
Chapter 3

The Laplacian and Graph Drawing

3.1 The Laplacian Matrix

We being this section by establishing the equivalence of multiple expressions for the Laplacian.

The Laplacian Matrix of a weighted graph G = (V,E,w), w : E ! IR+, is designed to capture the
Laplacian quadratic form:

xTLGx =
X

(a,b)2E

wa,b(x (a)� x (b))2. (3.1)

We will now use this quadratic form to derive the structure of the matrix. To begin, consider a
graph with just two vertices and one edge of weight 1. Let’s call it G1,2. We have

xTLG1,2x = (x (1)� x (2))2. (3.2)

Consider the vector �1 � �2, where �a is the elementary unit vector with a 1 in coordinate a. We
have

x (1)� x (2) = �T1 x � �T2 x = (�1 � �2)
Tx ,

so

(x (1)� x (2))2 =
�
(�1 � �2)

Tx
�2

= xT (�1 � �2) (�1 � �2)
T x = xT


1 �1

�1 1

�
x .

Thus,

LG1,2 =


1 �1

�1 1

�
.

Now, let Ga,b be the graph with just one edge between a and b. It can have as many other
vertices as you like. The Laplacian of Ga,b can be written in the same way:

LGa,b
= (�a � �b)(�a � �b)

T .

This is the matrix that is zero except at the intersection of rows and columns indexed by a and b,
where it looks looks like 

1 �1
�1 1

�
.
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Summing the matrices for every edge, we obtain

LG =
X

(a,b)2E

wa,b(�a � �b)(�a � �b)
T =

X

(a,b)2E

wa,bLGa,b
.

You can check that this agrees with the definition of the Laplacian from Section 1.2.3:

LG = DG �AG,

where
DG(a, a) =

X

b

wa,b.

This formula turns out to be useful when we view the Laplacian as an operator. For every vector
x we have

(LGx )(a) = d(a)x (a)�
X

(a,b)2E

wa,bx (b) =
X

(a,b)2E

wa,b(x (a)� x (b)). (3.3)

From (3.1), we see that if all entries of x are the same, then xTLx equals zero. From (3.3), we
can immediately see that L1 = 0, so the constant vectors are eigenvectors of eigenvalue zero. If
the graph is connected, these are the only eigenvectors of eigenvalue zero.

Lemma 3.1.1. Let G = (V,E) be a graph, and let 0 = �1  �2  · · ·  �n be the eigenvalues of
its Laplacian matrix, L. Then, �2 > 0 if and only if G is connected.

Proof. We first show that �2 = 0 if G is disconnected. If G is disconnected, then it can be
described as the union of two graphs, G1 and G2. After suitably reordering the vertices, we can
write

L =


LG1 0
0 LG2

�
.

So, L has at least two orthogonal eigenvectors of eigenvalue zero:

0
1

�
and


1
0

�
.

where we have partitioned the vectors as we did the matrix L.

On the other hand, assume that G is connected and that  is an eigenvector of L of eigenvalue 0.
As

L = 0,

we have
xTLx =

X

(a,b)2E

( (a)� (b))2 = 0.

Thus, for every pair of vertices (a, b) connected by an edge, we have  (a) =  (b). As every pair
of vertices a and b are connected by a path, we may inductively apply this fact to show that
 (a) =  (b) for all vertices a and b. Thus,  must be a constant vector. We conclude that the
eigenspace of eigenvalue 0 has dimension 1.

Of course, the same holds for weighted graphs.
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3.2 Drawing with Laplacian Eigenvalues

The idea of drawing graphs using eigenvectors demonstrated in Section 1.5.1 was suggested by
Hall [Hal70] in 1970.

To explain Hall’s approach, we first consider the problem of drawing a graph on a line. That is,
mapping each vertex to a real number. It isn’t easy to see what a graph looks like when you do
this, as all of the edges sit on top of one another. One can fix this either by drawing the edges of
the graph as curves, or by wrapping the line around a circle.

Let x 2 IRV be the vector that describes the assignment of a real number to each vertex. We
would like vertices that are neighbors to be close to one another. So, Hall suggested that we
choose an x minimizing

xTLx =
X

(a,b)2E

(x (a)� x (b))2. (3.4)

Unless we place restrictions on x , the solution will be degenerate. For example, all of the vertices
could map to 0. To avoid this, and to fix the scale of the embedding overall, we require

X

a2V

x (a)2 = kxk2 = 1. (3.5)

Even with this restriction, another degenerate solution is possible: it could be that every vertex
maps to 1/

p
n. To prevent this from happening, we impose the additional restriction that

X

a

x (a) = 1Tx = 0. (3.6)

On its own, this restriction fixes the shift of the embedding along the line. When combined with
(3.5), it guarantees that we get something interesting.

As 1 is the eigenvector of smallest eigenvalue of the Laplacian, Theorem 2.2.2 implies that a unit
eigenvector of �2 minimizes xTLx subject to (3.5) and (3.6).

Of course, we really want to draw a graph in two dimensions. So, we will assign two coordinates
to each vertex given by x and y . As opposed to minimizing (3.4), we will minimize the sum of
the squares of the lengths of the edges in the embedding:

X

(a,b)2E

����

✓
x (a)
y(a)

◆
�

✓
x (b)
y(b)

◆����
2

.

This turns out not to be so di↵erent from minimizing (3.4), as it equals

X

(a,b)2E

(x (a)� x (b))2 + (y(a)� y(b))2 = xTLx + yTLy .

As before, we impose the scale conditions

kxk2 = 1 and kyk2 = 1,
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and the centering constraints
1Tx = 0 and 1Ty = 0.

However, this still leaves us with the degenerate solution x = y =  2. To ensure that the two
coordinates are di↵erent, Hall introduced the restriction that x be orthogonal to y . To embed a
graph in k dimensions, we find k orthonormal vectors x 1, . . . ,x k that are orthogonal to 1 and
minimize

P
i x

T
i Lx i. A natural choice for these is  2 through  k+1, and this choice achieves

objective function value
Pk+1

i=2 �i.

The following theorem says that this choice is optimal. It is a variant of [Fan49, Theorem 1].

Theorem 3.2.1. Let L be a Laplacian matrix and let x 1, . . . ,x k be orthonormal vectors that are
all orthogonal to 1. Then

kX

i=1

xT
i Lx i �

k+1X

i=2

�i,

and this inequality is tight only when xT
i  j = 0 for all j such that �j > �k+1.

Proof. Without loss of generality, let  1 be a constant vector.

Let x k+1, . . . ,xn be vectors such that x 1, . . . ,xn is an orthonormal basis. We can find these by
choosing x k+1, . . . ,xn to be an orthonormal basis of the space orthogonal to x 1, . . . ,x k. We now
know that for all 1  i  n

nX

j=1

( T
j x i)

2 = 1 and
nX

j=1

(xT
j  i)

2 = 1.

That is, the matrix with i, j entry ( T
j x i)2 is doubly-stochastic1.

Since  T
1 x i = 0, Lemma 2.1.1 implies

xT
i Lx i =

nX

j=2

�j( 
T
j x i)

2

= �k+1 +
nX

j=2

(�j � �k+1)( 
T
j x i)

2, by
nX

j=2

( T
j x i)

2 = 1

� �k+1 +
k+1X

j=2

(�j � �k+1)( 
T
j x i)

2,

as �j � �k+1 for j > k + 1. This inequality is only tight when ( T
j x i)2 = 0 for j such that

�j > �k+1.

1
This theorem is really about majorization, which is easily established through multiplication by a doubly-

stochastic matrix.
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Summing over i we obtain

kX

i=1

xT
i Lx i � k�k+1 +

k+1X

j=2

(�j � �k+1)
kX

i=1

( T
j x i)

2

� k�k+1 +
k+1X

j=2

(�j � �k+1)

=
k+1X

j=2

�j ,

where the inequality follows from the facts that �j � �k+1  0 and
Pk

i=1( 
T
j x i)2  1. This

inequality is tight under the same conditions as the previous one.

The beautiful pictures that we sometimes obtain from Hall’s graph drawing should convince you
that eigenvectors of the Laplacian should reveal a lot about the structure of graphs. But, it is
worth pointing out that there are many graphs for which this approach does not produce nice
images, and there are in fact graphs that can not be nicely drawn. Expander graphs are good
examples of these.

Many other approaches to graph drawing borrow ideas from Hall’s work: they try to minimize
some function of the distances of the edges subject to some constraints that keep the vertices well
separated. However, very few of these have compactly describable solutions, or even solutions
that can provably be computed in polynomial time. The algorithms that implement them
typically use a gradient based method to attempt to minimize the function of the distances
subject to constraints. This means that relabeling the vertices could produce very di↵erent
drawings! Thus, one must be careful before using these images to infer some truth about a graph.


