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80 The Problem:
Given an m-by-n matrix B with gan, we seek the nearest m-by-n matrix Q with n

orthonormal columnsi.e. n-by-n Q-Q =1); itis “nearest” in so far as it minimizdsoth

||B—QH := Vtrace((B-Q):(B—Q)) and ||B-QJ|= Largest Singular Value of B-Q .
For simplicity we assume the columnns of B are linearly independent, as is almost always the
case. This nearest Q@t will be compared with Gram-Schmidt's and QR factorization’s
(re)orthogonalizations Q of .BThen Q will be applied to three tasks of which the third, the
estimation of angles between subspaces, can be afflicted by inaccuracy unless &ded by

§1 The Solution: The nearest Q is unique; it is the orthogonal faQor  =Bdfithe
Polar Decompositionof B = Q ‘H in which H=H:=VB"-B is positive definite.

Proof:
Let B = Pm .G be theSingular Value Decompositionf B; here P=P?1, G =G and

V is a square positive diagonal matrix with the singular values of B on its diagonal. The zero
matrix O under V is absent when B is square. We claimttigabrthogonal matrix nearest

Bis Q := PH .G=B-(B-B) Y2, To see why this is so consider the difference B-Q for any
m-by-n matrix Q with n orthonormal columns;-Q=1. Neither norm ||B-Q]||is changed
by unitary pre- or post-multiplication, so ||B-Q|| =(B>~Q)-G|| . Now,
P.B-G =m . PO-G =m . and ‘MG ﬂ satisfying @C + S-S =1 .
— = — I Il _|C = i B = c-
Consequently [|B-Q]| m u +H M [| =1Z]] wherein Z.%O} % } . Hence

o) S

Z'-Z = (V-IY = (V-I)-(C—I) — (C-I)-(V=I) + (C—I)-(C~I) + S-S = (V—I¥ + V-(I-C) + (I-C)-V .

Now, I-C = Oonly when Q =Q . Otherwise Real(Diag(I-C» O because Diag(C)< | ;

moreover at least one element of Real(Diag(I-C)) must be positive, and consequently we find

||IB—Q|? = trace(Z-Z) > trace((V-If) = ||B-Q |}* as was claimed for @Q . Next we turn to

|IB-QI}? = mafjy=1l|(B-Q)-xfl = mavyje =€ -Z-Z-e. When Q =Q we get'Z = (V-IY,

and then the maximizing column vector e = &, say, can be one of the columns of | because

V is diagonal. Otherwise (when #)Q ) we find, because Real(Diag(I-&)P , that
IB-QY2=¢&.7.Z-6 = &(V-1)%& + &(V-(I-C) + (I-C)-V)-& = &-(V-I)>-& = ||BQ }f,

as was claimed. ND OF PROOF.

The same proof works when the columns of B are linearly dependent except that then V has

at least one zero on its diagonal, whence a nearest orthon@mal IS not unique. Neither need
it always be unique if it has to minimize ||B-Qbut not ||B—QY| too; do you see why?

See a slightly more gener&rocrustes problem concerning a nearest matrix with orthonormal
columnsin 812.4.1 of G.H. Golub & C.F. Van LoatVgtrix Computationg2d. ed. 1989,
Johns Hopkins Univ. Press). See also p. 385 of Nicholas J. Higham’sAlookacy and
Stability of Numerical Algorithm2d. ed. (2002, SIAM, Philadelphia) for related citations.
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82 Approximate Solutions:
If B is already nearly orthogonal then, rather than compute its singular value decomposition,
we can compute a residual Y :=B -1 and then use as many terms as necessary of a series

Q =B-(B-ByY2=B.(1 + Yy2= B-B.Y-(1/2 —3Y/8 + 5916 — 35Y/128 + ...)
of which only the first few terms can be worth using; otherwise the SVD is faster.
If Y is sosmallthat 1 —||Yfl roundsto 1 for practically any norm ||..,|[then Q@ will be
approximated adequately by :©B -1 B-Y =Q -(1-3¥/8 + Y3/8 — ...) because its residual
Q-Q-I= %1 Y2.(Y = 31) will be negligible. And if Y is not so small, but still ||¥{& % :
then the columns of Quill be rather more nearly orthonormal than those of aBd repeating
upon Q the process performed upon B will yield an approximatpn (1 2228 + ...) .

The accuracy to which @an approximateQ is limited by the accuracy left in the residual Y
after cancellation. Y is best computed by extra-precise accumulation of scalar products during

matrix multiplication. The MTLAB expressiony = [B’, I}*[B; -I] does this in version
5.2 on old 680x0-based Apple Macintoshes, and in versibnob Wintel PCs after the
commandsystem_dependent(‘setprecision’, 64) has been executed.

Occasionally@ is best computed as an unconsummatedfgsum AQrrwhich Q and
AQ are stored separately. Such an occasion arises when roundoff makes the rounded sum
Q +AQ materially less accurate than the unrounded sum, and when some other residual like

H-Q —Q -V to be computed extra-precisely is rendered as (H-Q — Q-VA® ¢1Q-V) a
little more accurately because the first term (H-Q — Q-V) already enjoys massive cancellation.

83 Other Reorthogonalization Schemes:
Given a perhaps rectangular matrix B whose columns are nearly orthonormal, Gram-Schmidt
and QR factorization are the reorthogonalization schemes that may come to mind first. These

schemes change B into Q := B'Rvhere @Q =1 and R is upper-triangular. To ensure

that both schemes produce the same R we insist that its diagonal be positive, thus determing
R uniquely as the upper-triangular right Cholesky factor'oB B R-R except for rounding

errors that differ among the schemes.

These two schemes suffer from an accidental dependence upon the orderisgazfiuBnns.

For instance if the last column is slightly in error but the others are accurately orthonormal,
these schemes adjust only the last column. However, if all columns but the first are accurately
orthogonal but the first errs a bit, these schemes leave the first column’s direction unchanged
and infect the others with its error. So, permuting the columns of B can change the Gram-

Schmidt's or QR’s Q non-trivially while merely permuting the column€of = B}JBE/2.

On the other hand, scaling the columns of lBplacing it by B-D for some positive diagonal
D not merely a scalar multiple of, leaves Q unchanged (and replaces R by R:-D) but

alters Q nontrivially. Apparently, alterationsto B can alter Q @nd rather differently.
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84 Comparisons with Other Reorthogonalization Schemes:

How much closerto B than QR's Q € 2 Now, B= -H=Q-R wherein HistHe
positive definite square root of 24 R-R=B-B and R is upper-triangular with a positive
diagonal. Consequently the distances’ ratios are ||[BFBRIRQ || =||R - ||H - I|| for both
[l...Ip and ||...H. Having found these ratios to be 1 or more, we wish to estimate how big

they can be at most. They cannot exceed 1 much if ||B|| = ||H|| = ||R|| is either very big or very
tiny, so the only matrices B worth considering are those restricted in some way that moderates
their norms. The restriction chosen hereunder forces each column ahdhence Rto have

norm 1, since itis an easy computation and not too expensive. The chosen restriction turns
this paragraph’s question into the following:

Suppose n-by-n triangular matrix R has a positive diagonal, and 'Hs=the positive
definite square root of 4= R-R=B-B whose diagonal is. IThen how big at most can any

of the four ratiosp (R) := |[R—=1Ifj|H—-1]| = |B-Q|IB-Q || be?

This question’s answers will be complicated by two further questions:
* Are B’s columns, and hence’'® already nearly orthonormal, or not?
* Are B’s columns, and also 'R, real, or complex?

If the given columns are not nearly orthonormal, then the question has an answer buried in 84
of a paper “Backward errors for eigenvalue and singular value decompositions” by Shivkumar
Chandrasekaran and llse C.F. Ipsen, pp. 215-2RRiofer. Math68 (1994). They found

Po(R) :=|IR=IfJ|H = 1] < 5Vn. Their bound orpg,(R) is not too pessimistic since examples
exist for which the smallep(R) seems to grow proportional tnh. An n-by-n example R

is obtained by scaling each column of the upper triangular @TLM3’s notation)

toeplitz([1; zeros(n-1,1)], [1, AN0:n-2]])
to have norm 1 after choosing:= (V5 — 1)/2= 0.618034... . In particular ...
Dimension n: 100 400 1600 3000
Prr(R) = IR = IH/|IH = I]f 8.2218 165282 330985 453310
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However, %n seems far too pessimistic a bound fBs(R) = ||R — Ilf/||H — 1|} since, so far
as | know, no large n-by-n example R has been found whosegafR®) rises within an
order of magnitude of their bound. Neither has a much smaller bound been found yet.

What if B’s columns, and hence '® are already nearly orthonormal? To pursue this
guestion we define linear operatot$ and £ acting upon square matrices F :
U(F) keeps the upper triangle and half the diagonal pfafd zeros the lower triangle;
L(F) keeps the lower triangle and half the diagonal ofaRd zeros the upper triangle.
ConsequentlyU(F) + L(F) = F, andU(F) =L(F)" in MATLAB’s notation, in which
U(F) =triu(F) - 0.5*diag(diag(F))

Now consider an m-by-n example B)= -(AH) in which AH := (B'-B)Y2— | =AH' is so

tiny, though not negligible, that its square is negligible, énd is the matrix nearest B with
orthonormal columns. Then Gram-Schmidt or QR computes the upper-triangular Cholesky
factor R of B-B=R:R as R |+ 2U(AH) whence followsp (R) = ||2U(AH)|/||AH|

approximately, ignoring terms likAH?2 . Evidently 1< pee(R) < V2. A bound forp,,(R) is
more complicated:
P22(R) = [IAH + U(AH) — LAH)|L/[IAHIL
< 1+ [fU(AH) — UQAH) B/IFU@AH) + U@H) b
<1+ 41— (2m)-log(m) + (2/m)-log(n) = 1284 + 06366log(n) ,
according to Corollary 2 in “Spectra of Operators with Fixed Imaginary Parts” by Andrzej

Pokrzywa, pp. 359-364 iRroc. Amer. Math. So81 #3 (Mar. 1981). His work also implies
that maxp,o(R) must grow like ®366log(n) when Bs n columns are already almost

orthonormal and n is huge. A simple n-by-n example R that appears to illustrate logarithmic
growth is obtained by scaling each column of the upper triangular AnLA®’s notation)

toeplitz([1; zeros(n-1,1)], [1, AJ[1:n-1]])
to have norm 1 after choosing a smgllire imaginaryA := /2%° . . In particular ...
Dimension n: 100 400 1600 2400
p2AR) = |IR—I}/|IH-1lp: | 28885 36929 45403 47923
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The data in this example R acemplex numbersRealvalued examples R whog®,(R)

grows substantially with dimension n were not found until Andrzej Pokrzywa suggested the
use of a familiar mapR from complex m-by-n matrices to a subspace of real 2m-by-2n
matrices.R(Z) replaces each complex eleme&nt & + I of Z by a 2-by-2 real matrix

{E n}_
- ¢
MATLAB’s Kronecker product provides an easy implementatioR@f) thus:
kron(real(z), [1, 0; 0, 1]) + kron(imag(2), [0, 1; -1, 0])
Many matrix operations and relations persist after the applicatidh :of
R(Z') =R(2)", R(W £ Z) =R(W) £ R(Z), R(W-Z) =R(W)-R(Z), RW1.2) =RW)LR(Z).
The eigenvalues ofR(Z) consist of both the eigenvalues of Z and their complex conjugates.
If R is upper-triangular, so i®(R); and if R has a positive diagonal, so dG¥R) .
If H=H is Hermitian and positive definiteR(H) is symmetric and positive definite;
and then if Cholesky factorization'-R = H, so doesR(R)'-R(R) =R(H) and
so does the positive definité(R(H)) = R(VH) (except for roundoff).
Finally |R(Z)lL=1IZlp but [RE@)IE=V2[1ZI.

Consequentlyp,o(R(R)) =poo(R); therefore, apparently rare real-valued examples whose
P2, grows like the logarithm of dimension n do exist. All of these have nearly orthonormal
columns, so theip,, cannot grow faster. A more general example, not nearly orthonormal,
whose p,, grows at least as fast as log(n) has not been found yet; perhaps none exists.
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85 Three Applications of the Nearest Orthogonal or Unitary Matrix o)
Apparently Gram-Schmidt's or QR’s Q is rarely very far from @e nearestvigen is
Q far enough fromQ  that the extra work, if any, needed to compute will be rewarded?

(1): Suppose the columns of B approximate some or all eigenvectors of a real symmetric or
Hermitian matrix H = H. Software that computes partial eigensystems, or computes them in
parallel, may sacrifices some orthogonality of eigenvectors belonging to clustered eigenvalues
in order to get a result B faster. Algorithms to improve the approximations must start by more
nearly (re)orthogonalizing the columns of B to get Qonsider three ways to compute that

Q: Firstis B =Q-R factorization. Second is the Polar factorizatiorQB = Thitd is 82’'s
approximationQ =B —% B-Y usable when the residual Y :=B—1 is small enough. No

matter which way that Q is computed, it will be used to compute a residual R :=H-Q — Q-A
for some approximation A to a diagonal matrix of eigenvalues ofEbich eigenvalue of A
approximates some eigenvalue of H witlijjR|} ; and as many eigenvalues of H are thus
approximated as A has. The best A '=H)Q minimizes ||B||and ||RY; if all other

eigenvalues of H differ by at least a ggp> ||Rl} from the eigenvalues of A then these

approximate their corresponding eigenvalues of H within ahtﬂﬁ!ﬂ]zzly. These assertions

about A are proved in B.N. Parlett’'s bo@ke Symmetric Eigenproble1998, SIAM,
Philadelphia). Unproved, but supported by some experimental evidence, is an expectation that

A= Q"-H-Q is most nearly diagonal, so its eigenvalues are easiest to compute accurately,
thus perhaps compensating for whatever extra effort it costs tQuse in place of QR’s Q

(2): A square nearly unitary matrix B can be computed in the course of obtaining the Schur
decomposition G = B-U‘Bof a given non-Hermitian square matrix; Gere upper-triangle U
has desired eigenvalue approximations on its diagonal. Refinement of these approximations
begins with the replacement of B by a more nearly unitary matrix Q before computing the
residual R := G-@Q-U and then the error' ® = Q-G-Q-U in the computed decomposition.
Details of the refinement process are a long story for another day. A part of that story not yet

resolved is the advantage, if any, of usi@g in place of Q from QR factorization.

(3): The angles between two subspaces, one spannedsbgoltimns and the other by’s,

are often computed by first (re)orthogonalizing E andtiien computing theolumn

c :=svd(F-E) of singular values of' f£, and then the column of angle®:= arccos(c) .

Here QR factorization can be used to (re)orthogonalize é&d Ps columns unless they are
already so nearly orthonormal that 82’s Approximate Solution is accurate enough. On the
other hand, if the columns of, Esay, are too nearly linearly dependent then the subspace they
span must be partially indeterminate in the face of noise (like roundoff) in those columns, and
the QR factorization must be partially indeterminate too. The following digression is intended
to cope with that indeterminacy in a way roughly similar to whatTIMB’s orth(E)  does.
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First scale each column of E to make its estimated noise (or uncertainty) about the same in
norm as every other column’s. Singular Value Decomposi{ian Vv, Discard] = svd(E, 0)

computes a diagonal matrix V of the singular values of E and overwrites E by orthonormal
columns spanning the same subspace. Some singular values may lie below the estimated noise
level; if so, the corresponding columns of the new E are too uncertain and should be discarded.
Suspicion should fall also upon either the noise level’'s estimate or those columns corresponding
to singular values, if any, that exceed the noise level only a little.

Thus (re)orthogonalized, the columns of E span its same subspace as before, and likewise for
F. However, roundoff in the formul@ := arccos(c) can lose up to half the sig. digits carried

by the arithmetic when some angl@sbetween the two subspaces are tiny, as happens when

one subspace is an invariant subspace and the other is an approximation to it provided by an
eigensystem program under test. The obvious way to cope with that loss is to cOnmipute
arithmetic twice as precise as is trusted in the data E anahdFas is desired i. When
extra-precise arithmetic is unavailable or uneconomical, the following scheme avoids that loss
of accuracy:

Suppose E and F have fairly accurately orthonormal columns, and that E has no more
columns than F has. (Of course, both matrices must have the same number of rows, at least as

many as F has columns.) Compute B':EF then its nearest matriQ  with orthonormal

columns. When all the angldés are small, FE is close enough tQ that §2's Approximate
Solution is adequate and can be computed quickly without the SVD-Bf Rext compute

the columnss := svd(FQ —E) of singular values, abic= 2arcsin(s/2) elementwise. The
absolute error i@ is at worst of the order of the roundoff thresholdAfMAB'’s eps) rather
than its square root. All this can be proved by means similar to what worked in 81’s Proof

above. Thus does the accuracy of all andlesepay the modest extra effort théx costs.

A similar scheme to compute angl8sappeared in “Numerical methods for computing angles
between linear subspaces” by A. Bjorck & G. Golub, pp. 579 - 58atf. Comp27 (1973);
it's accurate for tiny angles but can lose almost half the arithmetic’s digits at #hglear 172.

Prof. Nicholas J. Higham has kindly e-mailed a pointer to p. 235 of his Bagictfons of
Matrices Theory and Computatidrf2008, SIAM, Philadelphia) where he cites an inequality

in Lemma 2.4 of Prof. Ji-Guang Sun’s “A Note on Backward Perturbations for the Hermitian
Eigenvalue Problem” pp. 385-393BIT 35 (1995, Springer, Heidelburg) to the effect that if

IB-B—Ilb<1 thenpee(R) = |IB - QWIIB-Q | < ﬁ (1 +IBI)/(1~[1B-B~1]p) . This
includes my inequalitypr(R) < V2 valid only when ||BB — I|} is infinitesimal, and betters
the Chandrasekaran-lpsen inequality(R) < 5Vn when the columns of B are near enough to

orthonormal, say ||BB—I[p< % . Otherwise our example suggests that theiris deserved.
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