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§0  The Problem:

 

Given an  m-by-n  matrix  B  with  m 

 

≥

 

 n ,  we seek the nearest  m-by-n  matrix  Q  with  n 
orthonormal columns  (

 

i.e

 

.  n-by-n   Q

 

'

 

·Q = I

 

 

 

)

 

 

 

;  it is  “nearest”  in so far as it minimizes  

 

both

 

 
      ||B–Q||

 

F

 

 := 

 

√

 

trace((B–Q)

 

'

 

·(B–Q))    and    ||B–Q||

 

2

 

 := Largest Singular Value of  B–Q .
For simplicity we assume the columnns of  B  are linearly independent,  as is almost always the 
case.  This nearest  Q =   will be compared with  Gram-Schmidt’s  and  QR factorization’s 
(re)orthogonalizations  Q  of  B

 

 

 

.  Then    will be applied to three tasks of which the third,  the
estimation of angles between subspaces,  can be afflicted by inaccuracy unless aided by  

 

 

 

.

 

§1  The Solution:

 

  The nearest  Q  is unique;  it is the orthogonal factor  = B·H

 

–1

 

  of the 
     

 

Polar Decomposition

 

  of  B = ·H  in which  H = H

 

'

 

 := 

 

√

 

B

 

'

 

·B  is positive definite.

 

Proof:

 

Let  B = P· ·G

 

'

 

  be the  

 

Singular Value Decomposition

 

  of  B

 

 

 

;  here  P

 

'

 

 = P

 

–1

 

 

 

,  G

 

'

 

 = G

 

–1

 

  and  

V  is a square positive diagonal matrix with the singular values of  B  on its diagonal.  The zero 
matrix  O  under  V  is absent when  B  is square.  We claim that  

 

the

 

  orthogonal matrix nearest 

B  is   := P· ·G

 

'

 

 = B·(B

 

'

 

·B)

 

–1/2 

 

.  To see why this is so consider the difference  B–Q  for any  

m-by-n  matrix  Q  with  n  orthonormal columns;  Q

 

'

 

·Q = I .  Neither norm  ||B–Q||

 

…

 

  is changed 
by unitary pre- or post-multiplication,  so  ||B–Q|| = ||P

 

'

 

·(B–Q)·G|| .  Now,

 P

 

'

 

·B·G =  ,     P

 

'

 

· ·G =  ,    and    P

 

'

 

·Q·G =   satisfying  C

 

'

 

·C + S

 

'

 

·S = I .

Consequently  ||B–Q|| =  ||

 

 

 

 –  +  – 

 

 

 

||  = ||Z||  wherein  Z :=  –  .  Hence  

Z

 

'

 

·Z =  (V–I)

 

2

 

 – (V–I)·(C–I) – (C–I)

 

'

 

·(V–I) + (C–I)

 

'

 

·(C–I) + S

 

'

 

·S  = (V–I)

 

2

 

 + V·(I–C) + (I–C

 

'

 

)·V .

Now,  I–C = O  

 

only

 

  when  Q = 

 

 

 

.  Otherwise  Real(Diag(I–C)) 

 

≥

 

 O  because  Diag(C

 

'

 

·C) 

 

≤

 

 I

 

 

 

;
moreover at least one element of  Real(Diag(I–C))  must be positive,  and consequently we find
||B–Q||

 

F
2

 

 = trace(Z

 

'

 

·Z) 

 

>

 

 trace((V–I)

 

2

 

) = ||B– ||

 

F
2

 

  as was claimed for  Q 

 

≠

 

  .  Next we turn to  

||B–Q||

 

2
2

 

 = max

 

||x||=1 

 

||(B–Q)·x||

 

2

 

 = max

 

||e||=1 

 

e

 

'

 

·Z

 

'

 

·Z·e

 

 

 

.  When  Q =   we get  Z

 

'

 

·Z = (V–I)

 

2

 

 

 

,  
and then the maximizing column vector  e = ê ,  say,  can be one of the columns of  I  because  

V  is diagonal.  Otherwise  (when  Q 

 

≠

 

  )  we find,  because  Real(Diag(I–C)) 

 

≥

 

 O ,  that 
    ||B–Q||

 

2
2

 

 

 

≥

 

 ê

 

'

 

·Z

 

'

 

·Z·ê =  ê

 

'

 

·(V–I)

 

2

 

·ê + ê

 

'

 

·

 

(

 

V·(I–C) + (I–C

 

'

 

)·V

 

)

 

·ê  

 

≥

 

 ê

 

'

 

·(V–I)

 

2

 

·ê = ||B– ||

 

2
2

 

 

 

,
as was claimed.                                                                                           E

 

ND OF

 

 P

 

ROOF

 

.

The same proof works when the columns of  B  are linearly dependent except that then  V  has 
at least one zero on its diagonal,  whence a nearest orthonormal    is not unique.  Neither need 
it always be unique if it has to minimize  ||B–Q||

 

2

 

  but not  ||B–Q||

 

F

 

  too;  do you see why?

See a slightly more general  

 

Procrustes

 

  problem concerning a nearest matrix with orthonormal 
columns in  §12.4.1  of  G.H. Golub & C.F. Van Loan’s  

 

Matrix Computations

 

 (2d. ed. 1989,  
Johns Hopkins Univ. Press).  See also  p. 385  of  Nicholas J. Higham’s  book  

 

Accuracy and 
Stability of Numerical Algorithms

 

 2d. ed. (2002,  SIAM, Philadelphia)  for related citations.
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§2  Approximate Solutions:
If  B  is already nearly orthogonal then,  rather than compute its singular value decomposition,  
we can compute a residual  Y := B'·B – I  and then use as many terms as necessary of a series

 = B·(B'·B)–1/2 = B·(I + Y)–1/2 =  B – B·Y·( I/2 – 3Y/8 + 5Y2/16 – 35Y4/128 + …) 
of which only the first few terms can be worth using;  otherwise the  SVD  is faster.

If  Y  is so small that  1 – ||Y||…
2  rounds to  1  for practically any norm  ||…||… ,  then    will be 

approximated adequately by  Q := B – B·Y = ·(I – 3Y2/8 + Y3/8 – …)  because its residual  

Q'·Q – I =  Y2·(Y – 3I)  will be negligible.  And if  Y  is not so small,  but still  ||Y||… <<  ,  

then the columns of  Q  will be rather more nearly orthonormal than those of  B ;  and repeating 

upon  Q  the process performed upon  B  will yield an approximation  ·(I – 27Y4/128 + …) .

The accuracy to which  Q  can approximate    is limited by the accuracy left in the residual  Y  
after cancellation.  Y  is best computed by extra-precise accumulation of scalar products during 
matrix multiplication.  The  MATLAB   expression  Y = [B’, I}*[B; -I]   does this in version  
5.2  on old  680x0-based  Apple Macintoshes,  and in version  6.5  on  Wintel PCs  after the 
command  system_dependent(‘setprecision’, 64)   has been executed.

Occasionally    is best computed as an unconsummated sum   = Q + ∆Q  in which  Q  and  
∆Q  are stored separately.  Such an occasion arises when roundoff makes the rounded sum  
Q + ∆Q  materially less accurate than the unrounded sum,  and when some other residual like  

H·  – ·V  to be computed extra-precisely is rendered as  (H·Q – Q·V) + (H·∆Q – ∆Q·V)  a 
little more accurately because the first term  (H·Q – Q·V)  already enjoys massive cancellation.

§3  Other Reorthogonalization Schemes:
Given a perhaps rectangular matrix  B  whose columns are nearly orthonormal,  Gram-Schmidt  
and  QR  factorization are the reorthogonalization schemes that may come to mind first.  These 

schemes change  B  into  Q := B·R–1  where  Q'·Q = I  and  R  is upper-triangular.  To ensure 
that both schemes produce the same  R  we insist that its diagonal be positive,  thus determing  
R  uniquely as the upper-triangular right  Cholesky  factor of  B'·B = R'·R  except for rounding 
errors that differ among the schemes.

These two schemes suffer from an accidental dependence upon the ordering of  B ’s  columns.  
For instance if the last column is slightly in error but the others are accurately orthonormal,  
these schemes adjust only the last column.  However,  if all columns but the first are accurately 
orthogonal but the first errs a bit,  these schemes leave the first column’s direction unchanged 
and infect the others with its error.  So,  permuting the columns of  B  can change the  Gram-
Schmidt’s  or  QR’s  Q  non-trivially while merely permuting the columns of   := B·(B'·B)–1/2

 .

On the other hand,  scaling the columns of  B ,  replacing it by  B·D  for some positive diagonal  
D  not merely a scalar multiple of  I ,  leaves  Q  unchanged  (and replaces  R  by  R·D )  but 

alters    nontrivially.  Apparently,  alterations to  B  can alter  Q  and    rather differently.
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§4  Comparisons with Other Reorthogonalization Schemes:

How much closer to  B  than  QR’s  Q  is   ?  Now,  B = ·H = Q·R  wherein  H = H'   is the 

positive definite square root of  H2 = R'·R = B'·B  and  R  is upper-triangular with a positive 

diagonal.  Consequently the distances’ ratios are  ||B – Q||/||B – || = ||R – I||/||H – I||  for both  
||…||2  and  ||…||F .  Having found these ratios to be  1  or more,  we wish to estimate how big 
they can be at most.  They cannot exceed  1  much if  ||B|| = ||H|| = ||R||  is either very big or very 
tiny,  so the only matrices  B  worth considering are those restricted in some way that moderates 
their norms.  The restriction chosen hereunder forces each column of  B ,  and hence  R ,  to have 
norm  1 ,  since it is an easy computation and not too expensive.  The chosen restriction turns 
this paragraph’s question into the following:

Suppose  n-by-n  triangular matrix  R  has a positive diagonal,  and  H = H'   is the positive 

definite square root of  H2 = R'·R = B’ ·B  whose diagonal is  I .  Then how big at most can any 

of the four ratios  ρ..(R) := ||R – I||/||H – I|| = ||B – Q||/||B – ||  be?

This question’s answers will be complicated by two further questions:
•  Are  B ’s  columns,  and hence  R ’s ,  already nearly orthonormal,  or not?
•  Are  B ’s  columns,  and also  R ’s ,  real,  or complex?

If the given columns are not nearly orthonormal,  then the question has an answer buried in  §4  
of a paper  “Backward errors for eigenvalue and singular value decompositions”  by  Shivkumar 
Chandrasekaran and Ilse C.F. Ipsen,  pp. 215-223 of Numer. Math. 68 (1994).  They found  
ρ.2(R) := ||R – I||/||H – I||2 ≤ 5√n .  Their bound on  ρF2(R)  is not too pessimistic since examples 
exist for which the smaller  ρFF(R)  seems to grow proportional to  √n .  An  n-by-n  example  R  
is obtained by scaling each column of the upper triangular  (in  MATLAB ’s  notation) 

  toeplitz([1; zeros(n-1,1)], [1, λ.^[0:n-2]])    
to have norm  1  after choosing  λ := (√5 – 1)/2 ≈ 0.618034… .  In particular …

Dimension  n : 100 400 1600 3000

ρFF(R) = ||R – I||F/||H – I||F : 8.2218 16.5282 33.0985 45.3310
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However,  5√n  seems far too pessimistic a bound for  ρ22(R) := ||R – I||2/||H – I||2  since,  so far 
as I know,  no large  n-by-n  example  R  has been found whose ratio  ρ22(R)  rises within an 
order of magnitude of their bound.  Neither has a much smaller bound been found yet.

What if  B ’s  columns,  and hence  R ’s ,  are already nearly orthonormal?  To pursue this 
question we define linear operators  U  and  L  acting upon square matrices  F :

U(F)  keeps the upper triangle and half the diagonal of  F ,  and zeros the lower triangle;
L(F)  keeps the lower triangle and half the diagonal of  F ,  and zeros the upper triangle.

Consequently  U(F) + L(F) = F ,  and  U(F) = L(F')'   in  MATLAB ’s  notation,  in which
      U(F) = triu(F) - 0.5*diag(diag(F))  .

Now consider an  m-by-n  example  B = ·(I + ∆H)  in which  ∆H := (B'·B)1/2 – I = ∆H'   is so 
tiny,  though not negligible,  that its square is negligible,  and    is the matrix nearest  B  with 
orthonormal columns.  Then  Gram-Schmidt  or  QR  computes the upper-triangular  Cholesky  
factor  R  of  B'·B = R'·R  as  R ≈ I + 2U(∆H)  whence follows  ρ..(R) ≈ ||2U(∆H)||/||∆H||  

approximately,  ignoring terms like  ∆H2
 .  Evidently  1 ≤ ρFF(R) ≤ √2 .  A bound for  ρ22(R)  is 

more complicated:
 ρ22(R) ≈ ||∆H + U(∆H) – L(∆H)||2/||∆H||2 

 ≤ 1 + ||U(∆H) – U(∆H)' ||2/||U(∆H) + U(∆H)' ||2   
 < 1 + 4π – (2/π)·log(π) + (2/π)·log(n) ≈ 12.84 + 0.6366·log(n) ,

according to  Corollary 2  in  “Spectra of Operators with Fixed Imaginary Parts”  by  Andrzej 
Pokrzywa,  pp. 359-364  in  Proc. Amer. Math. Soc. 81 #3 (Mar. 1981).  His work also implies 
that  maxR ρ22(R)  must grow like  0.6366·log(n)  when  B ’s  n  columns are already almost 
orthonormal and  n  is huge.  A simple  n-by-n  example  R  that appears to illustrate logarithmic 
growth  is obtained by scaling each column of the upper triangular  (in  MATLAB ’s  notation) 

  toeplitz([1; zeros(n-1,1)], [1, λ./[1:n-1]])    

to have norm  1  after choosing a small  pure imaginary  λ := ı/225 . .  In particular …

Dimension  n : 100 400 1600 2400

ρ22(R) = ||R – I||2/||H – I||2 : 2.8885 3.6929 4.5403 4.7923
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The data in this example  R  are  complex numbers.  Real-valued examples  R  whose  ρ22(R)  
grows substantially with dimension  n  were not found until  Andrzej Pokrzywa  suggested the 
use of a familiar map  R  from complex  m-by-n  matrices to a subspace of real  2m-by-2n  
matrices.  R(Z)  replaces each complex element  ζ = ξ + ıη  of  Z  by a  2-by-2  real matrix  

  . 

MATLAB ’s  Kronecker  product provides an easy implementation of  R(Z)  thus:
    kron(real(Z),  [1, 0;  0, 1])  +  kron(imag(Z),  [0, 1;  -1, 0])  

Many matrix operations and relations persist after the application of  R :

R(Z') = R(Z)'  ,  R(W ± Z) = R(W) ± R(Z) ,  R(W·Z) = R(W)·R(Z) ,  R(W-1·Z) = R(W)-1·R(Z) .
The eigenvalues of  R(Z)  consist of both the eigenvalues of  Z  and their complex conjugates.

If  R  is upper-triangular,  so is  R(R) ;  and if  R  has a positive diagonal,  so does  R(R) .
  If  H = H'   is  Hermitian  and positive definite,  R(H)  is symmetric and positive definite;

and then if  Cholesky  factorization  R'·R = H ,  so does  R(R)'·R(R) = R(H)  and
so does the positive definite  √(R(H)) = R(√H)  (except for roundoff).

  Finally  ||R(Z)||2 = ||Z||2   but   ||R(Z)||F = √2·||Z||F .

Consequently  ρ22(R(R)) = ρ22(R) ;  therefore,  apparently rare real-valued examples whose  
ρ22  grows like the logarithm of dimension  n  do exist.  All of these have nearly orthonormal 
columns,  so their  ρ22  cannot grow faster.  A more general example,  not nearly orthonormal, 
whose  ρ22  grows at least as fast as  log(n)  has not been found yet;  perhaps none exists.

ξ η
η– ξ
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§5  Three Applications  of the  Nearest  Orthogonal or Unitary Matrix    :

Apparently  Gram-Schmidt’s  or  QR’s  Q  is rarely very far from the    nearest  B .  When is  

Q  far enough from    that the extra work,  if any,  needed to compute    will be rewarded?

(1):  Suppose the columns of  B  approximate some or all eigenvectors of a real symmetric or  
Hermitian  matrix  H = H'  .  Software that computes partial eigensystems,  or computes them in 
parallel,  may sacrifices some orthogonality of eigenvectors belonging to clustered eigenvalues 
in order to get a result  B  faster.  Algorithms to improve the approximations must start by more 
nearly (re)orthogonalizing the columns of  B  to get  Q .  Consider three ways to compute that  

Q :  First is  B = Q·R  factorization.  Second is the  Polar  factorization  B = ·H .  Third is  §2’s 

approximation   ≈ B – B·Y  usable when the residual  Y := B'·B – I  is small enough.  No 

matter which way that  Q  is computed,  it will be used to compute a residual  R := H·Q – Q·A  
for some approximation  A  to a diagonal matrix of eigenvalues of  H .  Each eigenvalue of  A  
approximates some eigenvalue of  H  within  ±||R||2 ;  and as many eigenvalues of  H  are thus 
approximated as  A  has.  The best   Å := Q'·H·Q   minimizes  ||R||2  and  ||R||F ;  if all other 
eigenvalues of  H  differ by at least a gap  γ >> ||R||2  from the eigenvalues of  Å  then these 

approximate their corresponding eigenvalues of  H  within about  ±||R||2
2/γ .  These assertions 

about  Å  are proved in  B.N. Parlett’s  book  The Symmetric Eigenproblem  (1998, SIAM,  
Philadelphia).  Unproved,  but supported by some experimental evidence,  is an expectation that  

Å := '·H·   is most nearly diagonal,  so its eigenvalues are easiest to compute accurately,  

thus perhaps compensating for whatever extra effort it costs to use    in place of  QR’s  Q .

(2):  A square nearly unitary matrix  B  can be computed in the course of obtaining the  Schur  
decomposition  G = B·U·B'   of a given non-Hermitian square matrix  G ;  here upper-triangle  U 
has desired eigenvalue approximations on its diagonal.  Refinement of these approximations 
begins with the replacement of  B  by a more nearly unitary matrix  Q  before computing the 
residual  R := G·Q – Q·U  and then the error  Q'·R = Q'·G·Q – U  in the computed decomposition.
Details of the refinement process are a long story for another day.  A part of that story not yet 

resolved is the advantage,  if any,  of using    in place of  Q  from  QR  factorization.

(3):  The angles between two subspaces,  one spanned by  E ’s  columns and the other by  F ’s ,  
are often computed by first (re)orthogonalizing  E  and  F ,  then computing the  column  
c := svd(F'·E)  of singular values of  F'·E ,  and then the column of angles   θ := arccos(c) .  
Here  QR  factorization can be used to (re)orthogonalize  E ’s  and  F ’s  columns unless they are 
already so nearly orthonormal that  §2’s Approximate Solution  is accurate enough.  On the 
other hand,  if the columns of  E ,  say,  are too nearly linearly dependent then the subspace they 
span must be partially indeterminate in the face of noise  (like roundoff)  in those columns,  and 
the  QR  factorization must be partially indeterminate too.  The following digression is intended 
to cope with that indeterminacy in a way roughly similar to what  MATLAB ’s  orth(E)   does.
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First scale each column of  E  to make its estimated noise  (or uncertainty)  about the same in 
norm as every other column’s.  Singular Value Decomposition   [E,  V,  Discard]  = svd(E,  0)  
computes a diagonal matrix  V  of the singular values of  E  and overwrites  E  by orthonormal 
columns spanning the same subspace.  Some singular values may lie below the estimated noise 
level;  if so,  the corresponding columns of the new  E  are too uncertain and should be discarded.
Suspicion should fall also upon either the noise level’s estimate or those columns corresponding 
to singular values,  if any,   that exceed the noise level only a little.

Thus (re)orthogonalized,  the columns of  E  span its same subspace as before,  and likewise for  
F .  However,  roundoff in the formula  θ := arccos(c)  can lose up to half the sig. digits carried 
by the arithmetic when some angles  θ  between the two subspaces are tiny,  as happens when 
one subspace is an invariant subspace and the other is an approximation to it provided by an 
eigensystem program under test.  The obvious way to cope with that loss is to compute  θ  in 
arithmetic twice as precise as is trusted in the data  E  and  F ,  and as is desired in  θ .  When 
extra-precise arithmetic is unavailable or uneconomical,  the following scheme avoids that loss 
of accuracy:

Suppose  E  and  F  have fairly accurately orthonormal columns,  and that  E  has no more 
columns than  F  has.  (Of course,  both matrices must have the same number of rows,  at least as 

many as  F  has columns.)  Compute  B := F'·E ,  then its nearest matrix    with orthonormal 

columns.  When all the angles  θ  are small,  F'·E  is close enough to    that  §2’s Approximate 
Solution  is adequate and can be computed quickly without the  SVD  of  F'·E .   Next compute 

the  columns  s := svd(F·  – E)  of singular values,  and  θ := 2 arcsin(s/2)  elementwise.  The 
absolute error in  θ  is at worst of the order of the roundoff threshold  (MATLAB ’s  eps )  rather 
than its square root.  All this can be proved by means similar to what worked in  §1’s Proof  

above.  Thus does the accuracy of all angles  θ  repay the modest extra effort that    costs.

A similar scheme to compute angles  θ  appeared in  “Numerical methods for computing angles 
between linear subspaces”  by  Å. Bjorck & G. Golub,  pp. 579 - 594 of Math. Comp. 27 (1973);
it’s accurate for tiny angles but can lose almost half the arithmetic’s digits at angles  θ  near  π/2 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prof. Nicholas J. Higham  has kindly  e-mailed  a pointer to  p. 235  of his book  “Functions of 
Matrices Theory and Computation” (2008, SIAM, Philadelphia)  where he cites an inequality 
in  Lemma 2.4  of  Prof. Ji-Guang Sun’s  “A Note on Backward Perturbations for the Hermitian 
Eigenvalue Problem”  pp. 385-393 of BIT  35 (1995, Springer, Heidelburg)  to the effect that if  

||B'·B – I||2 < 1  then  ρFF(R) =  ||B – Q||F/||B – ||F  ≤  ·(1 + ||B||2)/(1 – ||B'·B – I||2) .  This 

includes my inequality  ρFF(R) ≤ √2  valid only when  ||B'·B – I||2  is infinitesimal,  and betters 
the  Chandrasekaran-Ipsen  inequality  ρ.2(R) ≤ 5√n  when the columns of  B  are near enough to 

orthonormal,  say    ||B'·B – I||2 ≤  .  Otherwise our example suggests that their  √n  is deserved.
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