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FIGURE 1.9

d. (For extra credit) Show that as R ! 1, the area of the inner catenoid is asymptotic to 2!R2 and
the area of the outer catenoid is asymptotic to 4!R.

17. There are two obvious families of circles on a torus. Find a third family. (Hint: Look for a plane that
is tangent to the torus at two points. Using the parametrization of the torus, you should be able to find
equations (either parametric or cartesian) for the curve in which the bitangent plane intersects the torus.)

2. The Gauss Map and the Second Fundamental Form

Given a regular parametrized surfaceM , the function nWM ! † that assigns to each point P 2M the
unit normal n.P /, as pictured in Figure 2.1, is called the Gauss map ofM . As we shall see in this chapter,
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most of the geometric information about our surfaceM is encapsulated in the mapping n.

Example 1. A few basic examples are these.

(a) On a plane, the tangent plane never changes, so the Gauss map is a constant.
(b) On a cylinder, the tangent plane is constant along the rulings, so the Gauss map sends the entire

surface to an equator of the sphere.
(c) On a sphere centered at the origin, the Gauss map is merely the (normalized) position vector.
(d) On a saddle surface (as pictured in Figure 2.1), the Gauss map appears to “reverse orientation”: As

we move counterclockwise in a small circle around P , we see that the unit vector n turns clockwise
around n.P /. O
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Recall from the Appendix that for any function f on M (scalar- or vector-valued) and any tangent
vector V 2 TPM , we can compute the directional derivative DVf .P / by choosing a curve ˛W .!"; "/!M

with ˛.0/ D P and ˛0.0/ D V and computing .f ı˛/0.0/.
To understand the shape ofM at the point P , we might try to understand the curvature at P of various

curves in M . Perhaps the most obvious thing to try is various normal slices of M . That is, we slice M
with the plane through P spanned by n.P / and a unit vector V 2 TPM . Various such normal slices are
shown for a saddle surface in Figure 2.2. Let ˛ be the arclength-parametrized curve obtained by taking such

FIGURE 2.2

a normal slice. We have ˛.0/ D P and ˛0.0/ D V. Then since the curve lies in the plane spanned by n.P /
and V, the principal normal of the curve at P must be˙n.P / (C if the curve is curving towards n, ! if it’s
curving away). Since .nı˛.s// " T.s/ D 0 for all s near 0, applying Lemma 2.1 of Chapter 1 yet again, we
have:

(") ˙#.P / D #N " n.P / D T0.0/ " n.P / D !T.0/ " .nı˛/0.0/ D !DVn.P / "V:

This leads us to study the directional derivative DVn.P / more carefully.

Proposition 2.1. For any V 2 TPM , the directional derivative DVn.P / 2 TPM . Moreover, the linear
map SP WTPM ! TPM defined by

SP .V/ D !DVn.P /

is a symmetric linear map; i.e., for any U;V 2 TPM , we have

(#) SP .U/ " V D U " SP .V/

SP is called the shape operator at P .

Proof. For any curve ˛W .!"; "/!M with ˛.0/ D P and ˛0.0/ D V, we observe that nı˛ has constant
length 1. Thus, by Lemma 2.1 of Chapter 1, DVn.P / " n.P / D .nı˛/0.0/ " .nı˛/.0/ D 0, so DVn.P / is in
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the tangent plane toM at P . That SP is a linear map is an immediate consequence of Proposition 2.3 of the
Appendix.

Symmetry is our first important application of the equality of mixed partial derivatives. First we verify
(#) when U D xu, V D xv . Note that n " xv D 0, so 0 D

!

n " xv

"

u D nu " xv C n " xvu. (Remember that
we’re writing nu for Dxun.) Thus,

SP .xu/ " xv D !Dxun.P / " xv D !nu " xv D n " xvu

D n " xuv D !nv " xu D !Dxvn.P / " xu D SP .xv/ " xu :

Next, knowing this, we just write out general vectors U and V as linear combinations of xu and xv: If
U D axu C bxv and V D cxu C dxv , then

SP .U/ "V D SP .axu C bxv/ " .cxu C dxv/

D
!

aSP .xu/C bSP .xv/
"

" .cxu C dxv/

D acSP .xu/ " xu C adSP .xu/ " xv C bcSP .xv/ " xu C bdSP .xv/ " xv

D acSP .xu/ " xu C adSP .xv/ " xu C bcSP .xu/ " xv C bdSP .xv/ " xv

D .axu C bxv/ "
!

cSP .xu/C dSP .xv/
"

D U " SP .V/;

as required. !

Proposition 2.2. If the shape operator SP is O for all P 2 M , thenM is a subset of a plane.

Proof. Since the directional derivative of the unit normal n is 0 in every direction at every point P , we
have nu D nv D 0 for any (local) parametrization x.u; v/ of M . By Proposition 2.4 of the Appendix, it
follows that n is constant. (This is why we assume our surfaces are connected.) !

Example 2. Let M be a sphere of radius a centered at the origin. Then n D
1

a
x.u; v/, so for any P ,

we have SP .xu/ D !nu D !
1

a
xu and SP .xv/ D !nv D !

1

a
xv , so SP is !1=a times the identity map on

the tangent plane TPM . O

It does not seem an easy task to give the matrix of the shape operator with respect to the basis fxu; xvg.
But, in general, the proof of Proposition 2.1 suggests that we define the second fundamental form, as follows.
If U;V 2 TPM , we set

IIP .U;V/ D SP .U/ " V:

Note that the formula (") on p. 45 shows that the curvature of the normal slice in direction V (with kVk D 1)
is, in our new notation, given by

˙# D !DVn.P / " V D SP .V/ "V D IIP .V;V/:

As we did at the end of the previous section, we wish to give a matrix representation when we’re working
with a parametrized surface. As we saw in the proof of Proposition 2.1, we have

` D IIP .xu; xu/D !Dxun " xu D xuu " n

m D IIP .xu; xv/D !Dxun " xv D xvu " n D xuv " n D IIP .xv; xu/

n D IIP .xv; xv/D !Dxvn " xv D xvv " n:


