
Finding the range of the robot.
The robot will throw a ball which is attached to the end of an arm of length 0.25 m rotating around
the origin. We want to experiment with the rotation speed of the robot to figure out what the maxi-
mum range and height of the throw are.

Our basic setup is that while on the arm, the ball follows the path
In[1]:= xArm@t_D := H1 ê 4L * Cos@k * tD;

yArm@t_D := H1 ê 4L * Sin@k * tD;

and once in the air, the ball follows the path (constant speed motion in x, constant acceleration
motion in y):

In[3]:= g = -9.8;

In[4]:= xAir@t_D := a * t + b;
yAir@t_D := Hg ê 2L * t^2 + c * t + d;

At the time of release (t0), the position and velocity of these two curves are supposed to agree. We
can use this information to solve for a, b, c, and d.

In[6]:= absol = Solve@8xArm@t0D ã xAir@t0D, D@xArm@tD, tD ã D@xAir@tD, tD ê. 8t Ø t0<<, 8a, b<D

Out[6]= ::a Ø -
1

4
k Sin@k t0D, b Ø

1

4
HCos@k t0D + k t0 Sin@k t0DL>>

In[7]:= cdsol = Solve@8yArm@t0D ã yAir@t0D, D@yArm@tD, tD ã D@yAir@tD, tD ê. 8t Ø t0<<, 8c, d<D

Out[7]= 99c Ø 9.8 t0 + 0.25 k Cos@k t0D, d Ø -4.9 t02 - 0.25 k t0 Cos@k t0D + 0.25 Sin@k t0D==

We now use this information to write the path in the air very concretely in terms of k and t0 as
xFlight and yFlight. These functions will describe the path of the ball as a function of t0 and k.

In[8]:= xFlight@t_D := xAir@tD ê. absol@@1DD;
yFlight@t_D := yAir@tD ê. cdsol@@1DD;

We can see that these formulae look pretty unpleasant:
In[10]:= xFlight@tD

yFlight@tD

Out[10]= -
1

4
k t Sin@k t0D +

1

4
HCos@k t0D + k t0 Sin@k t0DL

Out[11]= -4.9 t2 - 4.9 t02 - 0.25 k t0 Cos@k t0D + t H9.8 t0 + 0.25 k Cos@k t0DL + 0.25 Sin@k t0D

But they actually look a lot better when you write them in terms of (t - t0):
In[15]:= Simplify@xFlight@tDD

Out[15]=
1

4
HCos@k t0D + k H-t + t0L Sin@k t0DL

The computer isn’t smart enough to do this on its own for y, but we can write it out ourselves:
In[22]:= yFlightNew@t_D := Hg ê 2L * Ht - t0L^2 + H1 ê 4L * k * Ht - t0L * Cos@k t0D + H1 ê 4L * Sin@k t0D;

In[32]:= yFlightNew@tD

Out[32]= -4.9 Ht - t0L2 +
1

4
k Ht - t0L Cos@k t0D +

1

4
Sin@k t0D

We can check that this formula is the same as the old one by subtracting them and simplifying:

In[24]:= Simplify@yFlightNew@tD - yFlight@tDD

Out[24]= 0.

Now these equations are still fairly easy to work with using the computer! We want to now find the
maximum height reached by the ball in terms of k and t0. This is a classic max-min problem: we
want to find the maximum of yFlight on the interval [t0,infty). To do that, we need to differentiate
yFlight and find the point where the derivative is zero.

In[25]:= yflightcriticalpt = t ê. Solve@D@yFlight@tD, tD ã 0, tD@@1DD

Out[25]= -0.102041 H0. - 9.8 t0 - 0.25 k Cos@k t0DL

Now we have to be a little careful! This is the time at which the projectile reaches the maximum
height IF this time is > t0. We can write down this function in Mathematica using an “If” statement:

In[26]:= yMax@T0_, K_D := HIf@yflightcriticalpt > T0, yFlight@yflightcriticalptD, yFlight@T0DD ê.
8t0 Ø T0, k Ø K<L ê. 8t0 Ø T0, k Ø K<;

In[27]:= yMax@3, 10D

Out[27]= -0.239421

It is now time for some graphics, to make sure that all our formulas look like they are making sense:
In[28]:= ballPath@t_, T0_, K_D :=

If@t > T0, 8xFlight@tD, yFlight@tD<, 8xArm@tD, yArm@tD<D ê. 8t0 Ø T0, k Ø K<;

In[29]:= Launcher@r_, theta_D := 8
Graphics@Rectangle@8-0.01, -1.5 r<, 80.01, 0.01<DD,
ParametricPlot@8r * Cos@uD, r * Sin@uD<, 8u, 0, 2 * Pi<D
<;

We can now see the ball and the launcher and the maximum height on a single plot:

2 robot_arm_solutions saved jerry.nb

In[30]:= Manipulate@
Show@ParametricPlot@ballPath@t, LaunchAngle ê myK, myKD, 8t, 0, maxT<D, Launcher@0.22, T0D,
ParametricPlot@8t, -0.35<, 8t, -2, 2<D, Plot@yMax@LaunchAngle ê myK, myKD, 8t, -2, 2<D,
PlotRange Ø 88-0.4, 1.5<, 8-0.5, 1<<, AxesOrigin Ø 80, 0<D,

8maxT, 0.01, 4<, 8myK, 1, 30<, 8LaunchAngle, 0, 2 * Pi<D

Out[30]=

maxT

myK

20

LaunchAngle

4.80035

0.5 1.0 1.5

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Let’s get more abstract. Suppose we study the maximum value as a function of K alone. We’ll plot
the maximum height for each t0 value between 0 and 2 Pi/K.

robot_arm_solutions saved jerry.nb 3

Manipulate@Plot@yMax@LaunchAngle ê myK, myKD, 8LaunchAngle, 0, 2 * Pi<D, 8myK, 1, 25<D

myK

20

1 2 3 4 5 6

0.5

1.0

This is a really interesting function! We can see that the maximum occurs close to zero across the
entire range. Now what is the region of the plane that we can target? The simplest way to answer
that question is to plot all of the trajectories for a given K.

4 robot_arm_solutions saved jerry.nb

In[33]:= Manipulate@Show@Table@ParametricPlot@ballPath@t, LaunchAngle ê myK, myKD, 8t, 0, 10<D,
8LaunchAngle, 0, 2 * Pi, 2 * Pi ê 40<D,

Launcher@0.22, T0D, ParametricPlot@8t, -0.35<, 8t, -3, 3<D,
PlotRange Ø 88-2, 2<, 8-0.5, 2<<, AxesOrigin Ø 80, 0<, ImageSize Ø 600D, 8myK, 1, 30<D

Out[33]=

myK

20

-2 -1 1 2

-0.5

0.5

1.0

1.5

2.0

Now we get to the group work problems for this week:

1. Find the t0 and t values which make the ball land on the table (y = -0.35) at the location x = 1
when k = 20. This means that you have to solve the system of equations:

xFlight[t] = 1
yFlight[t] = -0.35

or

1
4
HCos@k t0D + k H-t + t0L Sin@k t0DL = -1

-4.9 Ht - t0L2 + 1
4
k Ht - t0L Cos@k t0D + 1

4
Sin@k t0D = -0.35

for t0 and t, given that k = 20.

2. Now suppose that our robot can launch the ball at this time t0 (accurate to within 1/1000 of a
second). Estimate the resulting error in the x position of the ball when it hits the table. There are a
few steps to this problem.

a. Write the x position of the ball when it hits the table in terms of t0 alone. You’ll need to use the
yFlight equation

-4.9 Ht - t0L2 + 1
4
k Ht - t0L Cos@k t0D + 1

4
Sin@k t0D = -0.35

to figure out when (at what value of t) the ball hits the table (in terms of t0) and then plug that time
into the xFlight equation

xFlight[t] = 1
4
HCos@k t0D + k H-t + t0L Sin@k t0DL

in order to figure out where the ball hits the table. Your answer should be a function

xStrike[t0]

b. Now do an error estimate for this new function xStrike of t0, using t0 as the variable, the value of
t0 you got in part 1 for the point (that is, the x0 value in the examples we did in class) and 1/1000
for the error (D t0). As we did before, you’ll have to differentiate xStrike[t0] and evaluate at the
given value of t0.

c. What size basket can we hit with this accuracy? Suppose the error in the release time were 1/100
of a second because we bought cheaper parts. How would that affect our accuracy? Suppose the
error was reduced to 1/10,000 of a second because we bought better parts? How would that affect
our accuracy?

Extra Credit Problems.

I. I am fascinated by the question of the “envelope” curve in the picture

robot_arm_solutions saved jerry.nb 5

Now we get to the group work problems for this week:

1. Find the t0 and t values which make the ball land on the table (y = -0.35) at the location x = 1
when k = 20. This means that you have to solve the system of equations:

xFlight[t] = 1
yFlight[t] = -0.35

or

1
4
HCos@k t0D + k H-t + t0L Sin@k t0DL = -1

-4.9 Ht - t0L2 + 1
4
k Ht - t0L Cos@k t0D + 1

4
Sin@k t0D = -0.35

for t0 and t, given that k = 20.

2. Now suppose that our robot can launch the ball at this time t0 (accurate to within 1/1000 of a
second). Estimate the resulting error in the x position of the ball when it hits the table. There are a
few steps to this problem.

a. Write the x position of the ball when it hits the table in terms of t0 alone. You’ll need to use the
yFlight equation

-4.9 Ht - t0L2 + 1
4
k Ht - t0L Cos@k t0D + 1

4
Sin@k t0D = -0.35

to figure out when (at what value of t) the ball hits the table (in terms of t0) and then plug that time
into the xFlight equation

xFlight[t] = 1
4
HCos@k t0D + k H-t + t0L Sin@k t0DL

in order to figure out where the ball hits the table. Your answer should be a function

xStrike[t0]

b. Now do an error estimate for this new function xStrike of t0, using t0 as the variable, the value of
t0 you got in part 1 for the point (that is, the x0 value in the examples we did in class) and 1/1000
for the error (D t0). As we did before, you’ll have to differentiate xStrike[t0] and evaluate at the
given value of t0.

c. What size basket can we hit with this accuracy? Suppose the error in the release time were 1/100
of a second because we bought cheaper parts. How would that affect our accuracy? Suppose the
error was reduced to 1/10,000 of a second because we bought better parts? How would that affect
our accuracy?

Extra Credit Problems.

I. I am fascinated by the question of the “envelope” curve in the picture

6 robot_arm_solutions saved jerry.nb

-2 -1 1 2

-0.5

0.5

1.0

1.5

2.0

as a function of k. Is it really a parabola? If so, what’s the formula for the parabola in terms of k?

a. For a given x value, the height of this function f(x) is the largest y of any trajectory of the ball
(that is, it is the largest y value for that x as we vary t0 and keep k fixed). Looking at the xFlight and
yFlight functions again, we see that the question here is to solve

xFlight[t] = x or 1
4
HCos@k t0D + k H-t + t0L Sin@k t0DL = x

for t (in terms of t0, k, and x) and then plug that into yFlight[t] or
-4.9 Ht - t0L2 + 1

4
k Ht - t0L Cos@k t0D + 1

4
Sin@k t0D to get a function yFlight[x] in terms of the

variables t0 and k.

Now our function is defined by

f[x] = Max_t0 yFlight[x]

We can get this by taking the derivative of yFlight[x] with respect to t0 and finding the maximum
value.

b. Once you get the f[x], we have to ask whether it is quadratic in x. I have no idea whether this is
true, but it might take some fairly serious algebra in order to prove it.

II. Suppose that in the classwork problem, there was error in the rotation speed k as well as in the
time of release t0. Supposing we release the ball at exactly the correct time t0 (calculated in part 1)
by the rotation speed k varies by 1% from the assumed value of k = 20. Estimate the resulting error
in the x position when the ball strikes the table.

robot_arm_solutions saved jerry.nb 7

