
CHAPTER 1

Curves
1. Examples, Arclength Parametrization

We say a vector function fW .a; b/! R3 is Ck (k D 0; 1; 2; : : :) if f and its first k derivatives, f0, f00, . . . ,
f.k/, exist and are all continuous. We say f is smooth if f is Ck for every positive integer k. A parametrized
curve is a C3 (or smooth) map ˛W I ! R3 for some interval I D .a; b/ or Œa; b! in R (possibly infinite). We
say ˛ is regular if ˛0.t/ ¤ 0 for all t 2 I .

We can imagine a particle moving along the path ˛, with its position at time t given by ˛.t/. As we
learned in vector calculus,

˛0.t/ D
d˛

dt
D lim

h!0

˛.t C h/ ! ˛.t/

h

is the velocity of the particle at time t . The velocity vector ˛0.t/ is tangent to the curve at ˛.t/ and its length,
k˛0.t/k, is the speed of the particle.

Example 1. We begin with some standard examples.

(a) Familiar from linear algebra and vector calculus is a parametrized line: Given points P and Q in
R3, we let v D !!!PQ D Q ! P and set ˛.t/ D P C tv, t 2 R. Note that ˛.0/ D P , ˛.1/ D Q,
and for 0 " t " 1, ˛.t/ is on the line segment PQ. We ask the reader to check in Exercise 8 that of
all paths from P to Q, the “straight line path” ˛ gives the shortest. This is typical of problems we
shall consider in the future.

(b) Essentially by the very definition of the trigonometric functions cos and sin, we obtain a very natural
parametrization of a circle of radius a, as pictured in Figure 1.1(a):

˛.t/ D a
!

cos t; sin t
"

D
!

a cos t; a sin t
"

; 0 " t " 2" :

(a cos t, a sin t)
(a cos t, b sin t)

t
a a

b

(a) (b)

FIGURE 1.1
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(c) Now, if a; b > 0 and we apply the linear map

T WR2 ! R
2; T .x; y/ D .ax; by/;

we see that the unit circle x2Cy2 D 1maps to the ellipse x2=a2Cy2=b2 D 1. Since T .cos t; sin t/ D
.a cos t; b sin t/, the latter gives a natural parametrization of the ellipse, as shown in Figure 1.1(b).

(d) Consider the two cubic curves in R2 illustrated in Figure 1.2. On the left is the cuspidal cubic

y=tx

y2=x3

y2=x3+x2

(a) (b)

FIGURE 1.2

y2 D x3, and on the right is the nodal cubic y2 D x3Cx2. These can be parametrized, respectively,
by the functions

˛.t/ D .t2; t3/ and ˛.t/ D .t2 ! 1; t.t2 ! 1//:

(In the latter case, as the figure suggests, we see that the line y D tx intersects the curve when
.tx/2 D x2.x C 1/, so x D 0 or x D t2 ! 1.)

z=x3

y=x2

z2=y3

FIGURE 1.3
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(e) Now consider the twisted cubic in R3, illustrated in Figure 1.3, given by

˛.t/ D .t; t2; t3/; t 2 R:

Its projections in the xy-, xz-, and yz-coordinate planes are, respectively, y D x2, z D x3, and
z2 D y3 (the cuspidal cubic).

(f) Our next example is a classic called the cycloid: It is the trajectory of a dot on a rolling wheel
(circle). Consider the illustration in Figure 1.4. Assuming the wheel rolls without slipping, the

t

O

P
a

FIGURE 1.4

distance it travels along the ground is equal to the length of the circular arc subtended by the angle
through which it has turned. That is, if the radius of the circle is a and it has turned through angle
t , then the point of contact with the x-axis, Q, is at units to the right. The vector from the origin to

t a cos t
a sin t

a
P

C

O

P

Q

C

FIGURE 1.5

the point P can be expressed as the sum of the three vectors
!!!
OQ,

!!!
QC , and

!!!
CP (see Figure 1.5):

!!!
OP D

!!!
OQC

!!!
QC C

!!!
CP

D .at; 0/C .0; a/C .!a sin t;!a cos t/;

and hence the function

˛.t/ D .at ! a sin t; a ! a cos t/ D a.t ! sin t; 1 ! cos t/; t 2 R

gives a parametrization of the cycloid.
(g) A (circular) helix is the screw-like path of a bug as it walks uphill on a right circular cylinder at a

constant slope or pitch. If the cylinder has radius a and the slope is b=a, we can imagine drawing a
line of that slope on a piece of paper 2"a units long, and then rolling the paper up into a cylinder.
The line gives one revolution of the helix, as we can see in Figure 1.6. If we take the axis of the
cylinder to be vertical, the projection of the helix in the horizontal plane is a circle of radius a, and
so we obtain the parametrization ˛.t/ D .a cos t; a sin t; bt/.
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FIGURE 1.6

Brief review of hyperbolic trigonometric functions. Just as the circle x2Cy2 D 1 is parametrized
by .cos #; sin #/, the portion of the hyperbola x2!y2 D 1 lying to the right of the y-axis, as shown
in Figure 1.7, is parametrized by .cosh t; sinh t/, where

cosh t D
et C e!t

2
and sinh t D

et ! e!t

2
:

By analogy with circular trigonometry, we set tanh t D
sinh t
cosh t

and sech t D
1

cosh t
. The following

(cosh t, sinh t)

FIGURE 1.7

formulas are easy to check:

cosh2 t ! sinh2 t D 1; tanh2 t C sech2 t D 1

sinh0.t/ D cosh t ; cosh0.t/ D sinh t ; tanh0.t/ D sech2 t ; sech0.t/ D ! tanh t sech t :
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(h) When a uniform and flexible chain hangs from two pegs, its weight is uniformly distributed along
its length. The shape it takes is called a catenary.1 As we ask the reader to check in Exercise 9,
the catenary is the graph of f .x/ D C cosh.x=C/, for any constant C > 0. This curve will appear

FIGURE 1.8

numerous times in this course. O

Example 2. One of the more interesting curves that arise “in nature” is the tractrix.2 The traditional
story is this: A dog is at the end of a 1-unit leash and buries a bone at .0; 1/ as his owner begins to walk
down the x-axis, starting at the origin. The dog tries to get back to the bone, so he always pulls the leash
taut as he is dragged along the tractrix by his owner. His pulling the leash taut means that the leash will be
tangent to the curve. When the master is at .t; 0/, let the dog’s position be .x.t/; y.t//, and let the leash

FIGURE 1.9

make angle #.t/ with the positive x-axis. Then we have x.t/ D t C cos #.t/, y.t/ D sin #.t/, so

tan #.t/ D
dy

dx
D
y0.t/

x0.t/
D

cos #.t/# 0.t/

1 ! sin #.t/# 0.t/
:

Therefore, # 0.t/ D sin #.t/. Separating variables and integrating, we have
R

d#= sin # D
R

dt , and so
t D ! ln.csc # C cot #/ C c for some constant c. Since # D "=2 when t D 0, we see that c D 0. Now,

since csc #Ccot # D
1C cos #

sin #
D

2 cos2.#=2/

2 sin.#=2/ cos.#=2/
D cot.#=2/, we can rewrite this as t D ln tan.#=2/.

Thus, we can parametrize the tractrix by

˛.#/ D
!

cos # C ln tan.#=2/; sin #
"

; "=2 " # < " :

1From the Latin catēna, chain.
2From the Latin trahere, tractus, to pull.
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Alternatively, since tan.#=2/ D et , we have

sin # D 2 sin.#=2/ cos.#=2/ D
2et

1C e2t
D

2

et C e!t
D sech t

cos # D cos2.#=2/ ! sin2.#=2/ D
1 ! e2t

1C e2t
D
e!t ! et

et C e!t
D ! tanh t ;

and so we can parametrize the tractrix instead by

ˇ.t/ D
!

t ! tanh t; sech t/; t # 0: O

The fundamental concept underlying the geometry of curves is the arclength of a parametrized curve.

Definition. If ˛W Œa; b! ! R3 is a parametrized curve, then for any a " t " b, we define its arclength

from a to t to be s.t/ D
Z t

a
k˛0.u/kdu. That is, the distance a particle travels—the arclength of its

trajectory—is the integral of its speed.

An alternative approach is to start with the following

Definition. Let ˛W Œa; b!! R3 be a (continuous) parametrized curve. Given a partition P D fa D t0 <
t1 < $ $ $ < tk D bg of the interval Œa; b!, let

`.˛;P/ D
k
X

iD1

k˛.ti / ! ˛.ti!1/k:

That is, `.˛;P/ is the length of the inscribed polygon with vertices at ˛.ti /, i D 0; : : : ; k, as indicated in

a b

FIGURE 1.10

Figure 1.10. We define the arclength of ˛ to be

length.˛/ D supf`.˛;P/ W P a partition of Œa; b!g;

provided the set of polygonal lengths is bounded above.

Now, using this definition, we can prove that the distance a particle travels is the integral of its speed.
We will need to use the result of Exercise A.2.4.


