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(By the way, this explains the presence of the minus sign in the original definition of the shape operator.)
We then write

IIP D

"

` m

m n

#

D

"

xuu ! n xuv ! n
xuv ! n xvv ! n

#

:

If, as before, U D axu C bxv and V D cxu C dxv , then

IIP .U;V/ D IIP .axu C bxv; cxu C dxv/

D acIIP .xu; xu/C ad IIP .xu; xv/C bcIIP .xv; xu/C bd IIP .xv; xv/

D `.ac/Cm.bc C ad/C n.bd/:

In the event that fxu; xvg is an orthonormal basis for TPM , we see that the matrix IIP represents the
shape operator SP . But it is not difficult to check (see Exercise 2) that, in general, the matrix of the linear
map SP with respect to the basis fxu; xvg is given by

I!1
P IIP D

"

E F

F G

#!1 "

` m

m n

#

:

Remark. We proved in Proposition 2.1 that SP is a symmetric linear map. This means that its matrix
representation with respect to an orthonormal basis (or, more generally, orthogonal basis with vectors of
equal length) will be symmetric: In this case the matrix IP is a scalar multiple of the identity matrix and the
matrix product remains symmetric.

By the Spectral Theorem, Theorem 1.3 of the Appendix, SP has two real eigenvalues, traditionally
denoted k1.P /, k2.P /.

Definition. The eigenvalues of SP are called the principal curvatures of M at P . Corresponding
eigenvectors are called principal directions. A curve inM is called a line of curvature if its tangent vector
at each point is a principal direction.

Recall that it also follows from the Spectral Theorem that the principal directions are orthogonal, so we can
always choose an orthonormal basis for TPM consisting of principal directions. Having done so, we can
then easily determine the curvatures of normal slices in arbitrary directions, as follows.

Proposition 2.3 (Euler’s Formula). Let e1; e2 be unit vectors in the principal directions at P with
corresponding principal curvatures k1 and k2. Suppose V D cos !e1 C sin !e2 for some ! 2 Œ0; 2"/, as
pictured in Figure 2.3. Then IIP .V;V/ D k1 cos2 ! C k2 sin2 ! .
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V

FIGURE 2.3

Proof. This is a straightforward computation: Since SP .ei / D kiei for i D 1; 2, we have

IIP .V;V/ D SP .V/ !V D SP .cos !e1 C sin !e2/ ! .cos !e1 C sin !e2/
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D .cos !k1e1 C sin !k2e2/ ! .cos !e1 C sin !e2/ D k1 cos2 ! C k2 sin2 ! ;

as required. !

On a sphere, all normal slices have the same (nonzero) curvature. On the other hand, if we look carefully
at Figure 2.2, we see that certain normal slices of a saddle surface are true lines. This leads us to make the
following

Definition. If the normal slice in direction V has zero curvature, i.e., if IIP .V;V/ D 0, then we call V
an asymptotic direction.4 A curve inM is called an asymptotic curve if its tangent vector at each point is an
asymptotic direction.

Example 3. If a surface M contains a line, that line is an asymptotic curve. For the normal slice in
the direction of the line contains the line (and perhaps other things far away), which, of course, has zero
curvature. O

Corollary 2.4. There is an asymptotic direction at P if and only if k1k2 " 0.

Proof. k2 D 0 if and only if e2 is an asymptotic direction. Now suppose k2 ¤ 0. If V is a unit
asymptotic vector making angle ! with e1, then we have k1 cos2 !Ck2 sin2 ! D 0, and so tan2 ! D #k1=k2,
so k1k2 " 0. Conversely, if k1k2 < 0, take ! with tan ! D ˙

p

#k1=k2, and then V is an asymptotic
direction. !

Example 4. We consider the helicoid, as pictured in Figure 1.2. It is a ruled surface and so the rulings
are asymptotic curves. What is quite less obvious is that the family of helices on the surface are also
asymptotic curves. But, as we see in Figure 2.4, the normal slice tangent to the helix at P has an inflection

P

FIGURE 2.4

point at P , and therefore the helix is an asymptotic curve. We ask the reader to check this by calculation in
Exercise 5. O

4Of course, V ¤ 0 here. See Exercise 22 for an explanation of this terminology.
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It is also an immediate consequence of Proposition 2.3 that the principal curvatures are the maximum
and minimum (signed) curvatures of the various normal slices. Assume k2 " k1. Then

k1 cos2 ! C k2 sin2 ! D k1.1# sin2 !/C k2 sin2 ! D k1 C .k2 # k1/ sin2 ! " k1

(and, similarly, $ k2). Moreover, as the Spectral Theorem tells us, the maximum and minimum occur at
right angles to one another. Looking back at Figure 2.2, where the slices are taken at angles in increments
of "=8, we see that the normal slices that are “most curved” appear in the third and seventh frames; the
asymptotic directions appear in the second and fourth frames. (Cf. Exercise 8.)

Next we come to one of the most important concepts in the geometry of surfaces:

Definition. The product of the principal curvatures is called the Gaussian curvature: K D det SP D
k1k2. The average of the principal curvatures is called the mean curvature: H D 1

2 trSP D 1
2.k1 C k2/.

We sayM is a minimal surface ifH D 0 and flat if K D 0.

Note that whereas the signs of the principal curvatures change if we reverse the direction of the unit normal
n, the Gaussian curvature K, being the product of both, is independent of the choice of unit normal. (And
the sign of the mean curvature depends on the choice.)

Example 5. It follows from our comments in Example 1 that both a plane and a cylinder are flat surfaces:
In the former case, SP D O for all P , and, in the latter, det SP D 0 for all P since the shape operator is
singular. O

Example 6. Consider the saddle surface x.u; v/ D .u; v; uv/. We compute:

xu D .1; 0; v/ xuu D .0; 0; 0/

xv D .0; 1; u/ xuv D .0; 0; 1/

n D
1

p
1C u2 C v2

.#v;#u; 1/ xvv D .0; 0; 0/;

and so

E D 1C v2; F D uv; G D 1C u2 ; and ` D n D 0;m D
1

p
1C u2 C v2

:

Thus, with P D x.u; v/, we have

IP D

"

1C v2 uv

uv 1C u2

#

and IIP D
1

p
1C u2 C v2

"

0 1

1 0

#

;

so the matrix of the shape operator with respect to the basis fxu; xvg is given by

SP D I!1
P IIP D

1

.1C u2 C v2/3=2

"

#uv 1C u2

1C v2 #uv

#

:

(Note that this matrix is, in general, not symmetric.)
With a bit of calculation, we determine that the principal curvatures (eigenvalues) are

k1 D
#uv C

p

.1C u2/.1C v2/

.1C u2 C v2/3=2
and k2 D

#uv #
p

.1C u2/.1C v2/

.1C u2 C v2/3=2
;


