
CHAPTER 2

Surfaces: Local Theory
1. Parametrized Surfaces and the First Fundamental Form

Let U be an open set inR2. A function fWU ! Rm (for us,m D 1 and 3will be most common) is called

C
1 if f and its partial derivatives

@f
@u

and
@f
@v
are all continuous. We will ordinarily use .u; v/ as coordinates

in our parameter space, and .x; y; z/ as coordinates in R3. Similarly, for any k ! 2, we say f is Ck if all its
partial derivatives of order up to k exist and are continuous. We say f is smooth if f is Ck for every positive
integer k. We will henceforth assume all our functions are Ck for k ! 3. One of the crucial results for

differential geometry is that if f is C2, then
@2f
@u@v

D
@2f
@v@u

(and similarly for higher-order derivatives).

Notation: We will often also use subscripts to indicate partial derivatives, as follows:

fu $
@f
@u

fv $
@f
@v

fuu $
@2f
@u2

fuv D .fu/v $
@2f
@v@u

Definition. A regular parametrization of a subsetM " R3 is a (C3) one-to-one function

xWU !M " R
3 so that xu # xv ¤ 0

for some open set U " R2.1 A connected subset M " R3 is called a surface if each point has a neighbor-
hood that is regularly parametrized.

We might consider the curves on M obtained by fixing v D v0 and varying u, called a u-curve, and
obtained by fixing u D u0 and varying v, called a v-curve; these are depicted in Figure 1.1. At the point
P D x.u0; v0/, we see that xu.u0; v0/ is tangent to the u-curve and xv.u0; v0/ is tangent to the v-curve.
We are requiring that these vectors span a plane, whose normal vector is given by xu # xv .

Example 1. We give some basic examples of parametrized surfaces. Note that our parameters do not
necessarily range over an open set of values.

(a) The graph of a function f WU ! R, z D f .x; y/, is parametrized by x.u; v/ D .u; v; f .u; v//.
Note that xu # xv D .$fu;$fv; 1/ ¤ 0, so this is always a regular parametrization.

1For technical reasons with which we shall not concern ourselves in this course, we should also require that the inverse function
x!1W x.U /! U be continuous. We shall also often be sloppy and use subsets U that are not quite open. The interested reader can
easily repair things by adding some companion parametrizations.
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FIGURE 1.1

(b) The helicoid, as shown in Figure 1.2, is the surface formed by drawing horizontal rays from the axis

FIGURE 1.2

of the helix ˛.t/ D .cos t; sin t; bt/ to points on the helix:

x.u; v/ D .u cos v; u sin v; bv/; u > 0; v 2 R:

Note that xu # xv D .b sin v;$b cos v; u/ ¤ 0. The u-curves are rays and the v-curves are helices.
(c) The torus (surface of a doughnut) is formed by rotating a circle of radius b about a circle of radius

a > b lying in an orthogonal plane, as pictured in Figure 1.3. The regular parametrization is given

b
a

FIGURE 1.3
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by

x.u; v/ D ..aC b cosu/ cos v; .aC b cosu/ sin v; b sinu/; 0 % u; v < 2! :

Then xu # xv D $b.aC b cos u/
!

cos u cos v; cos u sin v; sin u
"

, which is never 0.
(d) The standard parametrization of the unit sphere † is given by spherical coordinates ."; #/$ .u; v/:

x.u; v/ D .sinu cos v; sinu sin v; cosu/; 0 < u < !; 0 % v < 2! :

Since xu# xv D sinu.sinu cos v; sin u sin v; cos u/ D .sinu/x.u; v/, the parametrization is regular
away from u D 0;! , which we’ve excluded anyhow because x fails to be one-to-one at such points.
The u-curves are the so-called lines of longitude and the v-curves are the lines of latitude on the
sphere.

(e) Another interesting parametrization of the sphere is given by stereographic projection. (Cf. Exercise
1.1.1.) We parametrize the unit sphere less the north pole .0; 0; 1/ by the xy-plane, assigning to each

FIGURE 1.4

.u; v/ the point (¤ .0; 0; 1/) where the line through .0; 0; 1/ and .u; v; 0/ intersects the unit sphere,
as pictured in Figure 1.4. We leave it to the reader to derive the following formula in Exercise 1:

x.u; v/ D
#

2u

u2 C v2 C 1
;

2v

u2 C v2 C 1
;
u2 C v2 $ 1
u2 C v2 C 1

$

: O

For our last examples, we give two general classes of surfaces that will appear throughout our work.

Example 2. Let I " R be an interval, and let ˛.u/ D .0; f .u/; g.u//, u 2 I , be a regular parametrized
plane curve2 with f > 0. Then the surface of revolution obtained by rotating ˛ about the z-axis is
parametrized by

x.u; v/ D
!

f .u/ cos v; f .u/ sin v; g.u/
"

; u 2 I; 0 % v < 2! :

2Throughout, we assume regular parametrized curves to be one-to-one.
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Note that xu # xv D f .u/
!

$g0.u/ cos v;$g0.u/ sin v; f 0.u/
"

, so this is a regular parametrization. The
u-curves are often called profile curves or meridians; these are copies of ˛ rotated an angle v around the
z-axis. The v-curves are circles, called parallels. O

Example 3. Let I " R be an interval, let ˛W I ! R3 be a regular parametrized curve, and let ˇW I ! R3

be an arbitrary smooth function with ˇ.u/ ¤ 0 for all u 2 I . We define a parametrized surface by

x.u; v/ D ˛.u/C vˇ.u/; u 2 I; v 2 R:

This is called a ruled surface with rulings ˇ.u/ and directrix ˛. It is easy to check that xu # xv D .˛0.u/C
vˇ0.u// # ˇ.u/, which may or may not be everywhere nonzero.

As particular examples, we have the helicoid (see Figure 1.2) and the following (see Figure 1.5):
(1) Cylinder: Here ˇ is a constant vector, and the surface is regular as long as ˛ is one-to-one with

˛0 ¤ ˇ.
(2) Cone: Here we fix a point (say the origin) as the vertex, let ˛ be a curve with ˛ # ˛0 ¤ 0, and let

ˇ D $˛. Obviously, this fails to be a regular surface at the vertex (when v D 1), but xu # xv D
.v$ 1/˛.u/#˛0.u/ is nonzero otherwise. (Note that another way to parametrize this surface would
be to take ˛" D 0 and ˇ" D ˛.)

(3) Tangent developable: Let ˛ be a regular parametrized curve with nonzero curvature, and let ˇ D ˛0;
that is, the rulings are the tangent lines of the curve ˛. Then xu # xv D $v˛0.u/ # ˛00.u/, so (at
least locally) this is a regular parametrized surface away from the directrix. O

FIGURE 1.5

In calculus, we learn that, given a differentiable function f , the best linear approximation to the graph
y D f .x/ “near” x D a is given by the tangent line y D f 0.a/.x $ a/ C f .a/, and similarly in higher
dimensions. In the case of a regular parametrized surface, it seems reasonable that the tangent plane at
P D x.u0; v0/ should contain the tangent vector to the u-curve ˛1.u/ D x.u; v0/ at u D u0 and the tangent
vector to the v-curve ˛2.v/ D x.u0; v/ at v D v0. That is, the tangent plane should contain the vectors xu

and xv , each evaluated at .u0; v0/. Now, since xu#xv ¤ 0 by hypothesis, the vectors xu and xv are linearly
independent and must therefore span a plane. We now make this an official

Definition. LetM be a regular parametrized surface, and let P 2 M . Then choose a regular parametriza-
tion xWU ! M " R3 with P D x.u0; v0/. We define the tangent plane of M at P to be the subspace
TPM spanned by xu and xv (evaluated at .u0; v0/).

Remark . The alert reader may wonder what happens if two people pick two different such local
parametrizations of M near P . Do they both provide the same plane TPM ? This sort of question is very
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common in differential geometry, and is not one we intend to belabor in this introductory course. However,
to get a feel for how such arguments go, the reader may work Exercise 15.

There are two unit vectors orthogonal to the tangent plane TPM . Given a regular parametrization x,
we know that xu # xv is a nonzero vector orthogonal to the plane spanned by xu and xv; we obtain the
corresponding unit vector by taking

n D
xu # xv

kxu # xvk
:

This is called the unit normal of the parametrized surface.

Example 4. We know from basic geometry and vector calculus that the unit normal of the unit sphere
centered at the origin should be the position vector itself. This is in fact what we discovered in Example
1(d). O

Example 5. Consider the helicoid given in Example 1(b). Then, as we saw, xu # xv D

.b sin v;$b cos v; u/, and n D
1

p
u2 C b2

.b sin v;$b cos v; u/. As we move along a ruling v D v0, the

normal starts horizontal at u D 0 (where the surface becomes vertical) and rotates in the plane orthogonal
to the ruling, becoming more and more vertical as we move out the ruling. O

We saw in Chapter 1 that the geometry of a space curve is best understood by calculating (at least in
principle) with an arclength parametrization. It would be nice, analogously, if we could find a parametriza-
tion x.u; v/ of a surface so that xu and xv form an orthonormal basis at each point. We’ll see later that this
can happen only very rarely. But it makes it natural to introduce what is classically called the first funda-
mental form, IP .U;V/ D U & V, for U;V 2 TPM . Working in a parametrization, we have the natural basis
fxu; xvg, and so we define

E D IP .xu; xu/ D xu & xu

F D IP .xu; xv/ D xu & xv D xv & xu D IP .xv; xu/

G D IP .xv; xv/ D xv & xv ;

and it is often convenient to put these in as entries of a (symmetric) matrix:

IP D

"

E F

F G

#

:

Then, given tangent vectors U D axu C bxv and V D cxu C dxv 2 TPM , we have

U & V D IP .U;V/ D .axu C bxv/ & .cxu C dxv/ D E.ac/C F.ad C bc/CG.bd/:

In particular, kUk2 D IP .U;U/ D Ea2 C 2Fab CGb2.
Suppose M and M " are surfaces. We say they are locally isometric if for each P 2 M there are a

regular parametrization xWU ! M with x.u0; v0/ D P and a regular parametrization x"WU ! M " (using
the same domain U " R2) with the property that IP D I"P ! whenever P D x.u; v/ and P " D x".u; v/ for
some .u; v/ 2 U . That is, the function f D x"ıx!1W x.U / ! x".U / is a one-to-one correspondence that
preserves the first fundamental form and is therefore distance-preserving (see Exercise 2).
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fold seal

FIGURE 1.6

Example 6. Parametrize a portion of the plane (say, a piece of paper) by x.u; v/ D .u; v; 0/ and a
portion of a cylinder by x".u; v/ D .cos u; sinu; v/. Then it is easy to calculate that E D E" D 1,
F D F " D 0, and G D G" D 1, so these surfaces, pictured in Figure 1.6, are locally isometric. On the
other hand, if we let u vary from 0 to 2! , the rectangle and the cylinder are not globally isometric because
points far away in the rectangle can become very close (or identical) in the cylinder. O

If ˛.t/ D x.u.t/; v.t// is a curve on the parametrized surface M with ˛.t0/ D x.u0; v0/ D P , then it
is an immediate consequence of the chain rule, Theorem 2.2 of the Appendix, that

˛0.t0/ D u0.t0/xu.u0; v0/C v0.t0/xv.u0; v0/:

(Customarily we will write simply xu, the point .u0; v0/ at which it is evaluated being assumed.) That is,
if the tangent vector .u0.t0/; v

0.t0// back in the “parameter space” is .a; b/, then the tangent vector to ˛

at P is the corresponding linear combination axu C bxv . In fancy terms, this is merely a consequence of
the linearity of the derivative of x. We say a parametrization x.u; v/ is conformal if angles measured in the

x P

FIGURE 1.7

uv-plane agree with corresponding angles in TPM for all P . We leave it to the reader to check in Exercise
6 that this is equivalent to the conditions E D G, F D 0.

Since
"

E F

F G

#

D

"

xu & xu xu & xv

xv & xu xv & xv

#

D

2

6
4

j j
xu xv

j j

3

7
5

T2

6
4

j j
xu xv

j j

3

7
5 ;
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we have

EG $ F 2 D det

 "

xu & xu xu & xv

xv & xu xv & xv

#!

D det

0

B
@

2

6
4

xu & xu xu & xv 0

xv & xu xv & xv 0

0 0 1

3

7
5

1

C
A

D det

0

B
@

2

6
4

j j j
xu xv n
j j j

3

7
5

T2

6
4

j j j
xu xv n
j j j

3

7
5

1

C
A D

0

B
@det

2

6
4

j j j
xu xv n
j j j

3

7
5

1

C
A

2

;

which is the square of the volume of the parallelepiped spanned by xu, xv , and n. Since n is a unit vector
orthogonal to the plane spanned by xu and xv , this is, in turn, the square of the area of the parallelogram
spanned by xu and xv . That is,

EG $ F 2 D kxu # xvk2 > 0:

We remind the reader that we obtain the surface area of the parametrized surface xWU !M by calculating
the double integral

Z

U
kxu # xvkdudv D

Z

U

p
EG $ F 2dudv:

EXERCISES 2.1

1. Derive the formula given in Example 1(e) for the parametrization of the unit sphere.

]2. Suppose ˛.t/ D x.u.t/; v.t//, a % t % b, is a parametrized curve on a surfaceM . Show that

length.˛/ D
Z b

a

q

I˛.t/

!

˛0.t/;˛0.t/
"

dt

D
Z b

a

q

E.u.t/; v.t//.u0.t//2 C 2F.u.t/; v.t//u0.t/v0.t/CG.u.t/; v.t//.v0.t//2dt :

Conclude that if ˛ " M and ˛" " M " are corresponding paths in locally isometric surfaces, then
length.˛/ D length.˛"/.

3. Compute I (i.e., E, F , and G) for the following parametrized surfaces.
*a. the sphere of radius a: x.u; v/ D a.sinu cos v; sin u sin v; cos u/
b. the torus: x.u; v/ D ..aC b cosu/ cos v; .aC b cosu/ sin v; b sinu/ (0 < b < a)
c. the helicoid: x.u; v/ D .u cos v; u sin v; bv/
*d. the catenoid: x.u; v/ D a.coshu cos v; cosh u sin v; u/

4. Find the surface area of the following parametrized surfaces.
*a. the torus: x.u; v/ D ..aC b cosu/ cos v; .aC b cosu/ sin v; b sinu/ (0 < b < a), 0 % u; v % 2!
b. a portion of the helicoid: x.u; v/ D .u cos v; u sin v; bv/, 1 < u < 3, 0 % v % 2!
c. a zone of a sphere3: x.u; v/ D a.sinu cos v; sinu sin v; cos u/, 0 % u0 % u % u1 % ! ,

0 % v % 2!

3You should obtain the remarkable result that the surface area of the portion of a sphere between two parallel planes depends
only on the distance between the planes, not on where you locate them.
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*5. Show that if all the normal lines to a surface pass through a fixed point, then the surface is (a portion of)
a sphere. (By the normal line toM at P we mean the line passing through P with direction vector the
unit normal at P .)

6. Check that the parametrization x.u; v/ is conformal if and only if E D G and F D 0. (Hint: For H),
choose two convenient pairs of orthogonal directions.)

*7. Check that a parametrization preserves area and is conformal if and only if it is a local isometry.

*8. Check that the parametrization of the unit sphere by stereographic projection (see Example 1(e)) is
conformal.

9. (Lambert’s cylindrical projection) Project the unit sphere (except for the north and south poles) radially
outward to the cylinder of radius 1 by sending .x; y; z/ to .x=

p

x2 C y2; y=
p

x2 C y2; z/. Check that
this map preserves area locally, but is neither a local isometry nor conformal. (Hint: Let x.u; v/ be
the spherical coordinates parametrization of the sphere, and consider x".u; v/ D .cos v; sin v; cos u/.
Compare the parallelogram formed by xu and xv with the parallelogram formed by x"

u and x"
v .)

]10. Consider the “pacman” regionM given by x.u; v/ D .u cos v; u sin v; 0/, 0 % u % R, 0 % v % V , with
V < 2! . Let c D V=2! . LetM " be given by the parametrization

x".u; v/ D
!

cu cos.v=c/; cu sin.v=c/;
p
1$ c2u

"

; 0 % u % R; 0 % v % V :

Compute that E D E", F D F ", andG D G", and conclude that the mapping f D x"ıx!1WM !M "

is a local isometry. Describe this mapping in concrete geometric terms.

11. Consider the hyperboloid of one sheet,M , given by the equation x2 C y2 $ z2 D 1.
a. Show that x.u; v/ D .cosh u cos v; cosh u sin v; sinh u/, u 2 R, 0 % v < 2! , gives a parametriza-

tion ofM as a surface of revolution.
*b. Find two parametrizations ofM as a ruled surface ˛.u/C vˇ.u/.

c. Show that x.u; v/ D
#

uv C 1
uv $ 1

;
u $ v
uv $ 1

;
uC v
uv $ 1

$

gives a parametrization ofM where both sets of

parameter curves are rulings.

]12. Given a ruled surfaceM parametrized by x.u; v/ D ˛.u/C vˇ.u/ with ˛0 ¤ 0 and kˇk D 1.
a. Check that we may assume that ˛0.u/ & ˇ.u/ D 0 for all u. (Hint: Replace ˛.u/ with ˛.u/ C

t.u/ˇ.u/ for a suitable function t .)
b. Suppose, moreover, that ˛0.u/, ˇ.u/, and ˇ0.u/ are linearly dependent for every u. Conclude that

ˇ0.u/ D $.u/˛0.u/ for some function $. Prove that:
(i) If $.u/ D 0 for all u, thenM is a cylinder.
(ii) If $ is a nonzero constant, thenM is a cone.
(iii) If $ and $0 are both nowhere zero, thenM is a tangent developable. (Hint: Find the directrix.)

13. (The Mercator projection) Mercator developed his system for mapping the earth, as pictured in Figure
1.8, in 1569, about a century before the advent of calculus. We want a parametrization x.u; v/ of the
sphere, u 2 R, v 2 .$!;!/, so that the u-curves are the longitudes and so that the parametrization is
conformal. Letting ."; #/ be the usual spherical coordinates, write " D f .u/ and # D v. Show that
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u

v

FIGURE 1.8

conformality and symmetry about the equator will dictate f .u/ D 2 arctan.e!u/. Deduce that

x.u; v/ D .sech u cos v; sech u sin v; tanh u/:

(Cf. Example 2 in Section 1 of Chapter 1.)

14. A parametrization x.u; v/ is called a Tschebyschev net if the opposite sides of any quadrilateral formed
by the coordinate curves have equal length.

a. Prove that this occurs if and only if
@E

@v
D
@G

@u
D 0. (Hint: Express the length of the u-curves,

u0 % u % u1, as an integral and use the fact that this length is independent of v.)
b. Prove that we can locally reparametrize by Qx. Qu; Qv/ so as to obtain QE D QG D 1, QF D cos #. Qu; Qv/

(so that the Qu- and Qv-curves are parametrized by arclength and meet at angle # ). (Hint: Choose Qu
as a function of u so that Qx Qu D xu

ı

.d Qu=du/ has unit length.)

15. Suppose x and y are two parametrizations of a surface M near P . Say x.u0; v0/ D P D y.s0; t0/.
Prove that Span.xu; xv/ D Span.ys; yt / (where the partial derivatives are all evaluated at the obvious
points). (Hint: f D x!1ıy gives a C1 map from an open set around .s0; t0/ to an open set around
.u0; v0/. Apply the chain rule to show ys; yt 2 Span.xu; xv/.)

16. (A programmable calculator, Maple, or Mathematica will be needed for parts of this problem.) A
catenoid, as pictured in Figure 1.9, is parametrized by

x.u; v/ D .a cosh u cos v; a cosh u sin v; au/; u 2 R; 0 % v < 2! .a > 0 fixed/:

*a. Compute the surface area of that portion of the catenoid given by juj % 1=a. (Hint: cosh2 u D
1
2.1C cosh 2u/.)

b. Find the number R0 > 0 so that for every R ! R0, there is at least one catenoid whose boundary
is the pair of parallel circles x2 C y2 D R2, jzj D 1. (Hint: Graph f .t/ D t cosh.1=t/.)

c. For R ! R0, compare the area of the catenoid(s) with 2!R2 (the area of the pair of disks filling in
the circles). For what values of R does the pair of disks have the least area? (You should display
the results of your investigation in either a graph or a table.)
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FIGURE 1.9

d. (For extra credit) Show that as R ! 1, the area of the inner catenoid is asymptotic to 2!R2 and
the area of the outer catenoid is asymptotic to 4!R.

17. There are two obvious families of circles on a torus. Find a third family. (Hint: Look for a plane that
is tangent to the torus at two points. Using the parametrization of the torus, you should be able to find
equations (either parametric or cartesian) for the curve in which the bitangent plane intersects the torus.)

2. The Gauss Map and the Second Fundamental Form

Given a regular parametrized surfaceM , the function nWM ! † that assigns to each point P 2M the
unit normal n.P /, as pictured in Figure 2.1, is called the Gauss map ofM . As we shall see in this chapter,

n
n(P)

P

FIGURE 2.1

most of the geometric information about our surfaceM is encapsulated in the mapping n.

Example 1. A few basic examples are these.

(a) On a plane, the tangent plane never changes, so the Gauss map is a constant.
(b) On a cylinder, the tangent plane is constant along the rulings, so the Gauss map sends the entire

surface to an equator of the sphere.
(c) On a sphere centered at the origin, the Gauss map is merely the (normalized) position vector.
(d) On a saddle surface (as pictured in Figure 2.1), the Gauss map appears to “reverse orientation”: As

we move counterclockwise in a small circle around P , we see that the unit vector n turns clockwise
around n.P /. O


