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2 Ledoux and Malham

1 Grassmannian

This is the more formal review from Ledoux, Malham and Thümmler [11]. It has been

been adapted slightly to conform with the more traditional exposition in the literature,

which is to use row-span rather than column-span for the k-planes. Our main references

are Chern [2], Griffiths and Harris [6], Milnor and Stasheff [12], Montgomery [13],

Steenrod [17] and Warner [18, p. 130].

1.1 Stiefel and Grassmann manifolds

A k-frame is a k-tuple of k 6 n linearly independent vectors in C
n. The Stiefel manifold

V(n, k) of k-frames is the open subset of C
n×k of all k-frames centred at the origin.

The set of k-dimensional subspaces of C
n forms a complex manifold Gr(n, k) called

the Grassmann manifold of k-planes in C
n (see Steenrod [17, p. 35] or Griffiths and

Harris [6, p. 193]).

The fibre bundle π : V(n, k) → Gr(n, k) is a principal fibre bundle. For each y in

the base space Gr(n, k), the inverse image π−1(y) is homeomorphic to the fibre space

GL(k) which is a Lie group; see Montgomery [13, p. 151]. The projection map π is

the natural quotient map sending each k-frame centered at the origin to the k-plane it

spans; see Milnor and Stasheff [12, p. 56].

1.2 Representation

Following the exposition in Griffiths and Harris [6], any k-plane in C
n can be rep-

resented by an k × n matrix of rank k, say Y ∈ C
k×n. Any two such matrices Y

and Y ′ represent the same k-plane element of Gr(n, k) if and only if Y ′ = uY for

some u ∈ GL(k) (the k-dimensional subspace elements are invariant to rank k closed

transformations mapping k-planes to k-planes).

Let jj = {i1, . . . , ik} ⊂ {1, . . . , n} denote a multi-index of cardinality k. Let Yjj◦ ⊂ C
n

denote the (n − k)-plane in C
n spanned by the vectors {ej : j 6∈ jj} and

Ujj =
˘

Y ∈ Gr(n, k) : Y ∩ Yjj◦ = {0}
¯

.

In other words, Ujj is the set of k-planes Y ∈ Gr(n, k) such that the k× k submatrix of

one, and hence any, matrix representation of Y is nonsingular (representing a coordinate

patch labelled by jj).

Any element of Ujj has a unique matrix representation yjj◦ whose jjth k×k submatrix

is the identity matrix. For example, if jj = {1, . . . , k}, then any element of U{1,...,k} can

be uniquely represented by a matrix of the form

yjj◦ =

0

B

B

B

@

1 0 · · · 0 ŷ1,k+1 ŷ1,k+2 · · · ŷ1,n

0 1 · · · 0 ŷ2,k+1 ŷ2,k+2 · · · ŷ2,n

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 ŷk,k+1 ŷk,k+2 · · · ŷk,n

1

C

C

C

A

,

where ŷi,j ∈ C for i = 1, . . . , k and j = k + 1, . . . , n. Conversely, an k × n matrix of

this form represents a k-plane in Ujj. Each coordinate patch Ujj is an open, dense subset
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of Gr(n, k), and the union of all such patches covers Gr(n, k). For each jj, there is a

bijective map ϕjj : Ujj → C
k(n−k) given by

ϕjj : yjj◦ 7→ ŷ .

Each ϕjj is thus a local coordinate chart for the coordinate patch Ujj of Gr(n, k). For all

jj, jj′, if Y ∈ Ujj∩Ujj′ and ujj′,jj is the jj′th k×k submatrix of yjj◦ , then y(jj′)◦ = (ujj′,jj)
−1yjj◦ .

Since ujj′,jj represents the transformation between representative patches and depends

holomorphically on yjj◦ , we deduce that ϕjj ◦ ϕ−1
jj′ is holomorphic. Note that Gr(n, k)

has a structure of a complex manifold (see Griffiths and Harris [6, p. 194]). Further

the unitary group U(n) acts continuously and surjectively on Gr(n, k). Hence Gr(n, k)

is compact and connected. Lastly, the general linear group GL(n) acts transitively on

Gr(n, k), and it is a homogeneous manifold isomorphic to GL(n)/GL(n − k) × GL(k)

(see Chern [2, p. 65] or Warner [18, p. 130]).

Example. This example is taken from Billey [1]. Suppose Y is the 3-plane in C
4 given

by Y = span{6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4}. We can use the following matrix

representation for this plane

MY =

0

@

6 3 0 0

4 0 2 0

9 0 1 1

1

A .

Then Y ∈ Gr(4, 3) iff the rows of MY are independent vectors in C
n, which is true iff

some 3×3 minor of MY is not zero. Further, every subspace in Gr(n, k) can represented

by a unique matrix in row echelon form:

MY =

0

@

6 3 0 0

4 0 2 0

9 0 1 1

1

A =

0

@

3 0 0

0 2 0

0 1 1

1

A

0

@

2 1 0 0

2 0 1 0

7 0 0 1

1

A

where the matrix on the right represents span{2e1 + e2, 2e1 + e3, 7e1 + e4}.

2 Projective spaces

We introduce projective space. We will be much less formal here and in the following

sections; and driven more by example. Our main references here are Kleiman and

Laksov [9] and Hatcher [7].

2.1 Affine and projective space

We quote from Kleiman and Laksov [9]. A set of n-tuples
`

a1, . . . , an

´

of complex

numbers is called affine n-space and denoted C
n. A point P of projective n-space P

n

is defined by an (n + 1)-tuple
`

p0, . . . , pn

´

of complex numbers not all zero. The pi

are called the coordinates of P . Another (n + 1)-tuple
`

p̂0, . . . , p̂n

´

also defines P if

and only if there is a number c satisfying pi = c p̂i for all i = 0, . . . , n. Identifying a

point
`

a1, . . . , an

´

of C
n with the point

`

1, a1, . . . , an

´

of P
n, we may think of P

n as

C
n completed by the points

`

0, b1, . . . , bn

´

“at infinity”. We will use RP
n to distinguish

real projective n-space from complex projective n-space P
n. Let D

n denote the unit

ball in R
n. Note that we can regard the n-sphere S

n as the quotient space D
n/∂D

n.
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Example (stereographic projection). There are several different versions of stereo-

graphic projection of the plane which depend on where you take the plane to go through

the north pole, equator or south pole of the unit sphere and whether you project from

the poles or centre of the unit sphere (obviously taking the projection point distinct

from the said intersection). Let us take the plane to intersect the unit sphere at the

equator and the north pole as the projection point. Then RP
2 = R

2 ∪ R
1 ∪ R

0 ∼= H+

where H+
∼= D

1 is the northern hemisphere. Here in this cell decomposition of RP
2, we

have that RP
2 is the union of the real plane R

2 with the one dimensional projective real

space RP
1 = R

1 ∪ R
0 representing the “ray” directions at “infinity” which itself has

the decomposition into the real line plus a point at “infinity”. In coordinates (1, x, y)

parameterizes the plane R
2 which corresponds to the northen hemisphere without the

equator, while (0, 1, y) parameterizes the equator without the final point e3 := (0, 0, 1).

Example (Real projective n-space). This example comes from Hatcher [7, p. 6]. RP
n

is the space of all lines through the origin in R
n+1. Each such line is determined by

a nonzero vector in R
n+1 which will be unique up to nonzero scalar multiplication;

hence we can restrict ourselves to vectors of unit length in R
n+1. Thus RP

n can be

topologized as R
n+1\{0} quotiented by the equivalence relation v ∼ λv for scalars

λ 6= 0. We can also regard RP
n as the quotient space S

n/{v ∼ −v}, i.e. the sphere with

antipodal points identified. Equivalently we can regard RP
n as a hemisphere D

n with

antipodal points of ∂D
n identified. Note that ∂D

n with antipodal points identified is

(by our definition) simply RP
n−1; and this reveals how we can develop the cell-complex

structure of RP
n.

Example (Complex projective n-space). This also comes from Hatcher [7, p. 6–7]. As for

real projective n-space, P
n or CP

n can be topologized as the quotient space of C
n+1\{0}

under the equivalence relation v ∼ λv for complex scalars λ 6= 0. Equivalently this can

be thought of as the quotient space of the unit sphere S
2n+1 ⊂ C

n+1 with v ∼ λv for

|λ| = 1.

The vectors in S
2n+1 ⊂ C

n+1 with last coordinate real and non-negative are the

vectors of the form (w,
√

1 − w2) in C
n×C with |w| 6 1. These vectors form the graph

of the function w 7→
√

1 − w2. This is a disk D
2n
+ bounded by the sphere S

2n−1 ⊂ S
2n+1

consisting of vectors (w, 0) ∈ C
n × C with |w| = 1. Each vector in S

2n+1 is equivalent

under the identification v ∼ λv to a vector in D
2n
+ . Such a vector in D

2n
+ is unique if

its last coordinate is nonzero (if the last coordinate is zero, we have the identifications

v ∼ λv for v ∈ S
2n−1). Hence P

n is the quotient space of D
2n
+ under the identifications

v ∼ λv for v ∈ S
2n−1; and this reveals how we can develop the cell-complex structure

of P
n with cells of even (real) dimension.

2.2 Projective linear spaces

Again we quote from Kleiman and Laksov [9]. A projective linear space L in P
n is

defined as the set of points P =
`

p0, . . . , pn

´

∈ P
n whose coordinates pj satisfy a

system of linear equations B · P = 0 for some constant matrix B ∈ C
(n−k)×(n+1).

We say that L is k-dimensional if these (n − k) equations are independent, i.e. if B

has a non-zero (n − k) × (n − k) minor. There are then (k + 1) points Pi in L, with

i = 0, 1, . . . , k, which span L. We call L a projective line if k = 1, a projective plane if

k = 2, etc.
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Example (Grassmannian of projective planes). We can think of the Grassmannian

Gr(n, k), of affine k-planes in affine n-space, as the parameter space of (k−1)-dimensional

projective linear spaces in P
n−1. When this point of view is being considered, we denote

the Grassmannian by G(k − 1, n − 1). See Coskun [3, p. 3].

3 Schubert cells

We summarize well known facts about Schubert cells. Our main references are Billey [1],

Coskun [3], Fulton [4], Griffiths and Harris [6], Hatcher [7,8] Kleiman and Laksov [9]

and Kresch [10].

3.1 Flag manifolds

Let V be an n-dimensional vector space. A flag for V is a nested sequence of vector

subspaces Vi of V where the difference in dimension of two consecutive vector spaces

is one. Usually we denote a flag by

F• : F1 ⊂ . . . ⊂ Fn = V.

For example the standard flag E• for C
n would have Ei = span{e1, . . . , ei} = C

i where

ei are the normalized coordinate (complex) vectors for i = 1, . . . , n in C
n. See for

example Kresch [10, p. 5].

3.2 Schubert cell decomposition

We have already seen an example of a cell decomposition, that of P
n = Gr(n + 1, 1)

which is given by

P
n = C

n ∪ C
n−1 ∪ . . . ∪ C

1 ∪ C
0.

Let Gr(n, k) denote the classical/affine Grassmannian that parameterizes k-dimensional

linear subspaces of a fixed n-dimensional vector space V. Fix a flag, say the standard

flag E• of V = C
n. The Grassmannian has a decomposition as the disjoint union of

Schubert cells:

Gr(n, k) =
G

jj∈[n]

Cjj,

where for each index jj = {j1, . . . , jk} the Schubert cell Cjj has a unique representation

as a k × n matrix in row echelon form, where the (ℓ, jℓ) position (ℓ = 1, . . . , k and

1 6 j1 < j2 < · · · < jk 6 n) contains 1 with zeros above, below and to the right of that

position. Using matrix representation, any Y ∈ Gr(n, k) by Gaussian elimination, lies

in one such cell. Hence each cell denotes a set of k-planes that satisfy a common set

of conditions—they all intersect say the standard flag E• with the same attitude—see

Kleiman and Laksov [9]. Note that for jj = {j1, . . . , jk}, we have dim(Cjj) =
P

jℓ− ℓ. To

cement the importance of the Schubert cells we quote the following proposition from

Hatcher [8, p. 33].

Proposition 1 The cells Cjj are the cells of a CW structure on Gr(n, k).
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Moreover, Cjj
∼= C

P

jℓ−ℓ and the cells are even dimensional (in terms of real dimen-

sions); see Coskun [3, p. 4] and Kresch [10, p. 3].

Example. This comes from Postnikov [14] and Billey [1]; also see Hatcher [8, p. 32].

Consider an element Y ∈ Gr(10, 3), which after we perform Gaussian elimination where

we strive to make zeros in the upper right corner, we arrive at

0

@

6 5 1 0 0 0 0 0 0 0

2 7 0 9 3 2 1 0 0 0

7 5 0 8 4 4 0 3 1 0

1

A .

The row-span of this matrix is an equivalent prescription for our original 3-plane Y

in C
10. Note that the pivot elements occur in columns 3, 7, 9, respectively, as we run

down rows 1, 2, 3. Hence in this example jj = {3, 7, 9}. This k-subset jj, determines the

position of Y with respect to the fixed basis; see Billey [1].

Since for a given multi-index jj ∈ [n] a Schubert cell

Cjj =
˘

Y ∈ Gr(n, k) : position(Y ) = {j1, . . . , jk}
¯

then the Schubert cell C{3,7,9} is the set of all planes whose attitude/position, with

respect to a fixed flag, is {3, 7, 9}. Hence C{3,7,9} is parameterized by the set of all row

echelon matrices of the form

0

@

∗ ∗ 1 0 0 0 0 0 0 0

∗ ∗ 0 ∗ ∗ ∗ 1 0 0 0

∗ ∗ 0 ∗ ∗ ∗ 0 ∗ 1 0

1

A ,

where the entries ‘∗’ are arbitrary. Note that dim(C{3,7,9}) = 13. We call jj the Schubert

symbol.

Remarks. Several indexing conventions exist, each bijectively mapped to jj, for example,

for ℓ = 1, . . . , k, two common indexing labels which we will use later are

aℓ := jℓ − ℓ or λℓ := n − k − aℓ.

Here aℓ counts the number of non-zero elements to the left of (ℓ, jℓ). The index λ =

{λ1, . . . , λk} counts the number of zero elements to the right of (ℓ, jℓ) minus the number

of remaining pivots below row ℓ. It gives a partition of k · (n − k) associated with a

Young diagram; see Section 4.3 below. These bijections mean that dim(Cjj) =
P

jℓ−ℓ =
P

aℓ = k(n − k) − P

λℓ; see Billey [1] or Fulton [4]. We have fixed the flag to be the

standard flag E•. With respect to this flag, or indeed any other flag F• of C
n, another

prescription for the Schubert cell Cjj(F•) is

Cjj(F•) =
˘

Y ∈ Gr(n, k) : dim(Y ∩ Fjℓ
) = ℓ

¯

.

See for example Coskun [3, p. 3].

Example. The Grassmannian Gr(3, 2) has three cells corresponding to the Schubert

symbols jj = {1, 2}, jj = {1, 3} and jj = {2, 3}. If we in this case specify this as the

Grassmannian of affine real 2-planes in R
3, then these cells have real dimensions 0, 1

and 2, respectively. With respect to the flag E• they are parameterized as follows:

C{1,2} :

„

1 0 0

0 1 0

«

; C{1,3} :

„

1 0 0

0 ∗ 1

«

; C{2,3} :

„

∗ 1 0

∗ 0 1

«

.
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Hence we see that C{2,3} parameterizes the planes in R
3 through the origin and inter-

secting the lines through (0, 1, 0) and (0, 0, 1) parallel to e1. The cell C{1,3} parameter-

izes the planes in R
3 through the origin, the point (1, 0, 0) and that intersect the line

through (0, 0, 1) parallel to e2 (indicated by the dashed lines in figure below). Lastly

the cell C{1,2} is the single plane through the origin and the points (1, 0, 0) and (0, 1, 0),

i.e. the plane of the e1 and e2 axes.
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Example. The Grassmannian Gr(4, 2) has six cells corresponding to the Schubert sym-

bols jj = {1, 2}, jj = {1, 3}, jj = {1, 4}, jj = {2, 3}, jj = {2, 4} and jj = {3, 4}, and these

cells have complex dimensions 0, 1, 2, 2, 3 and 4, respectively. With respect to the flag

E• they are parameterized as follows:

C{1,2} :

„

1 0 0 0

0 1 0 0

«

; C{1,3} :

„

1 0 0 0

0 ∗ 1 0

«

; C{1,4} :

„

1 0 0 0

0 ∗ ∗ 1

«

;

C{2,3} :

„

∗ 1 0 0

∗ 0 1 0

«

; C{2,4} :

„

∗ 1 0 0

∗ 0 ∗ 1

«

; C{3,4} :

„

∗ ∗ 1 0

∗ ∗ 0 1

«

.

In terms of the other two common indexing conventions, these cells correspond to a

given by: {0, 0}; {0, 1}; {0, 2}; {1, 1}; {1, 2} and {2, 2}; and λ given by: {2, 2}; {2, 1};
{2}; {1, 1}; {1} and {0} (it is usual to drop superfluous ending zeros).

4 Schubert varieties

4.1 Plücker embedding

There is a natural map, the Plücker map,

p : Gr(n, k) → P
`
Vk

C
n

´

that sends each k-plane with basis Y = [Y1, . . . , Yk] to Y1 ∧ . . . ∧ Yk; see Griffiths and

Harris [6] or Coskun [3]. If we change the basis, the basis for the image changes by the

determinant of the transformation matrix. Hence the map is a point in P
`
Vk

C
n

´

. We

can recover Y from its image Y1∧. . .∧Yk as the set of all vectors v such that v∧Y1∧. . .∧
Yk = 0. Further, a point of P

`
Vk

C
n

´

is in the image of p if and only if its representation

as a linear combination of the basis elements of
Vk

C
n, consisting of all possible distinct
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wedge products of a k-dimensional basis in C
n, is completely decomposable. Hence

the image of p is a subvariety of P
`
Vk

C
n

´

of completely decomposable elements. It

can also be realized as follows. A natural coordinatization of P
`
Vk

C
n

´

is through

the determinants of all the k × k submatrices of Y , normalized by a chosen minor

characterized by an index jj; hence P
`
Vk

C
n

´ ∼= P
(nk)−1. These minor determinants (the

Plücker coordinates) are not all independent; indeed, they satisfy quadratic relations

known as the Plücker relations (which may themselves not all be independent). The

image of the Plücker map p is thus the subspace of P
(nk)−1 cut out by the quadratic

Plücker relations.

Example. For the Grassmannian Gr(4, 2) there is a unique Plücker relation given by

f12f34 − f13f24 + f14f23 = 0,

where the fij = fij(Y ) are the 2 × 2 determinants of the submatrix consisting of

columns i and j from Y . Hence the Plücker map embeds Gr(4, 2) in P
5 as a smooth

quadric hypersurface; see Coskun [3, p. 8].

4.2 Schubert varieties

As we have just seen, Gr(n, k) is itself a variety; it is the subvariety of P
`
Vk

C
n

´

con-

sisting of the subspace cut out by the quadratic Plücker relations. For jj = {j1, . . . , jk}
and Y ∈ C

k×n, define fjj(Y ) to be the homogeneous polynomial of degree k given by

fjj(Y ) := det

0

B

B

B

@

y1,j1 y1,j2 · · · y1,jk

y2,j1 y2,j2 · · · y2,jk

...
...

...
...

yk,j1 yk,j2 · · · yk,jk

1

C

C

C

A

.

The Zariski topology on C
k×n is the topology of closed sets given by

V (fjj) = {Y ∈ C
k×n : fjj(Y ) = 0 for all jj ∈ [n]}.

Definition 1 The Schubert varieties Xjj for each jj ∈ [n], are defined as the closure in

the Zariski topology of the corresponding Schubert cells, i.e. Xjj := Cjj. Equivalently we

could define the Schubert variety, with respect to any complete flag F•, corresponding

to jj by Xjj(F•) =
˘

Y ∈ Gr(n, k) : dim(Y ∩ Fjℓ
) > ℓ

¯

.

See Griffiths and Harris [6, p. 195] and Coskun [3, p. 3]. For reasons that will become

apparently presently, it is more convenient to use the λ indexing convention for Schubert

varieties.

Example. This comes from Billey [1] and Sottile [16, p. 50]. Practically to determine a

variety Xjj(E•), with say jj = {3, 7, 9}, we should ask ourselves, which linear spaces are

in the closure of the corresponding cell C{3,7,9}? Consider the set of matrices with full

rank 3 where the entries in row ℓ are undetermined up to and including the column jℓ

and zero thereafter. For jj = {3, 7, 9}, these matrices have the form

0

@

∗ ∗ ∗ 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

1

A .
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The answer, i.e. the Schubert variety Xjj with jj = {3, 7, 9}, is determined by all the

minors fj1j2j3 which vanish on this set of matrices. These are the minors with either:

4 6 j1 6 8; or with j1 = 3 and 8 6 j2 6 9; or with j1 = 3, j2 = 7 and j3 = 10.

Note that the pivots jj′ of any matrix from this set will occur weakly to the left of the

columns jj. Further, for Y ∈ Xjj we have that fjj′(Y ) = 0 unless jj′ 6 jj.

Example. Recall our decomposition of Gr(4, 2) into six cells of complex dimensions

0,1,2,2,3 and 4, corresponding to the Schubert symbols jj = {1, 2}, jj = {1, 3}, jj = {1, 4},
jj = {2, 3}, jj = {2, 4} and jj = {3, 4}, respectively. Also recalling that for any Y ∈ Gr(4, 2)

we know that f12f34−f13f24 +f14f23 = 0, the corresponding Schubert varieties, using

the λ index, are respectively:

X2,2 = {Y ∈ Gr(4, 2) : f13 = f14 = f23 = f24 = f34 = 0}
X2,1 = {Y ∈ Gr(4, 2) : f14 = f23 = f24 = f34 = 0}
X2 = {Y ∈ Gr(4, 2) : f23 = f24 = f34 = 0}

X1,1 = {Y ∈ Gr(4, 2) : f14 = f24 = f34 = 0}
X1 = {Y ∈ Gr(4, 2) : f34 = 0}.

Note that the Schubert variety X0 of dimension 4 is simply Gr(4, 2).

4.3 Partitions and Young tableaux

Definition 2 A partition of a number n into k parts, is an additive decomposition

of n into a weakly decreasing sequence of k non-negative integers, i.e. we can write

n = |λ| = λ1 + · · ·λk with λ1 > λ2 > . . . > λk.

Partitions can be visualized using Young diagrams where we stack boxes with λ1 boxes

stacked on top of λ2 boxes and so forth, and by convention we align them to the left. As

we have already pointed out, there is a bijection between k-subsets of [n] and partitions

whose Young diagram is contained in a k × (n − k) rectangle, given by

jj 7→ λ = {n − k − j1 + 1, n − k − j2 + 2, . . . , n − jk}.

The bijection sh: jj 7→ a = {j1 − 1, j2 − 2, . . . , jk − k} gives the shape of a variety Xjj.

See Billey [1], Fulton [4] and Fulton and Anderson [5] for more details. For a given λ

or jj we have the following decomposition of a Schubert variety into Schubert cells:

Xjj =
[

sh(jj′)⊆sh(jj)

Cjj′ ⇔ Xλ =
[

λ⊆µ

Cµ.

We already hinted at this result above in the example with jj = {3, 7, 9}. Further note

that dim(Xλ) = n − k − |λ| = |sh(jj)| = |a|.
Example (Young diagram). For the case n = 10 and k = 3 with jj = {3, 7, 9}, we see

that a = {2, 5, 6} and λ = {5, 2, 1}. The corresponding Young diagram is



10 Ledoux and Malham

5 Schubert cycles and cohomology

5.1 Schubert classes

We begin by remarking that Schubert varieties can be defined with respect to any flag

F• of C
n (let us focus on the affine case for the moment, we return to the projective

case in Section 5.3). If E• is the standard flag, then since dim(Fi) = dim(Ei) for

each i = 1, . . . , n there is an element in GL(n) carrying each Ei onto Fi for each i.

Hence Xλ(F•) is the translate of Xλ(E•) by a suitable element of GL(n). Indeed any

k-plane Y in C
n is carried by, say T ∈ GL(n), to T (Y ). If Y satisfies the Schubert

conditions dim(Y ∩ Ejℓ
) > ℓ for all ℓ, then T (Y ) satisfies the Schubert condition

dim(T (Y ) ∩ Fjℓ
) > ℓ for all ℓ, since T (Ei) = Fi. Further the Plücker coordinates with

respect to the flag F• are simply linear combinations of the Plücker coordinates with

respect to E•. See Kleiman and Laksov [9, p. 1067–8] and Coskun [3, p. 5].

Indeed, the general linear group GL(n) acts transitively on the flags in C
n, and as

we have demonstrated, acts transitively on the subvarieties Xλ. If two subvarieties be-

long to the same continuous system of subvarieties, by translation/deformation through

elements in GL(n) (i.e. they are homotopic), then both are assigned the same cohomol-

ogy class. The cohomology classes [Xλ] of the Schubert varieties Xλ are called Schubert

cycles σλ. They depend only on the Schubert symbols λ, or equivalently jj or a.

Example. The cohomology class of the Schubert subvariety Xλ(F•) is by definition

independent of the chosen flag F•. Recalling the Schubert cell structure for Gr(4, 2)

from above, when the Schubert cycles σλ are realized with respect to a given flag F•

as affine 2-planes in C
4, they are prescribed by

codim 1: σ1(F2) = {Y : dim(Y ∩ F2) > 1}
codim 2: σ1,1(F3) = {Y : Y ⊂ F3}
codim 2: σ2(F1) = {Y : F1 ⊂ Y }
codim 3: σ2,1(F1, F3) = {Y : F1 ⊂ Y ⊂ F3}.

Suppose we now think of G(3, 1) = Gr(4, 2) as the set of projective lines l in P
3. Fix

the projective flag of P
3 consisting of a point p̂ contained in a line l̂ contained in a

hyperplane ĥ in P
3, then

σ1(l̂) = {l : l ∩ l̂ 6= φ}
σ1,1(ĥ) = {l : l ∈ ĥ}

σ2(p̂) = {l : p̂ ∈ l}
σ2,1(p̂, ĥ) = {l : p̂ ∈ l ⊂ ĥ}.

In other words, in terms of varieties with respect to the projective flag p̂ ⊂ l̂ ⊂ ĥ, then:

X1 parameterizes projective lines that intersect l̂; X1,1 parameterizes projective lines

that are contained in ĥ; X2 parameterizes projective lines that contain p̂; and X2,1

parameterizes projective lines that are contained in ĥ and that contain p̂. See Griffiths

and Harris [6, p. 197] and Coskun [3, p. 4].
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5.2 Cohomology

Multiplication of Schubert classes, the cup-product, corresponds to intersecting the

corresponding Schubert varieties with respect to different flags (bases):

σλ · σµ = [Xλ] ` [Xµ] := [Xλ(F•) ∩ Xµ(F′
•)],

where F• and F
′
• are two distinct flags. However, any general pair of distinct flags F•

and F
′
• can be mapped by a suitable element of GL(n) to a specific pair consisting

of the standard flag E• with Ei = span{e1, . . . , ei} and the opposite flag E
′
• with

E
′
i = span{en−i+1, . . . , en}. Hence to compute σλ · σµ we examine the intersection

between the realizations Xλ(E•) and Xµ(E′
•), and then determine the class of the

intersection, i.e. in practice we compute

σλ · σµ := [Xλ(E•) ∩ Xµ(E′
•)].

This computation is neatly performed using Young tableaux as can be found in Ful-

ton [4, pp. 145–153]; see Section 6.

Importantly, the Schubert cycles σλ give a basis for the cohomology ring of the

Grassmannian Gr(n, k) under the cup-product. Indeed from algebraic topology we

know that the cohomology group with integer coefficients Hi(Gr(n, k), Z) is zero when

i is not in the interval [0, 2k(n − k)], and these groups grade the cohomology ring of

Gr(n, k):

H∗`

Gr(n, k); Z
´

=
M

i

Hi(Gr(n, k), Z).

Further, the product of two Schubert cycles σλ and σµ can be expressed as a linear

combination of Schubert cycles

σλ · σµ =
X

ν

cν
λ,µ σν ,

where the structure constants cν
λ,µ are known as the Littlewood–Richardson coeffi-

cients. The algebra of the Schubert cycles mirrors that of Schur functions. See Kleiman

and Laksov [9], Coskun [3] and Billey [1].

Example. For the Grassmannian Gr(4, 2) = G(3, 1) it is possible to compute the

Littlewood–Richardson coefficients explicitly relatively easily. Of course, in practice,

we work with the Schubert subvarieties. To calculate X2 ∩X2, where X2 is the class of

projective lines that pass through a point, we take two points, and realize that there

is a unique line containing them both. Hence we must have X2 ∩ X2 = X2,2. Similarly

X1,1 ∩ X1,1 = X2,2 because there is a unique line of intersection between any two dis-

tinct planes in P
3. Further X1,1∩X2 = φ, since there is not a line which is contained in

a given plane that simultaneously passes through a point not in the plane. We consider

the case X1 ∩ X1 in detail in the next section.

We will consider the explicit construction of the homology and cohomology groups

later; they can be found in Hatcher [7].
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5.3 Enumerative geometry

To illustrate the power of thinking in terms of the Schubert classes and their cup

product, consider Schubert’s original question:

How many lines intersect four given lines in R
3?

Recall that for Gr(4, 2) = G(3, 1), the Schubert variety X1 parameterizes the set of

projective lines which intersect a given line l̂. The lines that intersect four given lines

l̂1, l̂2, l̂3 and l̂4, are represented by the product σ1 · σ1 · σ1 · σ1 = (σ1)
4. With a slight

abuse of notation this is σ1(l̂1)∩ σ1(l̂2)∩ σ1(l̂3)∩ σ1(l̂4). More correctly, we determine

how many subspaces in Gr(4, 2) lie in

X1(F
(1)
• ) ∩ X1(F

(2)
• ) ∩ X1(F

(3)
• ) ∩ X1(F

(4)
• ).

Here the projective flags F
(i)
• for i = 1, . . . , 4 are distinct and chosen so that F

(i)
1 = l̂i.

Formally the computation follows a recipe given by the multiplication of Schur functions

or using Young diagrams; we get

[X1(F
(1)
• ) ∩ X1(F

(2)
• ) ∩ X1(F

(3)
• ) ∩ X1(F

(4)
• )] = (σ1)

4 = 2σ2,2 + · · · .

The coefficient of the zero dimensional cycle σ2,2 is 2, representing two lines meeting

four given lines in general position. See Billey [1] and Kleiman and Laksov [9, pp. 1068–

9]. Lastly, we quote from Kleiman & Laksov [9, pp. 1070–1]:

Perhaps the most important result in the theory of cohomological classes is this:

When several subvarieties intersect properly in a finite set of points, then the

number of points counted with multiplicity, is equal to the degree of the prod-

uct of the corresponding cohomology classes. Roughly put, the theorem holds

because passing to cohomology classes turns intersection into cup-product. For

example suppose that each subvariety represents the k-planes in P
n which sat-

isfy certain geometric conditions. The the number of k-planes which simultane-

ously satisfy all the conditions, multiplicities being taken into account, can be

determined by formally computing with the corresponding cohomology classes.

Since the cohomology classes all remain the same when the subvarieties vary

in a continuous system, this number will remain constant when the geometric

conditions are varied (or specialized) in a continuous way.

6 Computing the product of Schubert cycles

6.1 Using Young diagrams

As we have seen, the product of two Schubert cycles can be computed as σλ · σµ :=

[Xλ(E•)∩Xµ(E′
•)]. Hence in practice we need to compute the intersection between the

realizations Xλ(E•) and Xµ(E′
•).

Example. Note that if n = 12, k = 5 and λ = {5, 3, 3, 2, 1}, then the corresponding

Young diagram of Xλ is



Introductory Schubert calculus 13

and Schubert cell Cλ(E•) is

0

B

B

B

B

@

∗ ∗ 1 0 0 0 0 0 0 0 0 0

∗ ∗ 0 ∗ ∗ 1 0 0 0 0 0 0

∗ ∗ 0 ∗ ∗ 0 1 0 0 0 0 0

∗ ∗ 0 ∗ ∗ 0 0 ∗ 1 0 0 0

∗ ∗ 0 ∗ ∗ 0 0 ∗ 0 ∗ 1 0

1

C

C

C

C

A

.

With respect to the opposite flag E
′
• the Schubert cell Cλ(E′

•) becomes

0

B

B

B

B

@

0 1 ∗ 0 ∗ 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 1 ∗ 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 0 1 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 0 0 1 ∗ ∗ 0 ∗ ∗
0 0 0 0 0 0 0 0 0 1 ∗ ∗

1

C

C

C

C

A

.

The corresponding Young diagram for Xλ(E′
•) is the Young diagram above for Xλ(E•)

rotated by 180◦.

Our first formal result on the product of two Schubert cycles σλ and σµ is as follows;

see Fulton [4, p. 148].

Lemma 1 If Xλ(E•) ∩ Xλ(E′
•) 6= φ then necessarily λℓ + µk+1−ℓ 6 n − k for all

1 6 ℓ 6 n − k.

The condition for a non-empty intersection embodied in this lemma can be visualized

as follows. If in the k × (n − k) rectangle we fit the Young diagram for λ and at the

same time fit the Young diagram for µ rotated by 180◦, then the two diagrams must

not overlap. If in particular |λ|+ |µ| = k(n−k), then the intersection can be non-empty

if these diagrams exactly fit together.

Example. If n = 12, k = 5, λ = {5, 3, 3, 2, 1} and µ = {6, 5, 4, 4, 2} we get

��
��
��
��
��

��
�
�
�
�

������������
������������
����
��
��
��
����
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��������

Here the Schubert cell Cµ(E′
•) is parameterized by

0

B

B

B

B

@

0 0 1 ∗ ∗ 0 0 ∗ 0 ∗ 0 ∗
0 0 0 0 0 1 0 ∗ 0 ∗ 0 ∗
0 0 0 0 0 0 1 ∗ 0 ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗ 0 ∗
0 0 0 0 0 0 0 0 0 0 1 ∗

1

C

C

C

C

A

.
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In fact Xλ(E•) and Xλ(E′
•) meet in exactly one point, which is spanned by the basis

vectors corresponding to the pivots in Cλ(E•) and Cµ(E′
•).

Our last example establishes the following corollary or duality theorem:

σλ · σµ =

(

1, if λℓ + µk+1−ℓ = n − k for all 1 6 ℓ 6 k,

0, if λℓ + µk+1−ℓ > n − k for any 1 6 ℓ 6 k.

6.2 Pieri’s and Giambelli’s formulae

Consider the partition λ = i = {i, 0, 0, . . .}, i.e. where all parts of the partition except

the first are zero. The corresponding variety Xλ = Xi is known as a special Schubert

variety and the corresponding classes σi = [Xi] are known as special Schubert cycles.

Pieri’s rule gives an algorithm for computing the product of a special Schubert cycle

with any Schubert cycle. The formal result, we quote from Coskun [3, p. 7], is as follows.

Theorem 1 (Pieri’s formula) Let σλ be a special Schubert cycle and suppose σµ is

any Schubert cycle with µ = {µ1, . . . , µk}. Then we have

σλ · σµ =
X

σν

where the sum is over all ν such that µℓ 6 νℓ 6 µℓ−1 and
P

νℓ − µℓ = λ.

Example/proof. We can use the duality theorem to establish Pieri’s formula; see Ful-

ton [4, p. 150]. We must show that both sides of Pieri’s formula have the same inter-

section number with all cycles σµ′ with |µ′| = k(n − k) − |µ| − i. In terms of Young

diagrams, we put µ in the top left corner of the k × (n − k) rectangle, and µ′ rotated

by 180◦ into the lower right. Pieri’s formula is then equivalent to the assertion that

σµ′ · σµ · σi is 1 when the two diagrams do not overlap and no two of the i boxes

between the two diagrams are in the same column; and σµ′ · σµ · σi is 0 otherwise. For

example with n = 12, k = 5, µ = {5, 3, 3, 2, 1} and µ′ = {6, 4, 4, 2, 0} we get

��������������
��
��
��
��
��
��
��
��
��
��
��
��
����
��
��
��
��
��
��
��
��

��
��
��
������

��
�
�
�
��
�
�
�

��

We see first that the two diagrams do not overlap, and second that no two intervening

boxes are in the same column.

Theorem 2 (Giambelli’s formula) Any Schubert cycle can be expressed as a linear

combination of products of special Schubert cycles as follows:

σ{λ1,...,λk} = det

0

B

B

B

@

σλ1
σλ1+1 σλ1+2 · · · σλ1+k−1

σλ2−1 σλ2
σλ2+1 · · · σλ2+k−2

...
...

...
...

...

σλk−k+1 σλk−k+2 σλk−k+3 · · · σλk

1

C

C

C

A

.
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This follows directly from Pieri’s formula. As a consequence, we see that the special

Schubert cycles generate the cohomological ring of the Grassmannian. Pieri’s and Gi-

ambelli’s formulae give us an algorithm for computing the cup product of any two

Schubert cycles.

6.3 Littlewood–Richardson rule

Pieri’s formula is just a special case of the general product rule for the product of two

Schubert cycles σλ and σµ:

σλ · σµ =
X

ν

cν
λ,µ σν ,

where the cν
λ,µ are the Littlewood–Richardson coefficients. There are many rules for

determining the Littlewood–Richardson coefficients; see Coskun [3, p. 9].

7 Vector bundles over the sphere

We review some basic facts about vector bundles over S
k and fix some notation. Most

of the material in this section comes directly from Hatcher [8, Ch. 1]. Henceforth we will

also be much more results focused and include fewer examples (which can be found in

the cited literature). Before we proceed further though, let us first fix our main object.

Definition 3 An n-dimensional vector bundle is a map p : E → B together with a

vector space structure on the fibres p−1(b) for each b in the base space B, such that

the bundle is locally trivial. By this we mean that there is a cover {Uα} of B such that

for each open set Uα, there exists a homeomorphism gα : p−1(Uα) → Uα ×R
n. We call

E the total space.

There is a natural procedure to construct vector bundles E → S
k. We start by thinking

of the base space S
k as the union of two hemispheres D

k
+ and D

k
− and note that

D
k
+ ∩ D

k
− = S

k−1. Given a map g : S
k−1 → GL(n), let Eg be the quotient space

consisting of D
k
+ × R

n ⊔ D
k
− × R

n obtained by identifying (x, v) ∈ ∂D
k
− × R

n with
`

x, g(x)(v)
´

∈ ∂D
k
+ × R

n. There is a natural projection Eg → S
k and this is an n-

dimensional vector bundle. The map g is called the clutching or gluing function for Eg;

see Hatcher [8, p. 22].

We shall use [X, Y ] to denote the set of homotopy classes of maps X → Y . We

denote the set of isomorphism classes of n-dimensional vector bundles over B by

Vect(B, n). The we have the following result for complex vector bundles; see Hatcher [8,

p. 23].

Proposition 2 The map [Sk−1, GL(n)] → Vect(Sk, n) which sends a clutching function

g to the vector bundle Eg is a bijection.

8 Universal bundles

8.1 Pullback bundles

We quote a proposition from Hatcher [8, p. 18].
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Proposition 3 Suppose we are given the vector bundle p : E → B and a map f : A → B.

Then there exists a vector bundle p′ : E′ → A and a map f ′ : E′ → E, that takes each

fibre of E′ over a point a ∈ A isomorphically onto a fibre of E over f(a) ∈ B. The

vector bundle E′ is unique up to isomorphism.

The uniqueness of E′ up to isomorphism means there exists a function f∗ : Vect(B) →
Vect(A) taking the isomorphism class of E to the isomorphism class of E′. Indeed we

will denote E′ by f∗(E)—the bundle induced by f , i.e. the pullback of E by f .

8.2 Universal vector bundle

There is a canonical n-dimensional vector bundle over Gr(n, k), the Grassmannian of

k-planes in C
n. Define

Ek(Cn) =
˘

(Y, v) ∈ Gr(n, k) × C
n : v ∈ Y

¯

.

Then the projection p : Ek(Cn) → Gr(n, k) given by p : (Y, v) 7→ Y , is a vector bundle.

We are now in a position to quote the following theorem; see Milnor and Stasheff [12,

Sec. 5,14] or Hatcher [8, p. 29].

Theorem 3 For a paracompact base space X, the map

[X, Gr(n, k)] → Vect(X, n),

[f ] 7→ f∗(Ek),

is a bijection, provided n is sufficiently large.

Hence vector bundles over a fixed base space are classified by homotopy classes of

maps into Gr(n, k). We thus call Gr(n, k) the classifying space for n-dimensional vector

bundles and Ek → Gr(n, k) is called the universal bundle.

Remarks. Some important comments are:

1. Thus, any n-dimensional bundle over a paracompact base space, is obtainable as a

pullback of Ek → Gr(n, k); for n sufficiently large.

2. Every CW complex is paracompact; see Hatcher [8, p. 36].

3. Explicit calculation of [X, Gr(n, k)] is usually technically very difficult; and the

usefulness of the theorem is its theoretical implications. However, as we shall see,

for linear spectral problems what we construct is precisely [S2, Gr(n, k)]. The bundle

of interest though, has base space S
2 with the fibres Gr(n, k).

Example (tangent bundles). This example comes from Milnor and Stasheff [12, pp. 60-

1]. Given a smooth compact k-dimensional manifold M ⊂ R
n, the generalized Gauss

map G : M → Gr(n, k), assigns to each x ∈ M the tangent space TxM ∈ Gr(n, k).

Hence, up to isomorphism, we have the map [M, Gr(n, k)], and the tangent bundle

TM = G∗(Ek).

9 Chern characteristic classes

Here we will be extremely brief due to the anticipated connection to Schubert cycles.

Our main references are Hatcher [8, Ch. 3] and Fulton [4, Ch. 9].
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9.1 Chern classes

The Chern classes ci(E) ∈ H2i(B, Z) for a complex vector bundle E → B, measure

successively more sophisticated obstructions to trivality—applied successively to higher

dimensional skeletal components of the CW complex for B. They have the following

properties; we quote from Hatcher [8, p. 78].

Theorem 4 There is a unique sequence of functions c1, c2, . . . assigning to each complex

vector bundle E → B a class ci(E) ∈ H2i(B, Z), depending only on the isomorphism

class of E, such that:

1. ci

`

f∗(E)
´

= f∗`

ci(E)
´

for a pullback f∗(E);

2. c(E1 ⊕ E2) = c(E1) ` c(E2) for c = 1 + c1 + c2 + · · · ∈ H∗(B, Z);

3. ci(E) = 0 if i > dim(E).

9.2 Cohomology of Grassmannians

The cohomological ring of the Grassmannian is generated by the Chern classes of the

universal bundle Ek → Gr(n, k). Indeed, we have H∗`

Gr(n, k); Z
´ ∼= Z[c1, c2, . . . , cN ].

The ring of symmetric functions is generated by the Schur polynomials. There is an ad-

ditive homomorphism from the ring of Schur polynomials to the ring H∗`

Gr(n, k); Z
´

,

that sends each Schur polynomial to the corresponding Schubert cycle; see Fulton [4,

p. 152]. Indeed we already know that (see for example Kresch [10, p. 4])

H∗`

Gr(n, k); Z
´

=
M

λ⊆(n−k)k

Z · σλ.
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