xn), y := (y1, . . . , yn),

|x|2 :=
�

j

x2
j
, |y|2 :=

�

j

y2
j
.

The fiber F has the description

|x|2 = ρ + |y|2, x · y = 0 ∈ R, |x|2 + |y|2 ≤ r2.

In particular,
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2|y|2 ≤ r2 − ρ.

Now let
u := (ρ + |v|2)−1/2

x ∈ Rn, v =
2

r2 − ρ
y.

In the coordinates u, v the fiber F has the description

|u|2 = 1, u · v = 0, |v|2 ≤ 1.

The first equality describes the unit sphere Sn−1 ⊂ Rn. Observe next that

u · v ⇐⇒ y ⊥ u

shows that v is tangent to Sn−1 at u. It is now obvious that F is the disk
bundle of TSn−1. This completes the proof of Lemma 4.10. ��

We want to analyze in greater detail the picture emerging from the proof
of Lemma 4.27. Denote by B a small closed ball centered at 0 ∈ Cn and
consider

f : B → C, f(z) = z2
1 + · · · + z2

n
.

Let ρ be a positive and very small real number.
We have seen that the regular fiber Fρ = f−1(ρ) (0 < ρ � 1) is diffeomor-

phic to a disk bundle over an (n − 1)-sphere Sρ of radius √ρ. This sphere is
defined by the equation

Sρ := {Imz = 0} ∩ f−1(ρ) ⇐⇒ {y = 0, |x|2 = ρ}.

As ρ → 0, i.e., we are looking at fibers closer and closer to the singular one
F0 = f−1(0), the radius of this sphere goes to zero, while for ρ = 0 the fiber
is locally the cone z2

1 + · · · + z2
n

= 0. We say that Sρ is a vanishing sphere.
The homology class in Fρ determined by an orientation on this vanishing

sphere generates Hn−1(Fρ). Such a homology class was called vanishing cycle
by Lefschetz. We will denote by ∆ a homology class obtained in this fashion,
i.e., from a vanishing sphere and an orientation on it (see Figure 4.4). The
proof of Lemma 4.10 shows that Lefschetz’s vanishing cycles coincide with
what we previously named vanishing cycles.

Observe now that since ∂ : Hn(B,F ) → Hn−1(F ) is an isomorphism, there
exists a relative n-cycle Z ∈ Hn(B,F ) such that ∂Z = ∆. The relative cycle
Z is known as the thimble associated with the vanishing cycle ∆. It is filled
in by the family (Sρ) of shrinking spheres. In Figure 4.4 it is represented by
the shaded disk.

Denote by Dρ ⊂ C the closed disk of radius ρ centered at the origin and
by Br ⊂ Cn the closed ball of radius r centered at the origin. Set

Er,ρ :=
�
z ∈ Br; f(z) ∈ Dρ

�
, E∗

r,ρ
:=

�
z ∈ Br; 0 < |f(z)| < ρ

�
,

∂Er,ρ :=
�
z ∈ ∂Br; f(z) ∈ Dρ

�
.

We will use the following technical result, whose proof is left to the reader.
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Fig. 4.4. The vanishing cycle for functions of n = 2 variables.

Lemma 4.28. For any ρ, r > 0 such that r2 > ρ the maps

f : E∗
r,ρ
→ Dρ \ {0} =: D∗

ρ
, f∂ : ∂Er,ρ → Dρ

are proper surjective submersions. ��

By rescaling we can assume 1 < ρ < 2 = r. Set B = Br, D = Dρ, etc.
According to the Ehresmann fibration theorem we have two locally trivial
fibrations.
• F �→ E∗ � D∗ with standard fiber the manifold with boundary

F ∼= f−1(∗) ∩ B̄.

• ∂F �→ ∂E � D with standard fiber ∂F ∼= f−1(∗)∩∂B̄. The bundle ∂E → D
is a globally trivializable bundle because its base is contractible.

Choose the basepoint ∗ = 1. From the proof of Lemma 4.27 we have

F = f−1(∗) =
�
z = x+iy ∈ Cn; |x|2 + |y|2 ≤ 4, |x|2 = 1+ |y|2, x ·y = 0

�
.

Denote by M the standard model for the fiber, incarnated as the unit disk
bundle determined by the tangent bundle of the unit sphere Sn−1 �→ Rn. The
standard model M has the algebraic description

M =
�

(u,v) ∈ Rn × Rn; |u| = 1, u · v = 0, |v| ≤ 1
�

.

Note that
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∂M =
�

(u,v) ∈ Rn × Rn; |u| = 1 = |v|, u · v = 0
�

.

We have a diffeomorphism

Φ : F → M, F � z = x + iy, �−→






u = (1 + |y|2)−1/2 · x

v = αy,

α =
�

2/3.

(Φ)

Its inverse is given by

M � (u,v) Φ
−1

�−→






x = (1 + |v|2/α2)1/2
u,

y = α−1
v.

(Φ−1)

This diffeomorphism Φ maps the vanishing sphere Σ = {Imz = 0} ⊂ F to
the sphere

S :=
�

(u,v) ∈ Rn × Rn; |u| = 1, v = 0
�
.

We will say that S is the standard model for the vanishing cycle. The standard
model for the thimble is the ball {|u| ≤ 1} bounding S.

Fix a trivialization ∂E
∼=−→ ∂F ×D and a metric h on ∂F . We now equip

∂E with the product metric g∂ := h ⊕ h0, where h0 denotes the Euclidean
metric on D. Now extend g∂ to a metric on E and denote by H the subbundle
of TE∗ consisting of tangent vectors g-orthogonal to the fibers of f . The
differential f∗ produces isomorphisms

f∗ : Hp → Tf(p)D
∗, ∀p ∈ E∗.

Suppose γ : [0, 1] → D∗ is a smooth path beginning and ending at ∗, γ(0) =
γ(1) = ∗. We obtain for each p ∈ F = f−1(∗) a smooth path γ̃p : [0, 1] → E
that is tangent to the horizontal sub-bundle H, and it is a lift of w starting
at p, i.e., the diagram below is commutative:

�
E∗, p

�

�
[0, 1], 0

�
(D∗, ∗)

f
γ̃p

γ

We get in this fashion a map hγ : F = f−1(∗) → f−1(∗), p �→ γ̃p(∗).
The standard results on the smooth dependence of solutions of ODEs on

initial data show that hγ is a smooth map. It is in fact a diffeomorphism of
F with the property that

hγ |∂F = ∂F .
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The map hγ is not canonical, because it depends on several choices: the choice
of trivialization ∂E ∼= ∂F ×D, the choice of metric h on F , and the choice of
the extension g of g∂ .

We say that two diffeomorphisms G0, G1 : F → F such that Gi |∂F = ∂F

are isotopic if there exists a smooth homotopy

G : [0, 1]× F → F

connecting them such that for each t the map Gt = G(t, •) : F → F is a
diffeomorphism satisfying Gt |∂F = ∂F for all t ∈ [0, 1].

The isotopy class of hγ : F → F is independent of the various choices
listed above, and in fact depends only on the image of γ in π1(D∗, ∗). The
induced map

[hγ ] : H•(F ) → H•(F )

is called the (homological) monodromy along the loop γ. The correspondence

[h] : π1(D∗, ∗) � γ �−→ hγ ∈ Aut
�
H•(F )

�

is a group morphism called the local (homological) monodromy.
Since hγ |∂F = ∂F , we obtain another morphism

[h]rel : π1(D∗, ∗) → Aut
�
H•(F, ∂F )

�
,

which we will call local relative monodromy.
Observe that if z is a singular n-chain in F such that ∂z ∈ ∂F (hence z

defines an element [z] ∈ Hn(F, ∂F )), then for every γ ∈ π1(D∗, ∗) we have

∂z = ∂hγz =⇒ ∂(z − hwz) = 0,

so that the singular chain (z − hγz) is a cycle in F . In this fashion we obtain
a linear map

var : π1(D∗, ∗) → Hom
�
Hn−1(F, ∂F ) → Hn−1(F )

�
,

varγ(z) = [hγ ]relz − z, z ∈ Hn−1(F, ∂F ), γ ∈ π1(D∗, ∗),

called the variation map.
The local Picard–Lefschetz formula will provide an explicit description of

this variation map. To formulate it we need to make a topological digression.
An orientation or = orF on F defines a nondegenerate intersection pairing

∗or : Hn−1(F, ∂F )×Hn−1(F ) → Z

formally defined by the equality

c1 ∗or c2 = �PD−1
or (i∗(c1)), c2�,

where i∗ : Hn−1(F ) → Hn−1(F, ∂F ) is the inclusion induced morphism,
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PDor : Hn−1(F ) → Hn−1(F, ∂F ), u �→ u ∩ [F, ∂F ],

is the Poincaré–Lefschetz duality defined by the orientation or, and �−,−� is
the Kronecker pairing.

The group Hn−1(F, ∂F ) is an infinite cyclic group. Since F is the unit
disk bundle in the tangent bundle TΣ, a generator of Hn−1(F, ∂F ) can be
represented by a disk ∇ in this disk bundle (see Figure 4.5). The generator
is fixed by a choice of orientation on ∇. Thus varγ is completely understood
once we understand its action on ∇ (see Figure 4.5).

The group Hn−1(F ) is also an infinite cyclic group. It has two generators.
Each of them is represented by an embedded (n− 1)-sphere Σ equipped with
one of the two possible orientations. We can thus write

varγ([∇]) = νγ(∇)[Σ], ν(∇) = νγ([∇,or∇]) ∈ Z.

The integer νγ([∇]) is completely determined by the Picard–Lefschetz
number,

mγ(orF ) := [∇] ∗orF varγ([∇]) = νγ([∇])[∇] ∗ [Σ].

Hence

varγ([∇]) = mγ(orF )(∇ ∗orF [Σ]) [Σ] = ([∇] ∗ [Σ])(∇ ∗ varγ(∇) )
� �� �

νγ([∇])

[Σ],

varγ(z) = mγ(orF )(z ∗orF [Σ]) [Σ].

The integer mγ depends on choices of orientations on orF , or∇, and orΣ on
F , ∇ and Σ, but νγ depends only on the the orientations on ∇ and Σ. Let us
explain how to fix such orientations.

∆

∆

)

∆

∆

(h
γ

Fig. 4.5. The effect of monodromy on ∇.
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The diffeomorphism Φ maps the vanishing sphere Σ ⊂ F to the sphere S
described in the (u,v) coordinates by v = 0, |u| = 1. This is oriented as the
boundary of the unit disk {|u| ≤ 1} via the outer-normal-first convention.4
We denote by ∆ ∈ Hn−1(F ) the cycle determined by S with this orientation.

Let
u± = (±1, 0, . . . , 0), P± = (u±,0) ∈ S ⊂ M. (4.16)

The standard model M admits a natural orientation as the total space of a
fibration, where we use the fiber-first convention

or(total space)=or(fiber) ∧ or(base).

Observe that since M is (essentially)the tangent bundle of S, an orientation
on S determines tautologically an orientation in each fiber of M. Thus the
orientation on S as boundary of an Euclidean ball determines via the above
formula an orientation on M. We will refer to this orientation as the bundle
orientation.5

Near P+ ∈ M we can use as local coordinates the pair

(ξ,η), ξ = (u2, . . . , un), η = (v2, . . . , vn). (4.17)

The orientation of S at P+ is given by

dξ := du2 ∧ · · · ∧ dun,

so that the orientation of Σ at Φ−1(P+) is given by dx2∧· · ·∧dxn. The bundle
orientation of M is described in these coordinates near P+ by the form

orbundle ∼ dη ∧ dξ = dv2 ∧ · · · ∧ dvn ∧ du2 ∧ · · · ∧ dun

Φ←→ dy2 ∧ · · · ∧ dyn ∧ dx2 ∧ · · · ∧ dxn.

Using the identification (Φ) between F and M we deduce that we can represent
∇ as the fiber T+ of M → S over the north pole P+ (defined in (4.16))
equipped with some orientation. We choose this orientation by regarding T+

as the tangent space to S at P+. More concretely, the orientation on T+ is
given by

orT+ ∼ dv2 ∧ · · · ∧ dvn

Φ←→ dy2 ∧ · · · ∧ dyn.

We denote by ∇ ∈ Hn−1(F, ∂F ) the cycle determined by T+ with the above
orientation.

4 The orientation of the disk is determined by a linear ordering of the variables
u1, . . . , un.

5 Note that while in the definition of the bundle orientation we tacitly used a linear
ordering of the variables ui, the bundle orientation itself is independent of such
a choice.
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On the other hand, F has a natural orientation as a complex manifold. We
will refer to it as the complex orientation. The collection (z2, . . . , zn) defines
holomorphic local coordinates on F near Φ−1(P+), so that

orcomplex = dx2 ∧ dy2 ∧ · · · ∧ dxn ∧ dyn.

We see that6
orcomplex = (−1)n(n−1)/2

orbundle.

We denote by ◦ (respectively ∗) the intersection number in Hn−1(F ) with
respect to the bundle (respectively complex) orientation. Then7

1 = ∇ ◦∆ = (−1)n(n−1)/2∇ ∗∆

and

∆ ◦∆ = (−1)n(n−1)/2∆ ∗∆ = e(TSn−1)[Sn−1]

= χ(Sn−1) =
�

0 if n is even,
2 if n is odd.

(4.18)

Above, e denotes the Euler class of TSn−1.
The loop γ1 : [0, 1] � t �→ γ1(t) = e2πit ∈ D∗ generates the fundamental

group of D∗, and thus the variation map is completely understood once we
understand the morphism of Z-modules

var1 := varγ1 : Hn−1(F, ∂F ) → Hn−1(F ).

Once an orientation orF on F is chosen, we have a Poincaré duality isomor-
phism

Hn−1(F ) ∼= HomZ( Hn−1(F, ∂F ), Z),

and the morphism var1 is completely determined by the Picard–Lefschetz
number

m1(orF ) := ∇ ∗orF var1(∇).

We have the following fundamental result.

Theorem 4.29 (Local Picard–Lefschetz formula).

m1(orbundle) = ∇ ◦ var1 (∇) = (−1)n,

m1(orcomplex) = ∇ ∗ var1(∇) = (−1)n(n+1)/2,

var1(∇) = (−1)n∆,

and

var1(z) = (−1)n(z ◦Σ)Σ = (−1)n(n+1)/2(z ∗Σ)Σ, ∀z ∈ Hn−1(F, ∂F ).
6 This sign is different from the one in [AGV2] due to our use of the fiber-first

convention. This affects the appearance of the Picard-Lefschetz formulæ. The
fiber-first convention is employed in [Lam] as well.

7 The choices of ∆ and ∇ depended on linear orderings of the variables ui. However,
the intersection number ∇ ◦∆ is independent of such choices.
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4.5 Proof of the Picard–Lefschetz formula

The following proof of the local Picard–Lefschetz formula is inspired from
[HZ] and consists of a three-step reduction process.

We start by constructing an explicit trivialization of the fibration ∂E → D.
Set

Ew := f−1(w) ∩ B̄, 0 ≤ |w| < ρ, F = Ew=1.

Note that

∂Ea+ib =
�
x + iy; |x|2 = a + |y|2, 2x · y = b, |x|2 + |y|2 = 4

�
.

For every w = a + ib ∈ D define Γw : ∂Ew → ∂M,

∂Fw � x + iy �→






u = c1(w)x,

v = c3(w)
�
y + c2(w)x

�
,

(4.19)

|u| = 1, |v| ≤ 1,

where

c1(w) =
�

2
4 + a

�1/2

, c2(w) = − b

4 + a
,

c3(w) =
�

8 + 2a

16− a2 − b2

�1/2

.

(4.20)

Observe that Γ1 coincides with the identification (Φ) between F and M.
The family (Γw)|w|<ρ defines a trivialization Γ : ∂E → ∂M × D, z �−→
(Γf(z)(z), f(z) ). We set

E|w|=1 := f−1({|w| = 1}) ∩ B̄ = E|{|w|=1}.

The manifold E|w|=1 is a smooth compact manifold with boundary

∂E|w|=1 = f−1({|w| = 1}) ∩ ∂B̄.

The boundary ∂E|w|=1 fibers over {|w| = 1} and is the restriction to the unit
circle { |w| = 1 } of the trivial fibration ∂E → D. The above trivialization Γ
of ∂E → D induces a trivialization of ∂E|w|=1 → {|w| = 1}.

Fix a vector field V on E|w|=1 such that

f∗(V ) = 2π∂θ and Γ∗(V |∂E|w|=1) = 2π∂θ on ∂M× {|w| = 1}.

Denote by µt the time t-map of the flow determined by V . Observe that µt

defines a diffeomorphism
µt : F → Fe2πit
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compatible with the chosen trivialization Γw of ∂E. More precisely, this means
that the diagram below is commutative:

∂F ∂M

∂Fe2πit ∂M

Γ1(=Φ)

µt 1∂M

Γe2πit

.

Consider also the flow Ωt on E|w|=1 given by

Ωt(z) = exp(πit)z =
�
cos(πt)x−sin(πt)y

�
+i

�
sin(πt)x+cos(πt)y

�
. (4.21)

This flow is periodic, and since f(Ωtz) = e2πitf(z), it satisfies

Ωt(F ) = Fe2πit .

However, Ωt is not compatible with the chosen trivialization of ∂E, because
Ω1|∂F1 is the antipodal map z �→ −z.

We pick two geometric representatives T± ⊂ F of ∇. More precisely, we
define T+ so that T+ = Φ(T+) ⊂ M is the fiber of M → S over the north pole
P+ ∈ S. As we have seen in the previous section, T+ is oriented by

dv2 ∧ · · · ∧ dvn ←→ dy2 ∧ · · · ∧ dyn.

Define T− ⊂ M as the fiber of M → S over the south pole P− ∈ S and set
T− = Φ−1(T−).

The orientation of S at P− is determined by the outer-normal-first con-
vention, and we deduce that it is given by −du2 ∧ · · · ∧ dun. We deduce that
T− is oriented by −dv2 ∧ · · · ∧ dvn. Inside F the chain T− is described by

x = (1 + |y|2/α2)1/2
u− ⇐⇒ x1 < 0, x2 = · · · = xn = 0,

and it is oriented by −dy2 ∧ · · · ∧ dyn.
Note that Ω1 = −1, so that taking into account the orientations, we have

Ω1(T+) = (−1)nT− = (−1)n∇. (4.22)

For any smooth oriented submanifolds A, B of M with disjoint boundaries
∂A ∩ ∂B = ∅, of complementary dimensions, and intersecting transversally,
we denote by A ◦ B their intersection number computed using the bundle
orientation on F . Set

m := m1(orbundle) = ∇ ◦ var (∇).

Step 1.

m = (−1)nΩ1(T+) ◦ µ1(T+).
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Note that
m = ∇ ◦

�
µ1(T+)− T+

�
= T− ◦

�
µ1(T+)− T+

�
.

Observe that the manifolds T+ and T− in F are disjoint so that

m = T− ◦ µ1(T+)
(4.22)
= (−1)nΩ1(T+) ◦ µ1(T+).

Step 2.

Ω1(T+) ◦ µ1(T+) = Ωt(T+) ◦ µt(T+), ∀t ∈ (0, 1].

To see this, observe that the manifolds Ωt(T+) and µt(T+) have disjoint
boundaries if 0 < t ≤ 1. Indeed, the compatibility of µt with the bound-
ary trivialization Γ implies

Γe2πitµt(∂T+) = Γe2πitµtΦ
−1(∂T+) = ∂T+ = {(u+,v) ∈ M; v = 1}.

On the other hand,

Γe2πitΩt(∂T+) = Γe2πitΩtΦ
−1(∂T+)

= Γe2πitΩt

� �
1 + α2

α2
· u+, α−1

v

� �
α2 = 2/3

�
,

and from the explicit descriptions (4.19) for Γe2πit and (4.21) for Ωt we deduce

∅ = Γe2πitΩt(∂T+) ∩ ∂T+ = Γe2πitΩt(∂T+) ∩ Γe2πitµt(∂T+).

Hence the deformations

Ω1(T+) → Ω1−s(1−t)(T+), µ1(T+) → µ1−s(1−t)(T+)

do not change the intersection numbers.
Step 3.

Ωt(T+) ◦ µt(T+) = 1 if t > 0 is sufficiently small.

Set
At := Ωt(T+), Bt = µt(T+).

For 0 < ε � 1 denote by Cε the arc Cε =
�
exp(2πit); 0 ≤ t ≤ ε

�
. Extend

the trivialization Γ : ∂E|Cε → ∂M× Cε to a trivialization

Γ̃ : E|Cε → M× Cε

such that Γ̃ |F = Φ.
For t ∈ [0, ε] we can view Ωt and µt as diffeomorphisms ωt, ht : M → M

such that the diagrams below are commutative:

F M

Fw(t) M

Γ̃1

Ωt ωt

Γ̃w(t)

F M

Fe2πit M

Γ̃1

µt ht

Γ̃e2πit
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Set At = Γ̃e2πit(At) = ωt(T+) and Bt = Γ̃e2πit(Bt) = ht(T+). Clearly

At ◦Bt = At ◦ Bt.

Observe that ht |∂M= M, so that Bt(T+) is homotopic to T+ via homo-
topies that are trivial along the boundary. Such homotopies do not alter the
intersection number, and we have

At ◦ Bt = At ◦ T+.

Along ∂M we have

ωt|∂M = Ψt := Γe2πit ◦Ωt ◦ Γ−1
1 . (4.23)

Choose 0 < � < 1
2 . For t sufficiently small the manifold At lies in the tubular

neighborhood
U� :=

�
(ξ,η); |ξ| < r, |η| ≤ 1

�

of fiber T+ ⊂ M, where as in (4.17) we set ξ = (u2, . . . , un) and η =
(v2, . . . , vn). More precisely, if P = (u,v) is a point of M near P+ then its
(ξ,η)-coordinates are pr(u,v), where pr denotes the orthogonal projection

pr : Rn × Rn → Rn−1 × Rn−1, (u,v) �→ (u2, . . . , un; v2, . . . , vn).

We can now rewrite (4.23) entirely in terms of the local coordinates (ξ,η) as

ωt(ξ,η) = pr ◦ Ψt = pr ◦ Γw(t) ◦Ωt ◦ Γ−1
1

�
u(ξ,η),v(ξ,η)

�
.

The coordinates (ξ,η) have a very attractive feature. Namely, in these coor-
dinates, along ∂M, the diffeomorphism Ψt is the restriction to ∂M of a (real)
linear operator

Lt : Rn−1 × Rn−1 → Rn−1 × Rn−1.

More precisely,

Lt

�
ξ
η

�
= C(t)R(t)C(0)−1 ·

�
ξ
η

�
,

where

C(t) :=
�

c1(t) 0
c2(t)c3(t) c3(t)

�
, R(t) :=

�
cos(πt) − sin(πt)
sin(πt) cos(πt)

�
,

and ck(t) := ck

�
e2πit

�
, k = 1, 2, 3. The exact description of ck(w) is given

in (4.20). We can thus replace At = ωt(T+) with Lt(T+) for all t sufficiently
small without affecting the intersection number because Lt is very close to ωt

for t small and ∂At = ∂Lt(T+).
For t sufficiently small we have

Lt = L0 + tL̇0 + O(t2), L0 = , L̇0 :=
d

dt
|t=0 Lt,
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where

L̇0 = Ċ(0)C(0)−1 + C(0)JC(0)−1, J = Ṙ(0) = π

�
0 −1
1 0

�
.

Using (4.20) with a = cos(2πt), b = sin(2πt) we deduce

c1(0) =
�

2
5

> 0, c2(0) = 0, c3(0) =
�

2
3

> 0,

ċ1(0) = ċ3(0) = 0, ċ2(0) = −2π

25
.

Thus

Ċ(0) = −2π

25

�
0 0

c3(0) 0

�
, C(0)−1 =

�
1

c1(0)
0

0 1
c3(0)

�

Ċ(0)C(0)−1 = −2π

25

�
0 0

c3(0)
c1(0)

0

�
.

Next

C(0)JC(0)−1 = π

�
c1(0) 0

0 c3(0)

� �
0 −1
1 0

��
1

c1(0)
0

0 1
c3(0)

�

= π

�
c1(0) 0

0 c3(0)

��
0 − 1

c3(0)
1

c1(0)
0

�
= π

�
0 −c1(0)

c3(0)
c3(0)
c1(0)

0

�
.

The upshot is that the matrix L̇0 has the form

L̇0 =
�

0 −a
b 0

�
, a, b > 0.

For t sufficiently small we can now deform Lt(T+) to (L0 + tL̇0)(T+) such
that during the deformation the boundary of the deforming relative cycle
does not intersect the boundary of T+. Such deformation again does not alter
the intersection number. Now observe that Σt := (L0+tL̇0)(T+) is the portion
inside U� of the (n− 1)-subspace

η �→ (L0 + tL̇0)
�

0
η

�
=

�
−taη

η

�
.

It carries the orientation given by

(−ta du2 + dv2) ∧ · · · ∧ (−ta dun + dvn).

Observe that Σt intersects the (n−1)-subspace T+ given by ξ = 0 transversely
at the origin, so that
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Σt ◦ T+ = ±1.

The sign coincides with the sign of the real number ν defined by

ν dv2 ∧ · · · ∧ dvn ∧ du2 ∧ · · · ∧ dun

= (−ta du2 + dv2) ∧ · · · ∧ (−ta dun + dvn) ∧ dv2 ∧ · · · ∧ dvn

= (−ta)n−1 du2 ∧ · · · ∧ dun ∧ dv2 ∧ · · · ∧ dvn

= (−1)(n−1)+(n−1)2 dv2 ∧ · · · ∧ dvn ∧ du2 ∧ · · · ∧ dun

Since (n− 1) + (n− 1)2 is even, we deduce that ν is positive so that

1 = Σt ◦ Tt = Ωt(T+) ◦ µt(T+), ∀0 < t � 1.

This completes the proof of the local Picard–Lefschetz formula. ��

Remark 4.30. For a slightly different proof we refer to [Lo]. For a more con-
ceptual proof of the Picard–Lefschetz formula in the case that n = dimC is
odd, we refer to [AGV2, Section 2.4]. ��

4.6 Global Picard–Lefschetz Formulæ

Consider a Lefschetz pencil (Xs) on X �→ PN with associated Lefschetz fibra-
tion f̂ : X̂ → S ∼= P1 such that all its critical values t1, . . . , tr are situated in
the upper hemisphere in D+ ⊂ S. We denote its critical points by p1, . . . , pr,
so that

f̂(pj) = tj , ∀j.

We will identify D+ with the closed unit disk centered at 0 ∈ C. We assume
|tj | < 1 for j = 1, . . . , r. Fix a point ∗ ∈ ∂D+. For j = 1, . . . , r we make the
following definitions:

• Dj is a closed disk of very small radius ρ centered at tj ∈ D+. If ρ � 1
these disks are pairwise disjoint.

• �j : [0, 1] → D+ is a smooth embedding connecting ∗ ∈ ∂D+ to tj+ρ ∈ ∂Dj

such that the resulting paths �1, . . . , �r are disjoint (see Figure 4.2). Set
kj := �j ∪Dj , � =

�
�j and k =

�
kj .

• Bj is a small ball in X̂ centered at pj .

Denote by γj the loop in D+ \{t1, . . . , tr} based at ∗ obtained by traveling
along �j from ∗ to tj + ρ and then once counterclockwise around ∂Dj and
then back to ∗ along �j . The loops γj generate the fundamental group

π1(S∗, ∗), S∗ := S \ {t1, . . . , tr}.

Set
X̂S∗ := f̂−1(S∗).
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We have a fibration
f̂ : X̂S∗ → S∗,

and as in the previous section, we have an action

µ : π1(S∗, ∗) → Aut (H•(X̂∗, Z) )

called the monodromy of the Lefschetz fibration. Since X∗ is canonically dif-
feomorphic to X̂∗, we will write X∗ instead of X̂∗.

From the proof of the local Picard–Lefschetz formula we deduce that for
each critical point pj of f̂ there exists an oriented (n−1)-sphere Σj embedded
in the fiber Xtj+ρ which bounds a thimble, i.e., an oriented embedded n-disk
Zj ⊂ X̂+. This disk is spanned by the family of vanishing spheres in the fibers
over the radial path from tj + ρ to tj .

We denote by ∆j ∈ Hn−1(Xtj+ρ, Z) the homology class determined by the
vanishing sphere Σj in the fiber over tj + ρ. In fact, using (4.18) we deduce

∆j ∗∆j = (−1)n(n−1)/2
�
1 + (−1)n−1

�
=






0 if n is even,
−2 if n ≡ −1 mod 4,

2 if n ≡ 1 mod 4.

The above intersection pairing is the one determined by the complex orienta-
tion of Xtj+ρ.

Note that for each j we have a canonical isomorphism

H•(Xj , Z) → H•(X∗, Z)

induced by a trivialization of f̂ : X̂S∗ → S∗ over the path �j connecting ∗ to
tj + ρ. This isomorphism is independent of the choice of trivialization since
any two trivializations are homotopic. For this reason we will freely identify
H•(X∗, Z) with any H•(Xj , Z).

Using the local Picard–Lefschetz formula we obtain the following impor-
tant result.

Theorem 4.31 (Global Picard–Lefschetz formula). If z ∈ Hn−1(X∗, Z),
then

varγj (z) := µγj (z)− z = −(−1)n(n−1)/2(z ∗∆j)∆j .

Proof. We prove the result only for the homology with real coefficients, since
it contains all the main ideas and none of the technical drag. For simplicity,
we set Xj := Xtj+ρ. We think of the cohomology H•(Xj) as the De Rham
cohomology of Xj .

Represent the Poincaré dual of z by a closed (n−1)-form ζ on Xj and the
Poincaré dual of ∆j by an (n−1) -form δj on Xj . We use the sign conventions8

8 Given an oriented submanifold S ⊂ X∗ its Poincaré dual should satisfy eitherR
S

ω =
R

X∗
ω ∧ δS or

R
S

ω =
R

X∗
δS ∧ ω, ∀ω ∈ Ω

dim S(X∗), dω = 0. Our sign

convention corresponds to first choice. As explained in [Ni, Prop. 7.3.9] this guar-
antees that for any two oriented submanifolds S1, S2 intersecting transversally we
have S1 ∗ S2 =

R
X∗

δS1 ∧ δS2 .
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of [Ni, Section 7.3], which means that for every closed form ω ∈ Ωn−1(X∗) we
have

�

Σj

ω =
�

Xj

ω ∧ δj ,

∆j ∗ z =
�

Xj

δj ∧ ζ = (−1)n−1

�

Xj

ζ ∧ δj = (−1)n−1

�

Σj

ζ.

We can assume that δj is supported in a small tubular neighborhood Uj of
Σj in Xtj+ρ diffeomorphic to the unit disk bundle of TΣj .

The monodromy µγj can be represented by a diffeomorphism hj of Xj that
acts trivially outside a compact subset of Uj . In particular, hj is orientation
preserving. We claim that the Poincaré dual of µγj (z) can be represented by
the closed form (h−1

j
)∗(ζ).

The easiest way to see this is in the special case in which z is represented by
an oriented submanifold Z. The cycle µγj (z) is represented by the submanifold
hj(Z) and for every ω ∈ Ωn−1(Xj) we have

�

hj(Z)
ω =

�

Z

h∗
j
ω =

�

Xj

h∗
j
ω ∧ ζ =

�

Xj

h∗
j
ω ∧ h∗

j
( (h−1

j
)∗ζ)

=
�

Xj

h∗
j

�
ω ∧ (h−1

j
)∗ζ

�
=

�

Xj

ω ∧ (h−1
j

)∗ζ.

At the last step we used the fact that hj is orientation preserving. As explained
in the footnote, the equality

�

hj(Z)
ω =

�

Xj

ω ∧ (h−1
j

)∗ζ, ∀ω

implies that (h−1
j

)∗ζ represents the Poincaré dual of µγj (z).
This is not quite a complete proof of the claim , since there could exist cy-

cles that cannot be represented by embedded, oriented smooth submanifolds.
However, the above reasoning can be made into a complete proof if we define
carefully the various operations it relies on. We leave the details to the reader
(see Exercise 5.37).

Observe that (h−1
j

)∗ζ = ζ outside Uj , so that the difference (h−1
j

)∗ζ − ζ is
a closed (n − 1)-form with compact support in Uj . It determines an element
in Hn−1

cpt
(Uj).

On the other hand, Hn−1
cpt

(Uj) is a one dimensional vector space spanned
by the cohomology class carried by δj . Hence there exist a real constant c and
a form η ∈ Ωn−2(Uj) with compact support such that

(h−1
j

)∗ζ − ζ = cδj + dη. (4.24)

We have (see [Ni, Lemma 7.3.12])
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�

∇j

δj = ∆j ∗ ∇j = (−1)n−1∇j ∗∆j ,

so that

(−1)n−1c(∇j ∗∆j) =
�

∇j

cδj =
�

∇j

�
(h−1

j
)∗ζ − ζ

�
−

�

∇j

dη

=
�

hj(∇j)−∇j

ζ,

where �

∇j

dη
Stokes=

�

∂∇j

η = 0,

since η has compact support in Uj .
Invoking (4.18) we deduce

(∇j ∗∆j) = (−1)n(n−1)/2.

The (piecewise smooth) singular chain h(∇j)−∇j is a cycle in Uj representing
varγj (∇j) ∈ Hn−1(Uj). The local Poincaré–Lefschetz formula shows that this
cycle is homologous in Uj (and thus in Xtj+ρ as well) to (−1)nΣj :

(−1)n+1c = (−1)n−1c = (−1)n(n−1)/2

�

varγj (∇j)
ζ

= (−1)n(n−1)/2 · (−1)n

�

Σj

ζ = (−1)n+n(n−1)/2∆j ∗ z.

Thus
c = −(−1)n(n−1)/2(z ∗∆j).

Substituting this value of c in (4.24) and then applying the Poincaré duality,
we obtain

µj(z)− z = −(−1)n(n−1)/2(z ∗∆j)∆j . ��

Definition 4.32. The monodromy group of the Lefschetz pencil (Xs)s∈S of
X is the subgroup of G ⊂ Aut

�
Hn−1(X∗, Z)

�
generated by the monodromies

µγj . ��

Remark 4.33. (a) When n = 2, so that the divisors Xs are complex curves
(Riemann surfaces), then the monodromy µj along an elementary loop �j is
known as a Dehn twist associated with the corresponding vanishing sphere.
The action of such a Dehn twist on a cycle intersecting the vanishing sphere is
depicted in Figure 4.5. The Picard–Lefschetz formula in this case states that
the monodromy is a (right-handed) Dehn twist.
(b) Suppose n is odd, so that

∆j ∗∆j = 2(−1)(n−1)/2.
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Denote by q the intersection form on L := Hn−1(X∗, Z)/Tors. It is a symmetric
bilinear form because n− 1 is even. An element u ∈ L defines the orthogonal
reflection Ru : L⊗ R → L⊗ R uniquely determined by the requirements

Ru(x) = x + t(x)u, q
�
u, x +

t(x)
2

u
�

= 0, ∀x ∈ L⊗ R

⇐⇒ Ru(x) = x− 2q(x, u)
q(u, u)

u.

We see that the reflection defined by ∆j is

Rj(x) = x + (−1)(n+1)/2q(x,∆j)∆j = x− (−1)n(n−1)/2q(x,∆j)∆j .

This reflection preserves the lattice L, and it is precisely the monodromy
along γj . This shows that the monodromy group G is a group generated by
reflections preserving the intersection lattice Hn−1(X∗, Z)/Tors. ��

The vanishing submodule

V(X∗) : Image
�

∂ : Hn(X̂+, X̂∗; Z) → Hn−1(X̂∗, Z)
�
⊂ Hn−1(X̂∗, Z)

is spanned by the vanishing cycles ∆j . We can now explain why the invariant
cycles are called invariant.

Since V(X∗) is spanned by the vanishing spheres, we deduce from (4.11)
that

I(X∗) :=
�

y ∈ Hn−1(X∗, Z); y ∗∆j = 0, ∀j
�

(use the global Picard–Lefschetz formula)

=
�

y ∈ Hn−1(X∗, Z); µγj y = y, ∀j
�
.

We have thus proved the following result.

Proposition 4.34. The module I(X∗) consists of the cycles invariant under
the action of the monodromy group G. ��





5

Exercises and Solutions

5.1 Exercises

Exercise 5.1. Consider the set

Z =
�

(x, a, b, c) ∈ R4; a �= 0, ax2 + bx + c = 0
�
.

(a) Show that Z is a smooth submanifold of R4.
(b) Find the discriminant set of the projection

π : Z → R3, π(x, a, b, c) = (a, b, c). ��

Exercise 5.2. (a) Fix positive real numbers r1, . . . , rn, n ≥ 2, and consider
the map

β : (S1)n → C

given by

(S1)n � (z1, . . . , zn) �−→
n�

i=1

rizi ∈ C.

Show that x = x + iy is a critical value of β if and only if x2 = y2.
(b) Consider the open subset M of (S1)n described by Reβ > 0. Show that
0 is a regular value of the function

M � z �→ Imβ(z) ∈ R. ��

Exercise 5.3. Suppose g = g(t1, . . . , tn) : Rn → R is a smooth function such
that g(0) = 0 and

dg(0) = c1dt1 + · · · + cndtn, cn �= 0.
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The implicit function theorem implies that near 0 the hypersurface X = {g =
0} is described as the graph of a smooth function

tn = tn(t1, . . . , tn−1) : Rn−1 → R.

In other words, we can solve for tn in the equation g(t1, . . . , tn) = 0 if
�

k
|tk|

is sufficiently small. Show that there exists a neighborhood V of 0 ∈ Rn and
C > 0 such that for every (t1, . . . , tn−1, tn) ∈ V ∩X we have

��� tn +
c1t1 + · · · + cn−1tn−1

cn

��� ≤ C
�
t21 + · · · + t2

n−1

�
. ��

Exercise 5.4 (Raleigh-Ritz ). Denote by Sn the unit sphere in Rn+1 equipped
with the standard Euclidean metric (•, •). Fix a nonzero symmetric (n+1)×
(n + 1) matrix with real entries and define

fA : Rn+1 → R, f(x) =
1
2
(Ax, x).

Describe the matrices A such that the restriction of fA to Sn is a Morse
function. For such a choice of A find the critical values of fA, the critical
points, and their indices. Compute the Morse polynomial of fA. ��

Exercise 5.5. For every vector λ = (λ0, . . . ,λn) ∈ Rn \ 0 we denote by
fλ : CPn → R the smooth function

fλ([z0, . . . , zn]) =
λ0|z0|2 + · · · + λn|zn|2

|z0|2 + · · · + |zn|2
,

where [z0, . . . , zn] denotes the homogeneous coordinates of a point in CPn.

(a) Find the critical values and the critical points of fλ.
(b) Describe for what values of λ the critical points of fλ are nondegenerate
and then determine their indices. ��

Exercise 5.6. Suppose X,Y are two finite dimensional connected smooth
manifolds and f : X → Y is a smooth map. We say that f is transversal to
the smooth submanifold S if for every s ∈ S, every x ∈ f−1(s), we have

TsY = TsS + Im (Df : TxX → TsY ).

(a) Prove that f is transversal to S if and only if for every s ∈ S, every
x ∈ f−1(s), and every smooth function u : Y → R such that u |S= 0 and
du |s �= 0 we have f∗(du) |x �= 0.
(b) Prove that if f is transversal to S, then f−1(S) is a smooth submanifold
of X of the same codimension as S �→ Y . ��
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Exercise 5.7. Let X,Y be as in the previous exercise. Suppose Λ is a smooth,
connected manifold. A smooth family of submanifolds of Y parametrized by
Λ is a submanifold S̃ ⊂ Λ × Y with the property that the restriction of the
natural projection π : Λ× Y → Λ to S̃ is a submersion π : S̃ → Λ. For every
λ ∈ Λ we set1

Sλ := {y ∈ Y ; (λ, y) ∈ S̃} = π−1(λ) ∩ S̃.

Consider a smooth map

F : Λ×X → Y, Λ×X � (λ, x) �→ fλ(x) ∈ Y

and suppose that the induced map

G : Λ×X → Λ× Y, (λ, x) �→ (λ, fλ(x))

is transversal to S̃.
Prove that there exists a subset Λ0 ⊂ Λ of measure zero such that for

every λ ∈ Λ \ Λ0 the map fλ : X → Y is transversal to Sλ. ��

Remark 5.8. If we let S̃ = {y0}× Λ in the above exercise we deduce that for
generic λ the point y0 is a regular value of fλ provided it is a regular value of
F . ��

Exercise 5.9. Denote by (•, •) the Euclidean metric on Rn+1. Suppose M ⊂
Rn+1 is an oriented connected smooth submanifold of dimension n. This im-
plies that we have a smoothly varying unit normal vector field N along M ,
which we interpret as a smooth map from M to the unit sphere Sn ⊂ Rn+1,

N = NM : M → Sn.

This is known as the Gauss map of the embedding M �→ Rn+1.
For every unit vector v ∈ Sn ⊂ Rn+1 we denote by �v : Rn+1 → R the

linear function
�v(x) = (v,x).

Show that the restriction of �v to M is a Morse function if and only if the
vector v ∈ Sn is a regular value of the Gauss map N. ��

Exercise 5.10. Suppose Σ �→ R3 is a compact oriented surface without
boundary and consider the Gauss map

NΣ : Σ → S2

1 Note that the collection (Sλ)λ∈Λ is indeed a family of smooth submanifolds of Y .
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defined as in the previous exercise. Denote by (•, •) : R3 × R3 → R the
canonical inner product. Recall that in Corollary 1.25 we showed that there
exists a set ∆ ⊂ S2 of measure zero such that for all u ∈ S2 \ ∆ the function

�u : Σ → R, �u(x) = (u, x)

is a Morse function. For every u ∈ S2 \∆ and any open set V ⊂ Σ we denote
by Cru(U) the set of critical points of �u situated in U . Define

χu(V ) :=
�

x∈Cru(U)

(−1)λ(�u,x)

and

m(U) :=
1

area S2

�

S2\∆

χu(V )dσ(u) =
1
4π

�

S2\∆

χu(V )dσ(u).

Denote by s : Σ → R the scalar curvature of the metric g on Σ induced by
the Euclidean metric on R3 and by dVS2 the volume form on the unit sphere
S2. Show that

m(u) =
1
4π

�

U

N∗
Σ

dVS2 =
1
4π

�

U

s(x)dVg(x).

In particular, conclude that

χ(Σ) =
1
4π

�

Σ

s(x)dVg(x). ��

Exercise 5.11. Suppose Σ �→ R3 is a compact oriented surface without
boundary. The orientation on Σ defines smooth unit normal vector field

n : Σ → S2, n(p) ⊥ TpΣ, ∀p ∈ Σ.

For every u ∈ R3 we denote by qx the function

qu : Σ → R, qu(x) =
1
2
|x− u|2.

We denote by S the set u ∈ R3 such that the function qu is a Morse function.
We know that R3 \ S has zero Lebesgue measure.
(a) Show that p ∈ Σ is a critical point of qu if and only if there exists t ∈ R
such that u = p + rn(p).
(b) Let u ∈ R3 and suppose p ∈ Σ is a critical point of u. Denote by g :
TpΣ×TpΣ → R the first fundamental form of Σ �→ R3 at p, i.e., the induced
inner product on TpΣ, and by a : TpΣ × TpΣ → R the second fundamental
form (see [Str, 2.5]) of Σ �→ R3 at p. These are symmetric bilinear forms.
For every t ∈ R we denote by νp(t) the nullity of the symmetric bilinear form
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g − ta. Since p is a critical point of qu there exists tu = tu(p) ∈ R such that
u = p+ tun(p). Show that p is a nondegenerate critical point of qu if and only
if ν(tu) �= 0. In this case, the index of qu at p is

λ(qu, p) =
�

t∈Iu(p)

ν(t),

where Iu(p) denotes the interval consisting of all real numbers strictly between
0 and tu(p).
(c)∗ For every u ∈ S and every p ∈ Σ we set

e(u, p) :=

�
(−1)λ(u,p) p critical point of qu,

0 p regular point of qu.

For r > 0 and U ⊂ Σ an open subset of Σ we define

µr(U) =
�

R3

� �

p∈U, |p−u|<r

e(u, p)
�
du.

Show that there exist nonzero universal constants c1, c2 such that

µr(U) = c1r
��

U

dVg

�
r + c2

��

U

sgdVg

�
r3

for all r sufficiently small. Above dVg denotes the area form on Σ while sg

denotes the scalar curvature of the induced metric g on Σ. If U = Dε(p0) is
a geodesic disk of radius ε centered at p0 ∈ Σ, then

lim
ε�0

1
areag

�
Dε(p0)

�µr

�
Dε(p0)

�
= c1r + c3r

3sg(p0), ∀0 < r � 1.

��

Exercise 5.12. Prove the equality (2.1).

Exercise 5.13. Consider the group G described by the presentation

G = �a, b|, aba = bab, a2b2 = aba−1ba�.

(a) Show that ab3a−1 = b2, b3 = ba2b−1, and a2 = b3.
(b) Show that G is isomorphic to the group

H = �x, y|x3 = y5 = (xy)2�.

(c) Show that H is a finite group. ��
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Exercise 5.14. Suppose M is a compact, orientable smooth 3-dimensional
manifold whose integral homology is isomorphic to the homology of S3 and
f : M → R is a Morse function.
(a) Prove that f has an even number of critical points.
(b) Construct a Morse function on S1 × S2 that has exactly 4 critical points.
(c) A theorem of G. Reeb [Re] (see also [M1, M3]) states that M is homeo-
morphic to S3 if and only if there exists a Morse function on M with exactly
two critical points. Prove that if H•(M, Z) ∼= H•(S3, Z) but π1(M) �= {1}
(e.g., M is the Poincaré sphere), then any Morse function on M has at least
6 critical points. ��

Remark 5.15. Part (c) is true under the weaker assumption that H•(M, Z) ∼=
H•(S3, Z) but M is not homeomorphic to S3. This follows from Poincaré’s
conjecture whose validity was recently established by G. Perelman, which
shows that M ∼= S3 ⇐⇒ π1(M) = {1}. However, this result is not needed in
proving the stronger version of (c). One immediate conclusion of this exercise
is that the manifold M does not admit perfect Morse functions!!! ��

Exercise 5.16. Consider a knot K in R3, i.e., a smoothly embedded circle
S1 �→ R3. Suppose there exists a unit vector u ∈ R3 such that the function

�u : K → R, �u(x) = (u, x) = inner product of u and x

is a function with only two critical points, a global minimum and a global
maximum. Prove that K must be the unknot. In particular, we deduce that
the restriction of any linear function on a nontrivial knot in R3 must have
more than two critical points!

Exercise 5.17. Construct a Morse function f : S2 → R with the following
properties:
(a) f is nonresonant, i.e., no level set {f = const} contains more than one
critical point.
(b) f has at least four critical points.
(c) There exist orientation preserving diffeomorphisms R : S2 → S2, L : R →
R such that

−f = L ◦ f ◦R. ��

Exercise 5.18 (Harvey–Lawson). Consider the unit sphere

S2 = {(x, y, z) ∈ R3; x2 + y2 + z2 = 1}

and the smooth function f : S2 → R, f(x, y, z) = z. Denote by N the north
pole N = (0, 0, 1).
(a) Find the critical points of f .
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θ

ϕ

x

y

z

r

Fig. 5.1. Cylindrical coordinates.

(b) Denote by g the Riemannian metric on S2 induced by the canonical Eu-
clidean metric g0 = dx2 + dy2 + dz2 on R3. Denote by ωg the volume form
on S2 induced by g and the orientation of S2 as boundary2 of the unit ball.
Describe g and ωg in cylindrical coordinate (θ, z) (see Figure 5.1):

x = r cos θ, y = r sin θ, r =
�

1− z2, θ ∈ [0, 2π], z ∈ [−1, 1].

(c) Denote by ∇f the gradient of f with respect to the metric g. Describe ∇f
in the cylindrical coordinates (θ, z) and then describe the negative gradient
flow

dp

dt
= −∇f(p) (5.1)

as a system of ODEs of the type
�

θ̇ = A(θ, z)
ż = B(θ, z) ,

where A, B are smooth functions of two variables, and the dot denotes differ-
entiation with respect to the time variable t.
(d) Solve the system of ODEs found at (c).
(e) Denote by Φt : S2 → S2, t ∈ R, the one parameter group of diffeomor-
phisms of S2 determined by the gradient flow3 (5.1) and set ωt := Φ∗

t
ωg. Show

that for every t ∈ R we have
�

S2
ωt =

�

S2
ωg

2 We are using the outer-normal-first convention.
3 In other words, for every p ∈ S

2 the path t �→ Φt(p) is a solution of (5.1).
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and there exists a smooth function λt : S2 → (0,∞) that depends only on the
coordinate z such that

ωt = λt · ωg, lim
t→∞

λt(p) = 0, ∀p ∈ S2 \ N.

Sketch the graph of the function λt for |t| very large.
(f) Show that for every smooth function u : S2 → R2 we have

lim
t→∞

�

S2
u · ωt = u(N)

�

S2
ωg (5.2)

and then give a geometrical interpretation of the equality (5.2). ��

Exercise 5.19. Suppose V is a finite dimensional real Euclidean space. We
denote the inner product by (•, •). We define an inner product on the space
End(V ) of endomorphisms of V by setting

�S, T � : tr(ST ∗).

Denote by SO(V ) ⊂ End(V ) the group of orthogonal endomorphisms of de-
terminant one, by End+(V ) the subspace of symmetric endomorphisms, and
by End−(V ) the subspace of skew-symmetric endomorphisms.
(a) Show that End−(V ) is the orthogonal complement of End+(V ) with re-
spect to the inner product �•, •�.

(b) Let A ∈ End+(V ) be a symmetric endomorphism with distinct positive
eigenvalues. Define

fA : SO(V ) → R, T �→ −�A, T �.

Show that fA is a Morse function with 2n−1 critical points, where n = dimV
and then compute their indices.
(c) Show that the Morse polynomial of fA is

Pn(t) = (1 + t) · · · (1 + tn−1). ��

Remark 5.20. As explained in [Ha, Theorem 3D.2] the polynomial

(1 + t) · · · (1 + tn−1)

is the Poincaré polynomial of SO(n) with Z/2 coefficients. This shows that
the function fA is a Z/2-perfect Morse function. ��
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Exercise 5.21. Let V and A ∈ End(V ) be as in Exercise 5.19. For every
S ∈ SO(V ) we have an isomorphism

TSSO(V ) → T SO(V ), X �→ XS−1.

We have a natural metric g on SO(V ) induced by the metric �•, •� on End(V ).
(a) Show that for every S ∈ SO(V ) we have

2∇gfA(S) = −A∗ + ASA.

(b) Show that the Cayley transform

X �→ Y(X) := ( −X)( + X)−1

defines a bijection from the open neighborhood U of ∈ SO(V ) consisting of
orthogonal transformations S such that det( + S) �= 0 to the open neighbor-
hood O of 0 ∈ End−(V ) consisting of skew-symmetric matrices Y such that
det( + Y ) �= 0.
(c) Suppose S0 is a critical point of fA. Set US0 = US0 . Then US0 is an open
neighborhood of S0 ∈ SO(V ), and we get a diffeomorphism

YS0 : US0 → O, US0 � T �→ Y(TS−1
0 ),

Thus we can regard the map YS0 as defining local coordinates Y near S0. Show
that in these local coordinates the gradient flow of fA has the description

Ẏ = AS0Y − Y AS0.

(d) Show that for every orthogonal matrix S0, the flow line through S0 of the
gradient vector field 2∇gfA is given by

t �→
�
sinh(−At) + cosh(−At)S0)

��
cosh(−At) + sinh(−At)S0

�−1
. ��

Exercise 5.22. Suppose V is a finite dimensional complex Hermitian vec-
tor space of dimension n. We denote the Hermitian metric by (•, •), the
corresponding norm by | • |, and the unit sphere by S = S(V ). For every
integer 0 < k < dim V we denote by Gk(V ) the Grassmannian of complex
k-dimensional subspaces in V . For every L ∈ Gk(V ) we denote by PL : V → V
the orthogonal projection onto L and by L⊥ the orthogonal complement. We
topologize Gk(V ) using the metric

d(L1, L2) = �PL1 − PL2�.

Suppose L ∈ Gk(V ) and S : L → L⊥ is a linear map. Denote by ΓS ∈ Gk(V )
the graph of the operator S, i.e., the subspace
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ΓS = {x + Sx; x ∈ L} ⊂ L⊕ L⊥ = V.

We thus have a map

Hom(L, L⊥) � S �→ ΓS ∈ Gk(V ).

(a) Show that for every S ∈ Hom(L, L⊥) we have

Γ⊥
S

=
�
−y + S∗y; y ∈ L⊥

�
⊂ L⊥ ⊕ L,

where S∗ : L⊥ → L is the adjoint operator.
(b) Describe PΓS in terms of PL and S. For t ∈ R set Lt = ΓtS . Compute
d

dt
|t=0 PLt .

(c) Prove that the map

Hom(L, L⊥) � S �→ ΓS ∈ Gk(V )

is a homeomorphism onto the open subset of Gk(V ) consisting of all k-planes
intersecting L⊥ transversally. In particular, its inverse defines local coordi-
nates on Gk(V ) near L = ΓS=0. We will refer to these as graph coordinates.
(d) Show that for every L ∈ Gk(V ) the tangent space TLGk(V ) is isomorphic
to the space of symmetric operators Ṗ : V → V satisfying

Ṗ (L) ⊂ L⊥, ṖL⊥ ⊂ L.

Given Ṗ as above, construct a linear operator S : L → L⊥ such that

d

dt
|t=0 PΓtS = Ṗ . ��

Exercise 5.23. Assume that A : V → V is a Hermitian operator with simple
eigenvalues. Define

hA : Gk(V ) → R, hA(T ) = −Re trAPL.

(a) Show that L is a critical point of hA if and only if AL ⊂ L.
(b) Show that hA is a perfect Morse function and then compute its Morse
polynomial. ��

Remark 5.24. The stable and unstable manifolds of the gradient flow of hA

with respect to the metric g(Ṗ , Q̇) = Re tr(Ṗ , Q̇) coincide with some classical
objects, the Schubert cycles of a complex Grassmannian. ��

Exercise 5.25. Suppose V is an n-dimensional real Euclidean space with
inner product (•, •) and A : V → V is a selfadjoint endomorphism. We set
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S(V ) :=
�

v ∈ V ; |v| = 1
�

and define
fA : S(V ) → R, f(v) = (Av, v).

For 1 ≤ k ≤ n = dimV we denote by Gk(V ) the Grassmannian of k-
dimensional vector subspaces of V and we set

λk = λk(A) := min
E∈Gk(V )

max
v∈E∩S(V )

fA(v).

Show that
λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A)

and that any critical value of fA is equal to one of the λk’s. ��

Exercise 5.26. Suppose V is a vector space equipped with a symplectic pair-
ing

ω : V × V → R.

Denote by Iω : V → V ∗ the induced isomorphism. For every subspace L ⊂ V
we define its symplectic annihilator to be

Lω := {v ∈ V ; ω(v, x) = 0 ∀x ∈ L}.

(a) Prove that

IωLω = L⊥ =
�
α ∈ V ∗; �α, v� = 0, ∀v ∈ L

�
.

Conclude that dim L + dim Lω = dimV .
(b) A subspace L ⊂ V is called isotropic if L ⊂ Lω. An isotropic subspace is
called Lagrangian if L = Lω. Show that if L is an isotropic subspace then

0 ≤ dim L ≤ 1
2

dim V

with equality if and only if L is lagrangian.
(c) Suppose L0, L1 are two Lagrangian subspaces of V such that L0∩L1 = (0).
Show that the following statements are equivalent.
(c1) L is a Lagrangian subspace of V transversal to L1.
(c2) There exists a linear operator A : L0 → L1 such that

L =
�
x + Ax; x ∈ L0

�

and the bilinear form

Q : L0 × L0 → R, Q(x, y) = ω(x, Ay)

is symmetric. We will denote it by QL0,L1(L).
(d) Show that if L is a Lagrangian intersecting L1 transversally, then L inter-
sects L0 transversally if and only if the symmetric bilinear form QL0,L1(L) is
nondegenerate. ��
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Exercise 5.27. Consider a smooth n-dimensional manifold M . Denote by E
the total space of the cotangent bundle π : T ∗M → M and by θ = θM the
canonical 1-form on E described in local coordinates (ξ1, . . . , ξm, x1, . . . , xm)
by

θ =
�

i

ξi dxi.

Let ω = −dθ denote the canonical symplectic structure on E. A submanifold
L ⊂ E is called Lagrangian if for every x ∈ L the tangent subspace TxL is a
Lagrangian subspace of TxE.
(a) A smooth function f on M defines a submanifold Γdf of E, the graph of
the differential. In local coordinates (ξi;xj) it is described by

ξi = ∂xif(x).

Show that Γdf is a Lagrangian submanifold of E.
(b) Suppose x ∈ M is a critical point of M . We regard M as a submanifold of E
embedded as the zero section of T ∗M . We identify x ∈ M with (0, x) ∈ T ∗M .
Set

L0 = TM

x
⊂ T(0,x)E, L1 = T ∗

x
M ⊂ T(0,x)E, L = T(0,x)Γdf ⊂ T(0,x)E.

They are all Lagrangian subspaces of V = T(0,x)E. Clearly L0 � L1 and
L � L1. Show that

QL0,L1(L) = the Hessian of f at x ∈ M. (5.3)

(c) A Lagrangian submanifold L of E is called exact if the restriction of θ to
L is exact. Show that Γdf is an exact Lagrangian submanifold.
(d) Suppose H is a smooth real valued function on E. Denote by XH the
Hamiltonian vector field associated with H and the symplectic form ω = −dθ.
Show that in the local coordinates (ξi, xj) we have

XH =
�

i

∂H

∂ξi

∂xi −
�

j

∂H

∂xj
∂ξj .

Show that if L is an exact Lagrangian submanifold of E, then so is ΦH

t
(L) for

any t ∈ R. ��

Exercise 5.28. We fix a diffeomorphism

R× S1 → T ∗S1, (ξ, θ) �→ (ξdθ, θ),

so that the canonical symplectic form on T ∗S1 is given by

ω = dθ ∧ dξ.
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Denote by L0 ⊂ T ∗S1 the zero section.
(a) Construct a compact Lagrangian submanifold of T ∗S1 that does not in-
tersect L0.
(b) Show that any compact, exact Lagrangian, oriented submanifold L of T ∗S1

intersects L0 in at least two points. ��

Remark 5.29. The above result is a very special case of Arnold’s conjecture
stating that if M is a compact smooth manifold then any exact Lagrangian
submanifold T ∗M must intersect the zero section in at least as many points as
the number of critical points of a smooth function on M . In particular, if an
exact Lagrangian intersects the zero section transversally, then the geometric
number of intersection points is no less than the sum of Betti numbers of M .��

Exercise 5.30. Consider the tautological right action of SO(3) on its cotan-
gent bundle

T ∗SO(3)× SO(3) � (ϕ, h; g) �→ (R∗
g−1ϕ, Rg(h) = hg),

where
R∗

g−1 : TghSO(3) → ThSO(3)

is the pullback map. Show that this action is Hamiltonian with respect to the
tautological symplectic form on T ∗SO(3) and then compute its moment map

µ : T ∗SO(3) → so(3)∗. ��

Exercise 5.31. Consider the complex projective space CPn with projective
coordinates z = [z0, . . . , zn].
(a) Show that the Fubini–Study form

ω = i∂∂̄ log |z|2, |z|2 =
n�

k=0

|zk|2

defines a symplectic structure on CPn.
(b) Show that the action of S1 on CPn given by

eit · [z0, . . . , zn] = [z0, eitz1, e
2itz2, . . . , e

nitzn]

is Hamiltonian and then find a moment map for this action. ��

Exercise 5.32. Let (M, ω) be a compact toric manifold of dimension 2n and
denote by T the n-dimensional torus acting on M .
(a) Prove that the top dimensional orbits of T are Lagrangian submanifolds.
(b) Prove that the set of points in M with trivial stabilizers is open and
dense. ��
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Exercise 5.33. (a) Let T be a compact torus of real dimension n with Lie
algebra . A character of Tn is by definition a continuous group morphism
χ : T → S1. We denote by T̂ set of characters of T. Then T̂ is an Abelian
group with respect to the operation

(χ1 · χ2)(t) := χ1(t) · χ2(t), ∀t ∈ T, χ1, χ2 ∈ T̂.

(a) Show that the natural map

(T̂, ·) � χ �−→ (dχ)|t=1 ∈ ( ∗,+)

is an injective group morphism whose image is a lattice of ∗, i.e., it is a free
Abelian group of rank n that spans ∗ as a vector space. We denote this lattice
by Λv.
(b) The quotient ∗/Λv is an n-dimensional torus, called the dual of T and
denoted by Tv. There exists a unique translation invariant measure λ on ∗

such that the volume of the quotient ∗/Λv is equal to 1. Equivalently, λ is
the Lebesgue measure on T∗ normalized by the requirement that the volume
of the fundamental parallelepiped of Λv be equal to 1. Suppose we are given
an effective Hamiltonian action of T of a compact symplectic manifold (M, ω)
of dimension 2n = 2 dim T. Denote by µ a moment map of this action. Show
that �

M

1
n!

ωn = volλ
�
µ(M) ). ��

Exercise 5.34. Prove that there exists no smooth effective action of S1 on a
compact oriented Riemann surface Σ of genus g ≥ 2. ��

Exercise 5.35. Let G = {±1} denote the (multiplicative) cyclic group of
order two, and F2 denote the field with two elements. Then G acts on S∞ by
reflection in the center of the sphere. The quotient is the infinite dimensional
real projective space RP∞. The cohomology ring of RP∞ with coefficients in
F2 is

H•(RP∞, F2) ∼= R := F2[t], deg t = 1.

For every continuous action of G on a locally compact space X we set

XG := (S∞ ×X)/G,

where G acts by

t · (v, x) = (t · v, t−1x), ∀t ∈ G, v ∈ S∞, x ∈ X.

Set
HG(X) := H•(XG, F2).

Observe that we have a fibration
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X �→ XG → RP∞,

and thus HG(X) has a natural structure of an R-module. Similarly, if Y is a
closed, G-invariant subset of X we define

HG(X,Y ) := H•(XG, YG; F2).

A finitely generated R-module M is called negligible if the F2-linear endomor-
phism

t : M → M, m �→ t · m,

is nilpotent.
(a) Show that if G acts freely on the compact space X then HG(X) is negli-
gible.
(b) Suppose X is a compact smooth manifold and G acts smoothly on X.
Denote by FixG(X) the fixed point set of this action. Show that F is a compact
smooth manifold. Show that HG

�
X,FixG(X)

�
is negligible.

(c) Prove that
�

k≥0

dimF2 Hk(FixG(X), F2) ≤
�

k≥0

dimF2 Hk(X, F2). ��

Exercise 5.36. Consider a homogeneous polynomial P ∈ R[x, y, z] of degree
d. Define

X(P ) :=
�

[x, y, z] ∈ RP2; P (x, y, z) = 0
�
.

For generic P , the locus X(P ) is a smooth submanifold of RP2 of dimension
1, i.e., X(P ) is a disjoint union of circles (ovals). Denote by n(P ) the number
of these circles. Show that

n(P ) ≤ 1 +
(d− 1)(d− 2)

2
. ��

Exercise 5.37. Suppose M is a compact, connected, orientable, smooth man-
ifold without boundary. Set m := dim MFix an orientation or on M . Denote
by H•(M) the De Rham cohomology of M . For 0 ≤ k ≤ m we set

Hk(M) := Hom(Hk(M), R).

The Kronecker pairing

�−,−� : Hk(M)×Hk(M) → R, Hk(M)×Hk(M) � (α, z) �→ �α, z�

is the natural pairing between a vector space and its dual.
The orientation orM determines an element [M ] ∈ Hm(M) via
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�α, [M ]� :=
�

M

ηα,

where ηα denotes an m-form on M whose De Rham cohomology class is α.
Observe that we have a natural map

PD : Hm−k(M) → Hk(M),

so that for α ∈ Hm−k(M) the element PD(α) ∈ Hk(M) is defined by

�β, PD(α)� := �α ∪ β, [M ]�.

The Poincaré duality theorem states that this map is an isomorphism.
A smooth map φ : M → M induces a linear map φ∗ : H•(M) → H•(M)

defined by the commutative diagram

H•(M) H•(M)

H•(M) H•(M)

φ
∗

PD PD

φ∗

.

(a) Show that if φ is a diffeomorphism, then for every α ∈ H•(M) and every
smooth map φ of M we have

φ∗(PDα) = (deg φ) · PD
�
(φ−1)∗α

�
.

(b) Suppose S is a compact oriented submanifold of M of dimension k. Then
S determines an element [S] of Hk(M) via

�α, [S]� =
�

S

ηα, ∀α

where ηα denotes a closed k-form representing the De Rham cohomology class
α. Any diffeomorphism φ : M → M determines a new oriented submanifold
φ(S) in an obvious fashion. Show that

φ∗[S] = [φ(S)].

Exercise 5.38. Consider two homogeneous cubic polynomials in the variables
(z0, z1, z2). The equation

tn0A0(z0, z1, z2) + tn1A1(z0, z1, z2) = 0

defines a hypersurface Yn in P2 × P1.
(a) Show that for generic A0, A1 the hypersurface Yn is smooth.
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(b) Show that for generic A0, A1 the natural map Yn → P1 induced by the
projection P2 × P1 → P1 is a nonresonant Morse map.
(c) Show that for generic A0 A1 the hypersurface Y1 is biholomorphic to the
blowup of P2 at the nine points of intersection of the cubic {A0 = 0} and
{A1 = 1}. (See Example 4.5.)
(d) Using the computations in Example 4.15 deduce that for generic A0, A1

the map Xn → P1 has precisely 12n critical points. Conclude that

χ(Xn) = 12n.

(e) Describe the above map Xn → P1 as a Lefschetz fibration (see Definition
4.2) using the Segre embeddings

Pk × Pm → P(k+1)(m+1)−1,

Pk×Pm �
�
[(xi)0≤i≤k], [(yj)0≤j≤m]

�
�→ [(xiyj)0≤i≤k, 0≤j≤m] ∈ P(k+1)(m+1)−1.

5.2 Solutions to Selected Exercises

Exercise 5.6. Let x ∈ X and s = f(x). Set

U = TxX, V = TsS, W = TsY, T = Df : U → V, R = range T.

For every subspace E ⊂ W we denote by E⊥ ⊂ W ∗ its annihilator in W ∗,

E⊥ :=
�
w ∈ W ∗; �w, e� = 0,∀e ∈ E

�
.

We have

f transversal to S ⇐⇒ R + V = W ⇐⇒ (R + V )⊥ = 0.

On the other hand,

(R + V )⊥ = R⊥ ∩ V ⊥, R⊥ = kerT ∗,

so that
kerT ∗ ∩ V ⊥ = 0.

If u is a function on Y then dus ∈ W ∗. If u|S = 0 we deduce dus ∈ V ⊥. Then

f∗(du)x = T ∗(du|s)

and thus
f∗(du)x = 0 ⇐⇒ dus ∈ kerT ∗ ∩ V ⊥ = 0.

(b) Let c = codim S. Then S is defined near s ∈ S by an equality

u1 = · · · = uc = 0, dui|s linearly independent in T ∗
s
S,



210 5 Exercises and Solutions

and f−1(S) is defined near x ∈ f−1 by the equality

vi = 0, i = 1, . . . , c, vi − f∗ui.

We have
�

i

λidvi

x
= 0, λi ∈ R =⇒ f∗(du)x = 0, u =

�

i

λiu
i,

and from part (a) we deduce dus = 0 ∈ T ∗
s
S. Since dui

s
are linearly inde-

pendent, we deduce λi = 0, and thus dvi

x
are linearly independent. From the

implicit function theorem we deduce that f−1(S) is a submanifold of codi-
mension c. ��

Exercise 5.7. Set

Z =
�
(x,λ) ∈ X × Λ; (λ, fλ(x) ) ∈ S̃

�
= G−1(S̃).

Denote by ζ : Z → Λ the restriction to Z of the natural projection X×Λ → Λ
and let

Zλ = ζ−1(λ) ∼=
�
x ∈ X; (x,λ) ∈ Z

�
= f−1

λ
(Sλ).

Sard’s theorem implies that there exists a negligible set Λ0 ⊂ Λ such that for
every λ ∈ Λ \ Λ0 either the fiber Zλ is empty or for every (x,λ) ∈ Zλ the
differential

ζ∗ : T(x,λ)Z → TλΛ

is surjective. If Zλ = ∅, then fλ is tautologically transversal to Sλ.
Let (x0, λ0) ∈ Z such that ζ∗ : T(x0,λ0)Z → Tλ0Λ is onto. Set (y0, λ0) =

G(x0, λ0) ∈ S̃,

Ẋ := Tx0X, Ẏ := Ty0Y, Λ̇ := Tλ0Λ,

Ṡ := T(y0,λ0)S̃, Ṡ0 := Ty0Sλ0 , Ż := T(x0,λ0)Z.

Decompose the differential F∗ of F at (x0, λ0) in partial differentials

A = DλF : Λ̇ → Ẏ , B = DxF = Dxfλ0 : Ẋ → Ẏ .

The transversality assumption on G implies that

Ẏ ⊕ Λ̇ = Ṡ + G∗(Ẋ ⊕ Λ̇). (5.4)

Observe that
Ṡ0 = Ṡ ∩ (Ẏ ⊕ 0).

Moreover, our choice of (x0, λ0) implies that ζ∗ : Ż ⊂ Ẋ ⊕ Λ̇ → Λ̇ is onto. We
have to prove that

Ẏ = B(Ẋ) + Ṡ0.
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Let ẏ0 ∈ Ẏ . We want to show that ẏ0 ∈ B(Ẋ) + Ṡ0. From (5.4) we deduce

∃(ẋ0, λ̇0) ∈ Ẋ ⊕ Λ̇, (ẏ1, λ̇1) ∈ Ṡ

such that

(ẏ0, 0) = G∗(ẋ0, λ̇0) + (ẏ1, λ̇1) ⇐⇒ (ẏ0, 0) = (Aλ̇0 + Bẋ0, λ̇0) + (ẏ1, λ̇1).

Thus λ̇1 = −λ̇0 and (ẏ1,−λ̇0) ∈ Ṡ and

(ẋ1, λ̇0) = (Aλ̇0 + Bẋ0, λ̇0) + (ẏ1,−λ̇0)� �� �
∈Ṡ

.

On the other hand, λ̇0 lies in the image projection ζ∗ : Ż → Λ̇, so that ∃ẋ1 ∈ Ẋ
such that (ẋ1, λ̇0) ∈ Ż. Since G∗Ż ⊂ Ṡ, we deduce

G∗(ẋ1, λ̇0) ∈ Ṡ ⇐⇒ (Aλ̇0 + Bẋ1, λ̇0) ∈ Ṡ.

Now we can write

(ẏ0, 0) = G∗
�

(ẋ0, λ̇0)− (ẋ1, λ̇0)
�

+ G∗(ẋ1, λ̇0)� �� �
∈Ṡ

+ (ẏ1,−λ̇0)� �� �
∈Ṡ

⇐⇒ (ẏ0, 0) = (B(ẋ0 − ẋ1), 0) + (Bẋ1 + Aλ̇0 + ẏ1, 0)� �� �
∈Ṡ0

.

This proves that ẏ0 ∈ B(Ẋ) + Ṡ0. ��

Exercise 5.9. Let v ∈ Sn and suppose x ∈ M is a critical point of �v.
Modulo a translation we can assume that x = 0. We can then find an or-
thonormal basis (e1, . . . , en, en+1) with coordinate functions (x1, . . . , xn+1)
such that v = en+1. From the implicit function theorem we deduce that near
0 the hypersurface M can be expressed as the graph of a smooth function

xn+1 = f(x), x = (x1, . . . , xn+1), df(0) = 0.

Thus (x1, . . . , xn) define local coordinates on M near 0. The function �v on
M then coincides with the coordinate function xn+1 = f(x).

Near en+1 ∈ Sn = {(y1, . . . , yn+1) ∈ Rn+1;
�

i
|yi|2 = 1} we can choose

y = (y1, . . . , yn) as local coordinates. Observe that

NM (x) =
1

(1 + |∇f |2)1/2
(en+1 −∇f).

In the coordinates x on M and y on Sn the Gauss map NN : M → Sn is
expressed by

NM (x) = − 1
(1 + |∇f |2)1/2

∇f.
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For simplicity, we set g = −∇f and we deduce that

D0NM : T0M → Ten+1S
n+1

is equal to

D
1

(1 + |g|2)1/2
g|x=0 = d

� 1
(1 + |g|2)1/2

�
g|x=0 +

1
(1 + |g|2)1/2

Dg|x=0.

Since g(0) = 0 and Dg|x=0 = −Hf,0, we conclude that

D0NM = D
1

(1 + |g|2)1/2
g|x=0 = − 1

(1 + |g|2)1/2
Hg,0.

Hence 0 ∈ M is a regular point of NM if and only if det Hh,0 �= 0, i.e., 0 is a
nondegenerate critical point of f . ��

Remark 5.39. The differential of the Gauss map is called the second funda-
mental form of the hypersurface. The above computation shows that it is a
symmetric operator. If we denote by λ1, . . . ,λn the eigenvalues of this differ-
ential at a point x ∈ M , then the celebrated Theorema Egregium of Gauss
states that the symmetric combination

�
i �=j

λiλj is the scalar curvature of
M at x with respect to the metric induced by the Euclidean metric in Rn+1.
In particular, this shows that the local minima and maxima of �v are attained
at points where the scalar curvature is positive.

If Σ is a compact Riemann surface embedded in R3, then �v has global
minima and maxima and thus there exist points in Σ where the scalar curva-
ture is positive. Hence, a compact Riemann surface equipped with a hyperbolic
metric (i.e., scalar curvature = −2) cannot be isometrically embedded in R3.��

Exercise 5.10. To prove the equality

m(u) =
1
4π

�

U

N∗
Σ

dVS2

use Exercise 5.9. The second equality follows from the classical identity,[Ni,
Example 4.2.14], [Str, Sections 4-8, p. 156]

N∗
Σ

dVS2 =
s

2
dVg.

��

Exercise 5.11. See [BK, Section 4]. ��

Exercise 5.14. (a) Suppose f is a Morse function on M . Denote by Pf (t) its
Morse polynomial. Then the number of critical points of f is Pf (1). The Morse
inequalities show that there exists Q ∈ Z[t] with nonnegative coefficients such
that
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Pf (t) = PM (t) + (1 + t)Q(t). (†)

Since M is odd dimensional and orientable, we have χ(M) = 0 and we deduce

Pf (−1) = PM(−1) = χ(M) = 0.

Finally, note that

Pf (1) ≡ Pf (−1) mod 2 =⇒ Pf (1) ∈ 2Z.

(b) For every n ≥ 1 denote by Sn the round sphere

Sn =
�

(x0, . . . , xn) ∈ Rn+1;
�

i

|xi|2 = 1
�
.

The function hn : Sn → R, hn(x0, . . . , xn) = xn is a perfect Morse function
on Sn because its only critical points are the north and south poles. Now
consider the function

hn,m : Sn × Sm → R, hn,m(x, y) = hn(x) + hm(y).

One can check easily that

Phn,m(t) = Phn(t) · Phm(t) = PSn(t) · Phm(t) = PSn×Sm(t).

(c) Suppose H•(M, Z) ∼= H•(S3, Z) and f has fewer than 6 critical points, i.e.,
Pf (1) < 6. Since Pf (1) is an even number, we deduce Pf (1) = 2, 4. On the
other hand, the fundamental group of M is nontrivial and non Abelian. This
means that any presentation of π1(M) has to have at least two generators.
In particular, any CW decomposition of M must have at least two cells of
dimension 1. Hence the coefficient of t in Pf (t) must be at least two. Since f
must have a maximum and a minimum, we deduce that the coefficients of t0

and t3 in Pf are strictly positive. Now using Pf (t) < 6 we conclude that

Pf (t) = 1 + 2t + t3.

However, in this case Pf (−1) = 1− 3 �= χ(M). ��

Exercise 5.16. The range of �u is a compact interval [m, M ], where

m = min
K

�u, M = max
K

�u, m < M.

Observe that for every t ∈ (m, M) the intersection of the hyperplane

{(u, x) = t}

with the knot K consists of precisely two points, B0(t), B1(t) (see Figure 5.2).
The construction of the unknotting isotopy uses the following elementary fact.
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B  (s) B  (s)

B  (t) B  (t)
0

0

1

1

u

s

t

Fig. 5.2. Unwinding a garden hose.

Given a pair of distinct points (A0, A1) ∈ R2 × R2, and any pair of con-
tinuous functions

B0, B1 : [0, 1] → R2

such that

B0(0) = A0, B1(0) = A1, B0(t) �= B1(t), ∀t ∈ [0, 1],

there exist continuous functions

λ : [0, 1] → (0,∞), S : [0, 1] → SO(2)

such that λ(0) = 1, S0 = and for every t ∈ [0, 1] the affine map

Tt : R2 → R2, Tt(x) = B0(t) + λ(t)St(x−A0)

maps A0 to B0(t) and A1 to B1(t).
To prove this elementary fact use the lifting properties of the universal

cover of SO(2) ∼= S1. ��

Exercise 5.17. Consider the S-shaped embedding in R3 of the two sphere
depicted in Figure 5.3. The height function h(x, y, z) = z induces a Morse
function on S2 with six critical points. This height function has all the required
properties. ��

Exercise 5.18. We have

∇f = (1− z2)
∂

∂z
,
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z

1

2

3

4

5

6

Fig. 5.3. An embedding of S
2 in R3.

and therefore the gradient flow equation (5.1) has the form

ż = (z2 − 1), θ̇ = 0, z(0) = z0, θ(0) = θ0, z ∈ [−1, 1].

This equation is separable and we deduce

dz

z2 − 1
= dt ⇐⇒

� 1
z + 1

+
1

1− z

�
dz = −2dt.

Integrating form 0 to t we deduce

log
�1 + z

1− z

�
= log

�
e−2t

1 + z0

1− z0

�
=⇒ 1 + z

1− z
= e−2t

1 + z0

1− z0
.

We conclude that

z = φt(z0) :=
C(z0)− e2t

C(z0) + e2t
, C(z) :=

1 + z

1− z
.

Hence
Φt(z, θ) = (φt(z), θ).

Now
ωg = dθ ∧ dz =⇒ λt(z) =

d

dz
φt(z).

Using the equalities

φt(z) = 1− 2e2t

C(z) + e2t
, C(z) =

2
1− z

− 1

we deduce
λt =

2e2t

(z − 1)2(C(z) + e2t)2
,

which shows that as t → ∞ λt converges to 0 uniformly on the compacts of
S2 \ {N} = S2 \ {z = 1}.
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Let u ∈ C∞(S2) and set u0 = u(N). Then
��

S2
uωt

�
− u0 =

�

S2
(u− u0)ωt

Set v = u− u0. Fix a tiny disk Dε of radius ε > 0 centered at the north pole.
We then have

����
�

S2
vωt

���� ≤
����
�

Dε

vλtωg

����
� �� �

A(t,ε)

+

�����

�

S2\Dε

vλtωg

�����
� �� �

B(t,ε)

.

Then
A(t, ε) ≤

�
sup
Dε

|v|
�
·
�

Dε

ωt ≤
�
sup
Dε

|v|
�
,

while
B(t, ε) ≤ area (S2) · sup

S2
|v| · sup

S2\Dε

|λt|
t→∞−→ 0.

This proves

0 ≤ lim inf
t→∞

����
�

S2
vωt

���� ≤ lim sup
t→∞

����
�

S2
vωt

���� ≤
�
sup
Dε

|v|
�
, ∀ε > 0.

Since v is continuous at the north pole and at that point v = 0, we deduce

lim
ε�0

�
sup
Dε

|v|
�

= 0.

Hence
lim

t→∞

�

S2
vωt = 0.

��

Exercise 5.19 Let n := dimV . Then

dim End−(V ) =
�

n

2

�
, dim End+(V ) =

�
n + 1

2

�

and thus

dim End−(V ) + dim End+(V ) = n2 = dim End(V ).

If S ∈ End−(V ) and T ∈ End+(V ) ,then

�S, T � = trST ∗ = trST = − trS∗T = − trTS∗ = −�T, S�

so that
�S, T � = 0.
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This completes part (a).
(b) Observe that T1SO(V ) = End−(V ). Fix an orthonormal basis

�
ei; i = 1, 2, . . . , n

�

of V consisting of eigenvectors of A,

Aei = λiei.

We assume λi < λj if i < j.
If T ∈ SO(V ) is a critical point of fA, then for every X ∈ End−(V ) we

have
d

dt

���
t=0

fA(TetX) = 0 ⇐⇒ trATX = 0, ∀X ∈ End−(V ).

From part (a) we deduce that T is a critical point of fA if and only if AT is
a symmetric operator, i.e.,

AT = T ∗A = T−1A ⇐⇒ TAT = A.

If T is described in the basis (ei) by the matrix (ti
j
),

Tej =
�

i

ti
j
ei, ∀j,

then the symmetry of AT translates into the collection of equalities

λit
i

j
= λjt

j

i
, ∀i, j.

We want to prove that these equalities imply that ti
j

= 0, ∀i �= j, i.e., T is
diagonal.

Indeed, since T is orthogonal we deduce that the sum of the squares of
elements in any row, or in any column is 1. Hence

1 =
�

j

(ti
j
)2 =

�

j

�λj

λi

�2
(tj

i
)2, ∀i.

We let i = 1 in the above equality, and we conclude that

1 =
n�

j=1

(tj1)
2 =

n�

j=1

�λj

λ1

�2
(tj1)

2

(λj > λ1, ∀j �= 1)

≥
n�

j=1

(tj1)
2 = 1.

The equality can hold if and only if tj1 = t1
j

= 0, ∀j �= 1. We have thus shown
that the off-diagonal elements in the first row and the first column of T are
zero. We now proceed inductively.
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We assume that the off-diagonal elements in the first k columns and rows
of T are zero, and we will prove that this is also the case for the (k + 1)-th
row and column. We have

1 =
n�

j=1

(tj
k+1)

2 =
n�

j=1

� λj

λk+1

�2
(tj

k+1)
2

=
�

j>k

� λj

λk+1

�2
(tj

k+1)
2 ≥

�

j>k

(tj
k+1)

2 =
n�

j=1

(tj
k+1)

2 = 1.

Since λj > λk+1 if j > k+1, we deduce from the above string of (in)equalities
that

tj
k+1 = tk+1

j
= 0, ∀j �= k + 1.

This shows that the critical points of fA are the diagonal matrices

Diag(�1, . . . , �n), �j = ±1,
n�

j=1

�j = 1.

Their number is �
n

0

�
+

�
n

2

�
+

�
n

4

�
+ · · · = 2n−1.

Fix a vector � ∈ {−1, 1}n with the above properties and denote by T� the
corresponding critical point of fA. We want to show that T� is a nondegenerate
critical point and then determine its Morse index, λ(�).

A neighborhood of T� in SO(V ) can be identified with a neighborhood of
0 ∈ End−(V ) via the exponential map

End−(V ) � X �→ T� exp(X) ∈ SO(V ).

Using the basis (ei) we can identify X ∈ SO(V ) with its matrix (xi

j
). Since

xi

j
= −xj

i
we can use the collection

�
xi

j
; 1 ≤ j < i ≤ n

�

as local coordinates near T�. We have

exp(X) = V + X +
1
2
X2 + O(3),

where O(r) denotes terms of size less than some constant multiple of �X�r as
�X� → 0. Then

fA(T� exp(X) ) = fA(T�)−
1
2

tr(AT�X
2) + O(3).

Thus the Hessian of fA at T� is given by the quadratic form
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H�(X) = −1
2

tr(AT�X
2) = −1

2

n�

j=1

�jλj

n�

k=1

xj

k
xk

j

(xj

k
= −xk

j
)

=
1
2

n�

j,k=1

�jλj(xj

k
)2 =

1
2

�

1≤j<k≤n

(�jλj + �kλk)(xj

k
)2.

The last equalities show that Hε diagonalizes in the coordinates (xj

k
) and its

eigenvalues are

µjk = µjk(�) := (�jλj + �kλk), 1 ≤ k < j ≤ n.

None of these eigenvalues is zero, since 0 < λk < λj if k < j. Moreover,

µjk(�) < 0 ⇐⇒ �j , �k < 0
� �� �
Type 1

or �j < 0 < �k� �� �
Type 2

.

For i = 1, 2 we denote by λi(�) the number of Type i negative eigenvalues
µjk(�) so that

λ(�) = λ1(�) + λ2(�).

We set
Z� := {j; �j < 0

�
, ν(�) := #Z�.

Observe that ν(�) is an even, nonnegative integer. The number of Type 1
negative eigenvalues is then

λ1(�) =
�

j∈Z�

#
�

k ∈ Z�; k < j
�

=
�

ν(�)
2

�
.

On the other hand, we have

λ2(�) =
�

j∈Z�

#
�

k �∈ Z�; k < j
�
.

Hence

λ(�) = λ1(�) + λ2(�) =
�

j∈Z�

#
�
k < j

�
=

�

j∈Z�

(j − 1) =
�

j∈Z�

j − ν(�).

(c) To find a compact description for the Morse polynomial of fA we need
to use a different kind of encoding. For every positive integer k we denote by
Ik,n the collection of strictly increasing maps

{1, 2, . . . , k}→ {1, 2, . . . , n}.
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For ϕ ∈ Ik,n we set

|ϕ| :=
k�

j=1

ϕ(j).

Define for uniformity
I0,n := {∗}, | ∗ | := 0.

Denote by Pn the Morse polynomial of fA : SO(V ) → R, n = dimV . Then

Pn(t) =
�

k even
t−k

�

ϕ∈Ik,n

t|ϕ|.

For every k, even or not, define

Sk,n(t) =
�

ϕ∈Ik,n

t|ϕ|,

and consider the Laurent polynomial in two variables

Qn(t, z) =
�

k

z−kSk,n(t).

If we set
Q±

n
(t, z) =

1
2
�
Qn(t, z) ± Qn(t,−z)

�
,

then
Pn(t) = Q+

n
(t, z = t).

For every k, even or not, an increasing map ϕ ∈ Ik,n can be of two types.
A. ϕ(k) < n ⇐⇒ ϕ ∈ Ik,n−1.
B. ϕ(k) = n, so that ϕ is completely determined by its restriction

ϕ|{1,...,k−1}

which defines an element ϕ� ∈ Ik−1,n−1 satisfying

|ϕ�| = |ϕ|− n.

The sum Sk,n(t) decomposes according to the two types

Sk,n = Ak,n(t) + Bk,n(t).

We have
Ak,n(t) = Sk,n−1(t), Bk,n(t) = tnSk−1,n−1(t).

We multiply the above equalities by z−k and we deduce

z−kSk,n(t) = z−kSk,n−1 + z−ktnSk−1,n−1.
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If we sum over k we deduce

Qn(t, z) = Qn−1(t, z) + z−1tnQn−1(t, z) = (1 + z−1tn)Qn−1(t, z).

We deduce that for every n > 2 we have

Qn(t, z) =

�
n�

m=3

(1 + z−1tm)

�
Q2(t, z).

On the other hand, we have

Q2(t, z) = S0,2(t) + z−1S1,2(t) + z−2S2,2(t) = 1 + z−1(t + t2) + z−2t3

= (1 + z−1t)(1 + z−1t2),

Q+
2 (t, z) = 1 + z−2t3, Q+

2 (t, z = t) = 1 + t.

We deduce that

Qn(t, z) =
n�

m=1

(1+z−1tm), Q+
n
(t, z) =

1
2

n�

m=1

(1+z−1tm)+
1
2

n�

m=1

(1−z−1tm),

so that

Pn(t) = Q+
n
(t, z)|z=t =

1
2

n�

m=1

(1+ tm−1)+
1
2

n�

m=1

(1− tm−1)

� �� �
=0

=
n−1�

k=1

(1+ tk). ��

Exercise 5.21 For a proof and much more we refer to [DV]. ��

Exercise 5.22 Part (a) is immediate. Let v = PLv + PL⊥v = vL + vL+ ∈ V
(see Figure 5.4). Then

v
v

v x

Sx

L
L

L

L S
Γ

Fig. 5.4. Subspaces as graphs of linear operators.
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PΓS v = x + Sx, x ∈ L ⇐⇒ v − (x + Sx) ∈ Γ⊥
S

⇐⇒ ∃x ∈ L, y ∈ L⊥ such that
�

x + S∗y = vL,
Sx− y = vL⊥ .

Consider the operator S : L⊕L⊥ → L⊕L⊥, which has the block decomposition

S =
�

L S∗

S − ⊥
L

�
.

Then the above linear system can be rewritten as

S ·
�

x
y

�
=

�
vL

vL⊥

�
.

Now observe that
S2 =

�
L + S∗S 0

0 L⊥ + SS∗

�
.

Hence S is invertible and

S−1 =
�

( L + S∗S)−1 0
0 ( L⊥ + SS∗)−1

�
· S

=
�

( L + S∗S)−1 ( L + S∗S)−1S∗

( L⊥ + SS∗)−1S −( L⊥ + SS∗)−1

�
.

We deduce
x = ( L + S∗S)−1vL + ( L + S∗S)−1S∗vL⊥

and
PΓS v =

�
x

Sx

�
.

Hence PΓS has the block decomposition

PΓS =
�

L

S

�
· [( L + S∗S)−1 ( L + S∗S)−1S∗]

=
�

( L + S∗S)−1 ( L + S∗S)−1S∗

S( L + S∗S)−1 S( L + S∗S)−1S∗

�
.

If we write Pt := PΓtS , we deduce

Pt =
�

( L + t2S∗S)−1 t( L + t2S∗S)−1S∗

tS( L + t2S∗S)−1 t2S( L + t2S∗S)−1S∗

�
.

Hence
d

dt
Pt |t=0=

�
0 S∗

S 0

�
= S∗PL⊥ + SPL. ��

Exercise 5.23. Suppose L ∈ Gk(V ). With respect to the decomposition
V = L⊕ L⊥ the operator A has the block decomposition
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A =
�

AL B∗

B AL⊥

�
,

B ∈ Hom(L, L⊥), AL ∈ Hom(L, L), AL⊥ ∈ Hom(L⊥, L⊥).

Suppose we are given S ∈ Hom(L, L⊥) ∼= TLGk(V ). Then

d

dt

���
t=0

hA(ΓtS) = − d

dt

���
t=0

Re tr(APΓtS ) = −Re tr
�
A

d

dt

���
t=0

PΓtS

�

= −Re tr(B∗S + BS∗) = −2Re tr(BS∗).

We see that L is a critical point of hA if and only if

Re tr(BS∗) = 0, ∀S ∈ Hom(L, L⊥) ⇐⇒ B = 0.

Hence L is a critical point of hA if and only if A has a diagonal block decom-
position with respect to L,

A =
�

AL 0
0 AL⊥

�
.

This happens if and only if AL ⊂ L. This proves part (a).
Choose a unitary frame (ei)1≤i≤n of V consisting of eigenvectors of A,

Aei = aiei, ai ∈ R, i < j =⇒ ai < aj .

Then L ⊂ V is an invariant subspace of V if and only if there exists a cardi-
nality k subset I = IL ⊂ {1, . . . , n} such that

L = VI = spanC{ei; i ∈ IL}.

Denote by J = JL the complement of I and by VJ the subspace spanned by
{ej ; j ∈ J}. Any S ∈ Hom(VI , VJ) is described by a matrix

S = (sij)i∈I,j∈J .

Then

hA(ΓS) = −Re tr




AL( L + S∗S)−1 AL( L + S∗S)−1S∗

AL⊥S( L + S∗S)−1 AL⊥S( L + S∗S)−1S∗





= −Re trAL( L + S∗S)−1 −Re trAL⊥S( L + S∗S)−1S∗.

If we denote by QL the Hessian of hA at L then from the Taylor expansions
(�S� � 1)

AL( L + S∗S)−1 = AL −ALS∗S + higher order terms,

AL⊥S( L + S∗S)−1S∗ = AL⊥SS∗ + higher order terms,
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we deduce

QL(S, S) = Re trALS∗S −Re trAL⊥SS∗, ∀S ∈ Hom(L, L⊥) = TLGk(V ).

Using the matrix description S = (sij) of S we deduce

QL(S, S) =
�

i∈I

λi

�

j∈J

|sij |2 −
�

j∈J

λj

�

i∈I

|sij |2 =
�

(i,j)∈I×J

(λi − λj)|sij |2.

This shows that the Hessian of hA at L is nondegenerate and we denote by
λ(A, L) its index. It is an even integer because the coordinates sij are complex.
Moreover,

λ(A, L) = 2µ(IL) = 2#
�

(i, j) ∈ IL × JL; i < j
�
.

Setting
I = IL = {i1, . . . , ik}, J = JL

we deduce

µ(I) =
�

j∈J

#
�

i ∈ I; i < j
�

= 0 · (i1 − 1) + · · · + (k − 1) · (ik − ik−1 − 1) + k(n− ik)

= 1 · (i2 − i1) + · · · + (k − 1)(ik − ik−1) + k(n− ik)−
k−1�

i=1

i

= −
�

i∈I

i + nk − k(k − 1)
2

=
�

i∈I

(n− i)− k(k − 1)
2

=
k�

�=1

�
n− i� − (k − �)

�
.

Define
m� := n− i� − (k − �) = (n− k)− (i� − �)

so that

µI =
k�

�=1

m�. (5.5)

Since
0 ≤ (i1 − 1) ≤ (i2 − 2) ≤ · · · ≤ (ik − k) ≤ (n− k)

we deduce
n− k ≥ m1 ≥ · · · ≥ mk ≥ 0.

Given a collection (m1, . . . ,mk) with the above properties we can recover I
by setting

i� = (n− k) + �−m�.
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The Morse numbers of hA are

Mk,n(λ) = #{L; λ(A, L) = λ} = #
�

I; 2#µ(I) = λ
�
.

The Morse polynomial is

Mk,n(t) =
�

λ

Mk,n(λ)tλ =
�

λ

Mk,n(2λ)t2λ.

For every nonnegative integers (a, b, c) we denote by P (a|b, c) the number of
partitions of a as a sum of b nonnegative integers ≤ c,

a = x1 + · · · + xb, 0 ≤ x1 ≤ · · · ≤ xb ≤ c.

Let Pb,c(t) denote the generating polynomial

Pb,c(t) :=
�

a

P (a|b, c)ta.

The equality (5.5) implies

Mk,n(2λ) = Pk,n−k(λ) =⇒ Mk,n(t) = Pk,n−k(t2).

The polynomial Pk,n−k(t) can be expressed as a rational function

Pk,n−k(t) =
�

n

a=1(1− ta)
�

k

b=1(1− tb) ·
�

n−k

c=1 (1− tc)
.

For a proof we refer to [Ni, Lemma 7.4.27]. ��

Exercise 5.26. (a) Fix an almost complex structure on V tamed by ω and
denote by g(•, •) the associated metric

g(u, v) = ω(u, Jv) ⇐⇒ ω(u, v) = g(Ju, v), ∀u, v ∈ V.

Identify V and its dual using the metric g. Then for every subspace L ⊂ V ,
L⊥ ⊂ V ∗ is identified with the orthogonal complement of L. Moreover,

Iω = −J.

Then
Lω ∼= {v ∈ V ; g(Ju, x) = 0, ∀x ∈ L} = JL⊥.

(b) L is isotropic if and only if L ⊂ JL⊥, and thus

dim L + dim Lω = dimV, dim L ⊂ dim Lω.

Thus dim L ≤ 1
2 dim V with equality iff dim L = dimLω, iff L = Lω.

(c) Since L0 and L1 are transversal, we have natural isomorphisms
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L0 ⊕ L1 → L0 + L1 → V.

A subspace L ⊂ V of dimension dim L = dim L0 = dim L1 is transversal to
L1 if and only if it is the graph of a linear operator

A : L0 → L1.

Let u0, v0 ∈ L0. Then Au0, Av0 ∈ L1 and u0 + Av0, v0 + Av0 ∈ L, so that

0 = ω(u0 + Au0, v0 + Av0)
= ω(u0, v0) + ω(Au0, Av0) + ω(Au0, v0) + ω(u0, Av0)
= −ω(v0, Au0) + ω(u0, Av0) = Q(u0, v0)−Q(v0, u0).

Let u0 ∈ L0. Then

Q(u0, u) = 0, ∀u ∈ L0 ⇐⇒ ω(u1, u) = 0, ∀u ∈ L0, (u1 = Au0)

⇐⇒ ω(u1, v) = 0, ∀v ∈ V ⇐⇒ u1 = 0.

Thus Q is nondegenerate iff ker A = 0 iff L is transversal to L0 as well.
(b) Since this statement is coordinate independent, it suffices to prove it for
a special choice of coordinates. Thus we can assume

M = Rn, E = Rn ×M = Rn × Rn, x = 0 ∈ Rn.

The coordinates on Rn × Rn are (ξi, xj). Then

L0 = 0× Rn

x
, L1 = Rn

ξ
× 0.

Then L is the graph of the linear operator

0× Rn

x
→ Rn

ξ
× 0

given by the differential at x = 0 of the map Rn � x �→ ξ = df(x) ∈ Rn.
This is precisely the Hessian of f at 0. Thus if the Hessian is given by the
symmetric matrix (Hij), then

A∂xj =
�

i

Hij∂ξi and ω(∂xi , A∂xj ) = Hij .

��

Exercise 5.27. (a) and (c) We have a tautological diffeomorphism

γ : M → Γdf , x �→ (df(x), x).

Then
γ∗θ = df, γ∗ω = −γ∗(dθ) = −dγ∗θ = −d(df) = 0.

This also implies part (c), since γ∗dθ is the differential of f .
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(d) We need a few differential-geometric facts.
A. Suppose M is a smooth manifold and αt, t ∈ R, is a smooth one parameter
family (path) of differential forms of the same degree k. Denote by α̇t the path
of differential forms defined by

α̇t(x) = lim
h→0

1
h

�
αt+h(x)− αt(x)

�
∈ ΛkT ∗

x
M, ∀x ∈ M, t ∈ R.

Construct the cylinder M̂ = R×M and denote by it : M → M̂ the inclusion

M �→ R×M, x �→ (t, x).

The suspension of the family αt is the k-form α̂ on M̂ uniquely determined
by the conditions

∂t α̂ = 0, i∗
t
α̂ = αt.

We then have the equality
α̇t = i∗

t
L∂t α̂.

Indeed, if we denote by d the exterior derivative on M and by d̂ the exterior
derivative on M̂ , then d̂ = dt ∧ ∂t + d, and

L∂t α̂ = d̂(∂t α̂) + ∂t (d̂α̂) = �̇α.

B. Suppose Φ : N0 → N1 is a diffeomorphism between two smooth manifolds,
α ∈ Ωk(N1), X ∈ Vect(M). Then

LXΦ∗α = Φ∗(LΦ∗Xα).

Indeed, this a fancy way of rephrasing the coordinate independence of the Lie
derivative. Equivalently, if β ∈ Ωk(M) and we define the pushforward

Φ∗β := (Φ−1)∗β = (Φ∗)−1β,

then we have
Φ∗(LXβ) = LΦ∗XΦ∗β.

C. Suppose Φt is a one parameter family of diffeomorphisms of M . This
determines a time dependent vector field on M

Xt(x) =
d

dh
|h=0Φt+h(x), ∀t ∈ R, x ∈ M.

We obtain a diffeomorphism

Φ̂ : M̂ → M̂, (t, x) �→ (t, Φt(x)).

Observe that
Φ̂∗(∂t) = X̂ = ∂t + Xt ∈ Vect(M̂).
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Suppose α is a k-form on M . We denote by αt the path of forms αt := Φ∗
t
(M).

If we denote by π : M̂ → M the natural projection, then we have the equality

α̂ = Φ̂∗π∗α.

From A we deduce
α̇t := i∗

t
L∂t α̂.

From B we deduce

Φ̂∗(L∂t α̂) = LΦ∗∂t(Φ̂∗α̂) = L
X̂

π∗α,

so that
L∂t α̂ = Φ̂∗(L

X̂
π∗α ) =⇒ α̇t = Φ∗

t
( L

X̂
π∗α ).

Now observe that

L
X̂

π∗α = L∂tπ
∗α + LXtπ

∗α = LXtπ
∗α.

Hence
α̇t = Φ∗

t
LXtα.

Suppose Xt dα = dγt, ∀t. Then

LXtα = Xt dα + dXt α = d(γt + Xt α� �� �
ϕt

),

so that

α̇t = d Φ∗
t

�
γt + Xt α

�
� �� �

ϕt

=⇒ αt − α0 = d

�
t

0
ϕsds.

This shows that if Xt dα is exact on M for every t, then for every submanifold
L ⊂ M the restriction αt|L is exact for every t > 0, provided α0|L is exact. ��

Exercise 5.31. (a) The Fubini–Study form is clearly closed and invariant
with respect to the tautological action of U(n+1) on CPn. Since the action of
U(n+1) is transitive, it suffices to show that ω defines a symplectic pairing on
the tangent space of one point in CPn. By direct computation (see a sample
in part (b)) one can show that at the point [1, 0, 0, . . . , 0] and in the affine
coordinates wj = zj/z0, the Fubini–Study form coincides with

i
�

j

dwj ∧ dw̄j ,

which is a multiple of the standard symplectic form Ω on Cn described in
Example 3.14.
(b) Notice that if an S1-action on a smooth manifold M is Hamiltonian with
respect to a symplectic form ω, then it is Hamiltonian with respect to cω, for
every nonzero real number c.
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Since the Fubini–Study form is invariant with respect to the tautological
U(n + 1)-action on the connected manifold CPn, and this action is transitive,
we deduce that up to a multiplicative constant there exists exactly one U(n+
1)-invariant symplectic form on CPn.

The computations in Example 3.36 show that the given S1-action is Hamil-
tonian with respect to some U(n+1)-invariant symplectic form and thus with
respect to any U(n + 1)-invariant form. In particular, this action is Hamilto-
nian with respect to the Fubini–Study form. Moreover, the computations in
the same Example 3.36 show that a moment map must have the form

µ(z) = c

�
j
j|zj |2

|z|2 ,

where c is a real nonzero constant. This constant can be determined by veri-
fying at a (non-fixed) point in CPn the equality dµ = X ω, where X is the
infinitesimal generator of the S1-action.

If we work in the coordinate chart z0 �= 0 with wk = zk/z0 then

ω = i∂∂̄(1 + |w|2) = i∂
∂̄|w|2

1 + |w|2 .

The projective line L in CPn described by w2 = · · · = wn = 0 is S1-invariant,
and along this line we have

ω|L = i∂
∂̄|w1|2

1 + |w1|2
= i∂(

1
1 + |w1|2

w1dw̄1)

= i
dw1 ∧ dw̄1

1 + |w1|2
− i

|w1|2dw1 ∧ dw̄1

(1 + |w1|2)2

=
i

(1 + |w1|2)2
dw1 ∧ dw̄1.

If we write w1 = x1 + iy1, then we deduce that

ω|L =
2dx1 ∧ dy1

(1 + x2
1 + y2

1)2
.

In these coordinates we have

µ|L(w1) = c
|w1|2

1 + |w1|2
, X = −y1∂x1 + x1∂y1 .

Along L we have

X ω = −2
x1dx1 + y1dy1

(1 + x2
1 + y2

1)2
= − d|w1|2

(1 + |w1|2)2
= d

|w1|2

1 + |w1|2
=

1
c
dµ|L.

Thus we can take c = 1. ��
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Remark 5.40. It is interesting to compute the volume of the projective line

w2 = · · · = wn = 0

with respect to the Fubini–Study form. We have

volω(L) = 2
�

R2

dx1 ∧ dy1

(1 + x2
1 + y2

1)2

(w1=re
iθ)

=
� 2π

0
dθ

� ∞

0

2rdr

(1 + r2)2

(u=1+r
2)

=
� 2π

0
dθ

� ∞

1

du

u2
= 2π.

Thus, if we define the normalized Fubini–Study form Φ by

Φ =
i

2π
∂∂̄ log |z|2,

we have �

CPn

Φn = 1.

We deduce that the action of Tn given by

(e2πit1 , . . . , e2πitn)[z0, z1, . . . , zn] = [z0, e
2πit1z1, . . . , e

2πitnzn]

is Hamiltonian with respect to Φ with moment map

µ(z) =
1

|z|2 (|z1|2, . . . |zn|2).

The image of the moment map is the n-simplex

∆ =
�
ρ ∈ Rn

≥0;
�

i

ρi ≤ 1}.

Its Euclidean volume is 1
n! and it is equal to the volume of CPn with respect

to the Kähler metric determined by Φ,

volΦ (CPn) =
1
n!

�

CPn

Φn =
1
n!

. ��

Exercise 5.33 Part (a) is classical; see e.g., [Ni, Section 3.4.4].
For part (b), assume T = (R/Z)n. Thus we can choose global angular

coordinates (θ1, . . . , θn) on the Lie algebra ∼= R such that the characters of
of Tn are described by the functions

χw(θ1, . . . , θn) = exp
�
2πi(w1θ

1 + . . . + wnθn)
�
, w ∈ Zn.
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We obtain a basis ∂θj on and a dual basis dθj on ∗. We denote by (ξj)
the coordinates on ∗ defined by the basis (dθj). In the coordinates (ξj) the
lattice of characters is defined by the conditions

ξj ∈ Z, ∀j = 1, . . . , n.

The normalized Lebesgue measure on T∗ is therefore dξ1 · · · dξn. Moreover,
�

Rn/Zn

dθ1 ∧ · · · ∧ dθn = 1.

The one-parameter subgroup of T generated by ∂θj defines a flow Φj

t
on M ,

and we denote by Xj its infinitesimal generator. Using the coordinates (ξj)
on T∗ we can identify the moment map with a smooth map

µ : M → Rn, p �→ µ(p) =
�
ξ1(p), . . . , ξn(p) ).

Since the action is Hamiltonian, we deduce

dξj = Xj ω, j = 1, . . . , n.

Fix a point
ξ0 = (ξ0

1 , . . . , ξ0
n
) ∈ intP

and a point p0 in the fiber µ−1(ξ0) ⊂ M∗.
The vector ξ0 is a regular value for µ, and since µ is a proper map we deduce

from the Ehresmann fibration theorem that there exists an open contractible
neighborhood U of the point ξ0 in int P and a diffeomorphism

µ−1(U)−→µ−1(ξ0)× U.

In particular, there exists a smooth map σ : U → M which is a section of µ,
i.e., µ ◦ σ = U . We now have a diffeomorphism

T× U → µ−1(U), T× U � (t, ξ) �−→ t · σ(ξ).

Using the diffeomorphism Ψ−1 we pull back the angular forms dθj on T to
closed 1-forms ϕj = (Ψ−1)∗dθj on µ−1(U). Observe that

Xj ϕk = δk

j
= Kronecker delta.

The collection of 1-forms {ϕj , dξk} trivializes T ∗M over µ−1(U), and thus
along µ−1(U) we have a decomposition of the form

ω =
�

j,k

(ajkϕj ∧ ϕk + bk

j
ϕj ∧ dξk + cjkdξj ∧ dξk).

Since
Xj ω = dξj , Xj dξk = {ξj , ξk} = 0
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we deduce
ajk = 0

and
ω =

�

k

ϕj ∧ dξk +
�

j,k

cjkdξj ∧ dξk.

Hence
Ψ∗ω =

� �

k

dθj ∧ dξk +
�

j,k

cjkdξj ∧ dξk.

Since ω is closed, we deduce that the coefficients cjk must be constant along
the orbits, i.e. they are pullbacks via µ of functions on ∗. In more concrete
terms, the functions cjk depend only on the variables ξj . We now have a closed
2-form on U ,

η =
�

j,k

cjkdξj ∧ dξk.

Since U is closed there exists a 1-form λ =
�

j
λjdξj such that

η = −dλ, λ =
�

k

λk(ξ)dξk ∈ Ω1(U).

For every ξ ∈ U denote by [λ(ξ)] the image of the vector λ(ξ) ∈ Rn in the
quotient Rb/Zn. If we now define a new section

s(ξ) = [λ(x)] · σ(ξ),

we obtain a new diffeomorphism

Ψλ : T× U, (t, ξ) �→ t · s(ξ) = [λ(ξ)]Ψ(t, ξ).

Observe that

Ψ∗
λ
ω =

�

k

d(θk + λk) ∧ dξk −
�

dλk ∧ dξk =
�

k

dθk ∧ dξk.

Thus
1
n!

Ψλωn = dθ1 ∧ · · · ∧ dθn ∧ dξ1 ∧ · · · ∧ dξn,

so that
�

µ−1(U)

1
n!

ωn =
��

Rn/Zn

dθ1 ∧ · · · ∧ dθn

���

U

dξ1 ∧ · · · ∧ dξn

�
= vol (U).

The result now follows using a partition-of-unity argument applied to an open
cover of int P with the property that above each open set of this cover, µ
admits a smooth section. ��
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Remark 5.41. The above proof reveals much more, namely that in the neigh-
borhood of a generic orbit of the torus action we can find coordinates (ξj , θk)
(called “action-angle coordinates”) such that all the nearby fibers are de-
scribed by the equalities ξj = const, the symplectic form is described by

ω =
�

k

dθk ∧ dξk,

and the torus action is described by

t · (ξj , θ
k) = (ξj ; θk + tk).

This fact is known as the Arnold–Liouville theorem. For more about this we
refer to [Au]. ��

Exercise 5.35 Mimic the proof of Theorem 3.64 and Corollary 3.69. ��

Exercise 5.36 The group Z/2 acts by conjugation on

X(P )C :=
�
[x, y, z] ∈ CP2; P (x, y, z) = 0

�
,

and X(P ) is the set of fixed points of this action. Now use Exercise 5.35 and
Corollary 4.14. ��
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singular, 129
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nondegenerate, 6
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pencil, 156
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invariant, 165, 191
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vanishing, 164, 175, 191

Dehn twist, 190
divisor, 152
duality

Poincaré, 157, 166
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elliptic fibration, 156
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Euler
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finite type, 143
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manifold, 107
flow, 36, 45, 55, 58, 67, 108, 182
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Morse–Smale, 69
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gap condition, 51
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dual right, 139
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145, 150
Hamiltonian, 112, 117, 120, 149
left, 139
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symplectic, 111

Lie, see Lie
Gysin

map, 138
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Hamilton equations, 109
Hamiltonian, 108
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Hamiltonian action, see group
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cocore, 31
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index of, 31, 41

harmonic oscillator, 109, 112
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Hodge theory, 168
homogeneous space, 103
homology equation, 13
homology sphere, 31
homotopy method, 12
Hopf bundle, 136
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normal bundle
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monodromy group, 190
monodromy of, 188

phase space
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global formula, 188, 191
local formula, 181
number, 179

Poincaré
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sphere, 31, 54

Poisson bracket, 110
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convex, 123
projection, 161

axis of, 154
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projection formula, 157
projective space, 151

dual of, 151
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configuration, 3

spectral sequence, 66
Leray–Serre, 144
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standard model, 101, 177
Stein manifold, 92
structure

almost complex, 93
G-tamed, 113
tamed, 99

subadditivity, 48
submersion, 176
surgery, 23, 24

attaching sphere, 25
coefficient, 26
trace of, 34, 44

type of, 24
symplectic

duality, 100, 107
form, 99
gradient, 108
manifold, 100
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orientation, 100
pairing, 99
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structure, 100
volume form, 100

theorem
hard Lefschetz, 168
Andreotti-Frankel, 92
Arnold–Liouville, 233
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Conner, 149
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equivariant localization, 145
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Lusternik–Schnirelmann, 84
moment map convexity, 120
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Thom isomorphism, 72, 129
universal coefficients, 165, 166
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Veronese embedding, 153

Wirtinger presentation, 29
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