
Chapter 2

Eigenvalues and Optimization: The
Courant-Fischer Theorem

One of the reasons that the eigenvalues of matrices have meaning is that they arise as the solution
to natural optimization problems. The formal statement of this is given by the Courant-Fischer
Theorem. We begin by using the Spectral Theorem to prove the Courant-Fischer Theorem. We
then prove the Spectral Theorem in a form that is almost identical to Courant-Fischer.

The Rayleigh quotient of a vector x with respect to a matrix M is defined to be

xTMx

xTx
. (2.1)

The Rayleigh quotient of an eigenvector is its eigenvalue: if M = µ , then

 TM 

 T 
=
 Tµ 

 T 
= µ.

The Courant-Fischer Theorem tells us that the vectors x that maximize the Rayleigh quotient are
exactly the eigenvectors of the largest eigenvalue of M . In fact it supplies a similar
characterization of all the eigenvalues of a symmetric matrix.

Theorem 2.0.1 (Courant-Fischer Theorem). Let M be a symmetric matrix with eigenvalues
µ1 � µ2 � · · · � µn. Then,

µk = max
S✓IRn

dim(S)=k

min
x2S
x 6=0

xTMx

xTx
= min

T✓IRn

dim(T )=n�k+1

max
x2T
x 6=0

xTMx

xTx
,

where the maximization and minimization are over subspaces S and T of IRn.

Be warned that we will often neglect to include the condition x 6= 0, but we always intend it.
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2.1 The First Proof

As with many proofs in Spectral Graph Theory, we begin by expanding a vector x in the basis of
eigenvectors of M . Let’s recall how this is done.

Let  1, . . . , n be an orthonormal basis of eigenvectors of M corresponding to µ1, . . . , µn. As
these are an orthonormal basis, we may write

x =
X

i

ci i, where ci =  
T
i x .

There are many ways to verify this. We let  be the matrix whose columns are  1, . . . , n, and
recall that the matrix  is said to be orthogonal if its columns are orthonormal vectors. Also
recall that the orthogonal matrices are exactly those matrices  for which   T = I , and that
this implies that  T = I . We now verify that

X

i

ci i =
X

i

 i 
T
i x =

 
X

i

 i 
T
i

!
x =

�
  T

�
x = I x = x .

When confused by orthonormal bases, just pretend that they are the basis of elementary unit
vectors. For example, you know that

x =
X

i

x (i)�i, and that x (i) = �Ti x .

The first step in the proof is to express the Laplacian quadratic form of x in terms of the
expansion of x in the eigenbasis.

Lemma 2.1.1. Let M be a symmetric matrix with eigenvalues µ1, . . . , µn and a corresponding
orthonormal basis of eigenvectors  1, . . . , n. Let x be a vector whose expansion in the eigenbasis
is

x =
nX

i=1

ci i.

Then,

xTMx =
nX

i=1

c2iµi.
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Proof. Compute:

xTMx =

 
X

i

ci i

!T

M

0

@
X

j

cj j

1

A

=

 
X

i

ci i

!T
0

@
X

j

cjµj j

1

A

=
X

i,j

cicjµj 
T
i  j

=
X

i

c2iµi,

as

 T
i  j =

(
0 for i 6= j

1 for i = j.

Proof of 2.0.1. Let  1, . . . , n be an orthonormal set of eigenvectors of M corresponding to
µ1, . . . , µn. We will just verify the first characterization of µk. The other is similar.

First, let’s verify that µk is achievable. Let S be the span of  1, . . . , k. We can expand every
x 2 S as

x =
kX

i=1

ci i.

Applying Lemma 2.1.1 we obtain

xTMx

xTx
=

Pk
i=1 µic2iPk
i=1 c

2
i

�

Pk
i=1 µkc2iPk
i=1 c

2
i

= µk.

So,

min
x2S

xTMx

xTx
� µk.

To show that this is in fact the maximum, we will prove that for all subspaces S of dimension k,

min
x2S

xTMx

xTx
 µk.

Let T be the span of  k, . . . , n. As T has dimension n� k + 1, every S of dimension k has an
intersection with T of dimension at least 1. So,

min
x2S

xTMx

xTx
 min

x2S\T

xTMx

xTx
 max

x2T

xTMx

xTx
.

Any x in T may be expressed as

x =
nX

i=k

ci i,
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and so for x in T
xTMx

xTx
=

Pn
i=k µic2iPn
i=k c

2
i



Pn
i=k µkc2iPn
i=k c

2
i

= µk.

2.2 Proof of the Spectral Theorem

We begin the second proof by showing that the Rayleigh quotient is maximized at an eigenvector
of µ1.

Theorem 2.2.1. Let M be a symmetric matrix and let x be a non-zero vector that maximizes
the Rayleigh quotient with respect to M :

xTMx

xTx
.

Then, Mx = µ1x , where µ1 is the largest eigenvalue of M . Conversely, the minimum is achieved
by eigenvectors of the smallest eigenvalue of M .

Proof. We first observe that the maximum is achieved: as the Rayleigh quotient is homogeneous,
it su�ces to consider unit vectors x . As the set of unit vectors is a closed and compact set, the
maximum is achieved on this set.

Now, let x be a non-zero vector that maximizes the Rayleigh quotient. We recall that the
gradient of a function at its maximum must be the zero vector. Let’s compute that gradient.

We have1

rxTx = 2x ,

and
rxTMx = 2Mx .

So,

r
xTMx

xTx
=

(xTx )(2Mx )� (xTMx )(2x )

(xTx )2
.

In order for this to be zero, we must have

(xTx )Mx = (xTMx )x ,

which implies

Mx =
xTMx

xTx
x .

That is, if and only if x is an eigenvector of M with eigenvalue equal to its Rayleigh quotient. As
x maximizes the Rayleigh quotient, this eigenvalue must be µ1.

1
In case you are not used to computing gradients of functions of vectors, you can derive these directly by reasoning

like
@

@x (a)
xTx =

@
@x (a)

X

b

x (b)2 = 2x (a).
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We now prove the Spectral Theorem by generalizing this characterization to all of the eigenvalues
of M . The idea is to always use Theorem 2.2.1 to show that a vector is an eigenvector. To do
this, we must modify the matrix for each vector.

Theorem 2.2.2. Let M be an n-dimensional real symmetric matrix. There exist numbers
µ1, . . . , µn and orthonormal vectors  1, . . . , n such that M i = µi i. Moreover,

 1 2 arg max
kxk=1

xTMx ,

and for 2  i  n
 i 2 arg max

kxk=1
xT j=0,for j<i

xTMx . (2.2)

Similarly,
 i 2 arg min

kxk=1
xT j=0,for j>i

xTMx .

Proof. We use Theorem 2.2.1 to obtain  1 and µ1, and would like to proceed by induction. But
first, we reduce to the case of positive definite matrices.

By Theorem 2.2.1, we also know that there is a µn such that

µn = min
x

xTMxT

xTx
.

Now consider the matrix fM = M + (1� µn)I . For all x such that kxk = 1,

xTfMx = xTMx + 1� µn � 1.

So, fM is positive definite. As fMx = Mx + (1� µn)x , the eigenvectors of fM and M are the
same. Thus it su�ces to prove the theorem for positive definite matrices.

We henceforth assume without loss of generality that M is positive definite, and proceed by
induction on k. Assuming that we have eigenvectors  1, . . . , k satisfying (2.2), we construct
 k+1. Define

M k = M �

kX

i=1

µi i 
T
i .

For j  k we have

M k j = M j �

kX

i=1

µi i 
T
i  j = µj j � µj j = 0.

So, for vectors x that are orthogonal to  1, . . . , k,

M kx = Mx , xTM kx = xTMx , and

arg max
kxk=1

xT j=0,for jk

xTMx  arg max
kxk=1

xTM kx . (2.3)
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Now, let y be a unit vector that maximizes yTM ky . We know from Theorem 2.2.1 that y is an
eigenvector of M k. Call its eigenvalue µ. We now show that y must be orthogonal to each of
 1, . . . , k. Let

ey = y �

kX

i=1

 i( 
T
i y)

be the projection of y orthogonal to  1, . . . , k, and let by = ey/ keyk. As M k i = 0 for i  k, we
know that eyTM key = yTMy . If y is not orthogonal to these vectors, that is if some  T

i x is
nonzero, then keyk < kyk. As eyTM ey > 0, this would imply that for the unit vector by ,
byTM kby > yTM ky , a contradiction. As y is orthogonal to  1, . . . , k and it is an eigenvector of
M k, it is also an eigenvector of M :

My = M ky = µy ,

and by (2.3)
y 2 arg max

kxk=1
xT j=0,for jk

xTMx .

We now set  k+1 = y and µk+1 = µ.

2.3 Notes

The characterization of eigenvalues by maximizing or minimizing the Rayleigh quotient only
works for symmetric matrices. The analogous quantities for non-symmetric matrices A are the
singular vectors and singular values of A, which are the eigenvectors of AAT and ATA, and the
square roots of the eigenvalues of those matrices.

2.4 Exercise

1. A tighter characterization.

Tighten Theorem 2.2.2 by proving that for every sequence of vectors x 1, . . . ,xn such that

x i 2 arg max
kxk=1

xT x j=0,for j<i

xTMx ,

each x i is an eigenvector of M .


