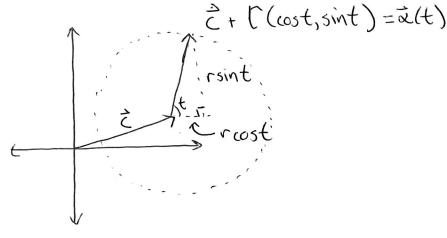
Parametrized curves, examples and constructions

Recall that a parametrized curve is a map à: IR-> IR? We will now study some example curves.

Example. The circle of radius r with center $\vec{c} = (c_1, c_2)$ in IR^2 is described implicitly by

$$(X - (1)^{2} + (y - (1)^{2} =)^{2}$$

We can parametrize this curve by



Notice that

$$\vec{x}(t) = (c_1 + r\cos t, c_2 + r\sin t)$$

obeys

$$(x_1(t) - c_1)^2 + (x_2(t) - c_2)^2 =$$

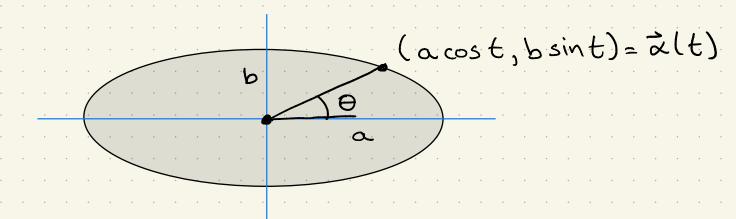
=
$$(r\cos t)^2 + (r\sin t)^2$$

$$= \int_{-\infty}^{\infty} (\cos^2 t + \sin^2 t) = \int_{-\infty}^{\infty}$$

but there is more information in the parametrization $\dot{\alpha}(t)$ because it tells us when each point on the circle is reached.

Example 2. $\vec{\alpha}(t) = (c_1 + r\cos(t^2), c_2 + r\sin(t^2))$ also parametrizes the circle of radius r and center $\vec{c} = (c_1, c_2)$.

Example. The ellipse



We note that t is <u>not</u> the angle Θ even though it's a natural guess.

Easy. Points on the ellipse satisfy $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Proof. Substituting in our parametrization

$$\frac{a^2 \cos^2 t}{a^2} + \frac{b^2 \sin^2 t}{b^2} = \cos^2 t + \sin^2 t$$

Harder Let c= $\sqrt{a^2-b^2}$ (assuming a>b) and $\vec{f}_{-}=(-c,0), f_{+}=(c,0).$ For any t, 11 à(t) - Î | + 11 à(t) - Î, || = 2a Consider the lines $(\pm \frac{\alpha^2}{c}, y)$. (a cost, bsint) f₊₌(c,0) f=(-c,0) We compute $\|\vec{\alpha}(t) - \vec{F}_{t}\| = \sqrt{(a \cos t - c)^{2} + b^{2} \sin^{2} t}$ 11 à (E) - 2,11 $\left(\frac{a^2}{c} - a \cos t\right)$

$$(a cost - c)^2 + b^2 sin^2 t =$$

$$=(a^2-b^2)\cos^2 t - 2ac\cos t + c^2 + b^2$$

$$= c^2 \cos^2 t - 2ac \cos t + a^2$$

$$= (c \cos t - a)^2$$

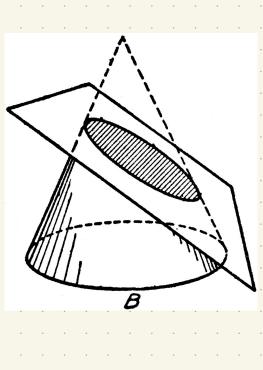
So we can write

$$\frac{\|\vec{\alpha}(t) - \vec{F}_{t}\|}{\|\vec{\alpha}(t) - \vec{F}_{t}\|} = \frac{|a - c\cos t|}{|a|} = \frac{c}{a}$$

By symmetry $\frac{\|\vec{x}(t) - \vec{f}\|}{\|\vec{x}(t) - \hat{l}\|} = \frac{c}{a} \text{ as well.}$

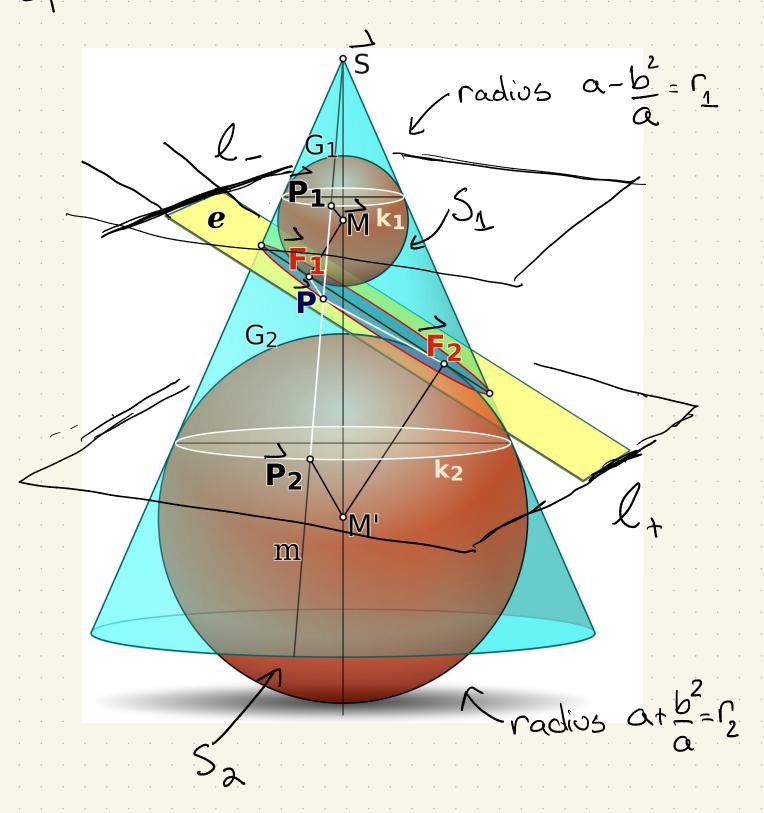
Therefore

We see ellipses around us all the time as intersections

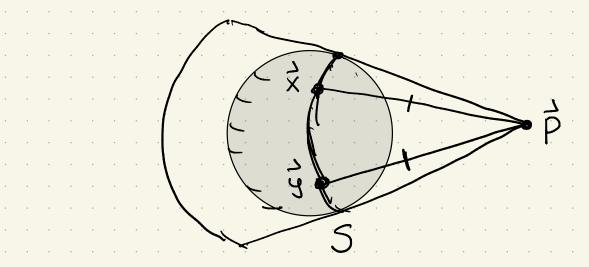


of cones and planes.

To prove that the intersection is an ellipse, consider the Dandelin spheres



Useful fact.



Suppose \vec{p} is outside a sphere \vec{S} , \vec{x} and \vec{y} are on \vec{S} , and $\vec{p}\vec{x}$, $\vec{p}\vec{y}$ are tangent to \vec{S} at \vec{x} , \vec{y} . Then $||\vec{p}-\vec{x}|| = ||\vec{p}-\vec{y}||$.

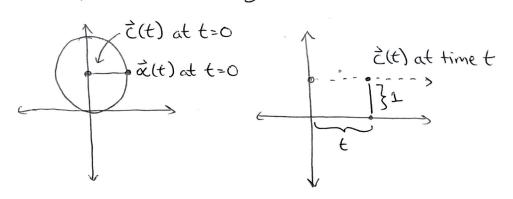
Proof that intersection is ellipse. Suppose P is on the curve. Draw the line m on the cone through the vertex \vec{S} and \vec{P} , suppose m intersects the circles at \vec{P}_1, \vec{P}_2 Now $\vec{p}\vec{p}_1$ and $\vec{p}\vec{f}_1$ are tangent to S_1 , so $||\vec{p}-\vec{p}_1|| = ||\vec{p}-\vec{f}_1||$ by f_{act} . A similar argument shows $||\vec{p}-\vec{p}_2|| = ||\vec{p}-\vec{f}_2||$. But then

 $||\vec{p} - \vec{f}_{\perp}|| + ||\vec{p} - \vec{f}_{z}|| = ||\vec{p} - \vec{p}_{\perp}|| + ||\vec{p} - \vec{p}_{z}||$ PIPP2 15 a = $||\vec{p}_{\perp} - \vec{p}_{z}||$ Straight line

and $\|\vec{p}_1 - \vec{p}\|$ is the distance between the parallel circles K_1, K_2 which does not depend on \vec{p} . ϖ

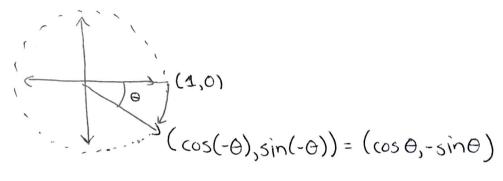
We can make some beautiful curves by combining sines and cosines.

Example. A unit circle starts with center at (0,1) and rolls along the pos. X axis. Parametrize the path of a point starting at (1,1).



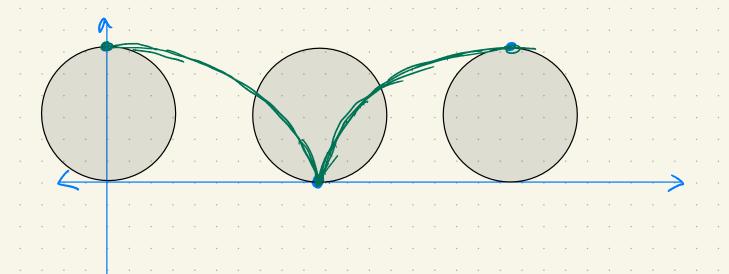
If the center of the circle is given by $\tilde{c}(t)$, we can assume that the circle is rolling to the right at unit speed, so $\tilde{c}(t)=(t,1)$.

However, if # a unit circle has rolled t units forward, it has turned by an angle of t radians... in the clockwise direction.



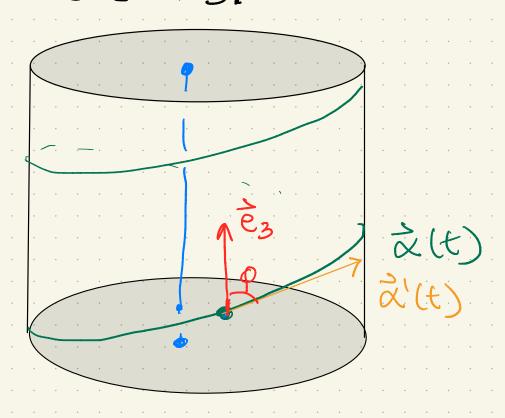
This rotation carries the point at (1,0) to thee (relative to the center) to the point at $(\cos \theta, -\sin \theta)$ (relative to the center).

Adding these together:



Note: It's not easy to graph this come from the parametrization.

Example. The helix. Given $\Theta \in [0, T/2]$, r, 0 $\vec{\alpha}(t) = (r\cos t, r\sin t, t r t an \Theta)$ Suppose that $\beta(t) = (0, 0, t r t an \Theta)$ (This is the z-axis.) We see $||\vec{\alpha}(t) - \beta(t)||^2 = r^2\cos^2 t + r^2\sin^2 t = r^2$. So àlt) is on cylinder of radius radius radius radius.



Z'(t) = (-rsint, rcost, rtant) We start by computing

$$\cos \varphi = \frac{\langle \vec{\alpha}'(t), \vec{e}_3 \rangle}{|\vec{\alpha}'(t)|| ||\vec{e}_3||} = \frac{r + \alpha n \theta}{\sqrt{r^2 + r^2 + \alpha n^2 \theta}}$$

And recalling

 $\sin^2\theta + \cos^2\theta = 1 = > \tan^2\theta + 1 = \sec^2\theta$ so (since r > 0, $\theta \in [0,\pi/2]$)

 $\sqrt{r^2 + r^2 + cn^2 \Theta} = r \sec \Theta$

and so

 $\frac{r \tan \theta}{\sqrt{r^2 + r^2 \tan^2 \theta}} = \frac{r \tan \theta}{r \sec \theta} = \sin \theta$

But this means that

 $\cos \varphi = \sin \Theta$

Using $\cos \varphi = \sin(\pi/2-\varphi)$, we see $\Theta = \pi/2-\varphi = \text{angle with horizontal.}$ This is called the pitch angle of the helix. Note: Nots and bolts have threads cut in a helical pattern. These are usually specified by diameter and "tpi" or threads per inch.

$$tpi = \frac{\text{# complete revolutions in xy plane}}{1 \text{ inch of } z\text{-axis}}$$

$$\frac{t}{2\pi} = \frac{\cot \Theta}{2\pi r}$$

$$\frac{\cot \Theta}{1} = \frac{2\pi r}{1}$$

$$\frac{\cot \Theta}{1} = \frac{\cot \Theta}{1}$$

Compare #8-32 and #6-32 screws. Milling, threads and industrial revolution.