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F(0) = F(0) = --- = F&=D(0) = 0. (Such a line is to be visualized as the limit of lines that intersect

M at P and at k — 1 other points that approach P .)

a. Show that L has 2-point contact with M at P if and only if L is tangent to M at P,ie.,L C TpM.

b. Show that L has 3-point contact with M at P if and only if L is an asymptotic direction at P.
(Hint: It may be helpful to follow the setup of Exercise 21.)

c. (Challenge) Assume P is a hyperbolic point. What does it mean for L to have 4-point contact with
M at P?

3. The Codazzi and Gauss Equations and the Fundamental Theorem of Surface Theory

We now wish to proceed towards a deeper understanding of Gaussian curvature. We have to this point
considered only the normal components of the second derivatives Xy, , X,y , and X,,. Now let’s consider
them in toto. Since {Xy, X, n} gives a basis for R3, there are functions I, 2, [\Y, = T %, T,0 =T,

u v
'y, .and I',}) so that
() Xuy = Fu%xu + Ful;;xv + mn
XUU = FUZ:)Xu + FUI;)XU + nn.
(Note that X, = Xy dictates the symmetries I',} = I'%,.) The functions Iy, are called Christoffel

symbols.

Example 1. Let’s compute the Christoffel symbols for the usual parametrization of the sphere (see
Example 1(d) on p. 37). By straightforward calculation we obtain

X, = (COs U cOs v, COS U Sin v, — Sin u)
Xy = (—sinu sin v, sinu cos v, 0)
Xyy = (—sinu cosv,—sinu sinv, —cosu) = —x(u, v)
Xyy = (—cosu sin v, cos u cos v, 0)
Xypy = (—sinu cos v, —sinu sin v, 0) = —sinu(cos v, sinv, 0).
(Note that the u-curves are great circles, parametrized by arclength, so it is no surprise that the acceleration

vector Xy, is inward-pointing of length 1. The v-curves are latitude circles of radius sin u, so, similarly, the
acceleration vector X, points inwards towards the center of the respective circle.)

n
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Since Xy, lies entirely in the direction of n, we have I' /i, = I',;,, = 0. Now, by inspection, X, =
cotuxy,so ')y = 0and I',}, = cotu. Last, as we can see in Figure 3.1, we have Xy, = —sinu cos ux, —
sin? un, so ')y =—sinucosuand I'}), =0. V

Now, dotting the equations in (1) with x;, and x,, gives

Now observe that
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Thus, we can rewrite our equations as follows:
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= %(Xu Xy )u = %Eu
= %(Xu Xy)y = %Ev
= %(XU “Xp)u = ;Gu
= (Xy * Xp)u — Xy " Xuyp = Fy %Ev
= (Xy " Xp)y — Xyp * Xy = Fv_%Gu
= %(XU 'Xv)v = %Gv
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What is quite remarkable about these formulas is that the Christoffel symbols, which tell us about the

tangential component of the second derivatives Xee , can be computed just from knowing £, F,and G, i.e.,

the first fundamental form.

Example 2. Let’s now recompute the Christoffel symbols of the unit sphere and compare our answers

with Example 1. Since £ =1, F = 0,and G = sin
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'y _ 1 0 —sinu cosu _ —sinu cos u
'y 10 escu 0 N 0 '

Thus, the only nonzero Christoffel symbols are I');, = I}, = cotu and I' )i = —sinu cosu, as before.
\

By Exercise 2.2.2, the matrix of the shape operator Sp with respect to the basis {x;, Xy } is

-1
a c| |EF t m| 1 {G—mF mG-—nF
bd| |FG m n| EG—F2| AF+mE —mF +nE |’
Note that these coefficients tell us the derivatives of n with respect to u and v:

n, = Dy,n=-Sp (xy) = —(axy + bxy)

(1) n, = Dy,n = —Sp(Xy) = —(cXy + dXy).

We now differentiate the equations (1) again and use equality of mixed partial derivatives. To start, we
have
Xuuv = (Fulz)vxu + Fuuuxuv + (FuIL)vxv + Fuzxvv + {yn + {n,
= (D) vXu + Tyo (TyoXu + Ty + mn) + (T,0)vXe + Dol (TyoXu + Ty Xy + nn)
+ €yn — L(cxy + dxy)
= ((Fuz)v + Fuz Fuuv + Ful;t Fvlz) - ZC)Xu + ((Fulit)v + Fulft Ful;) + Fu1;4 Fvli) - Zd)Xv

+ (Cyym + Typyn + €y)n,
and, similarly,
Xuvu = ((Fuuv)u + Fulz) Fuz + Fuvvrulz) - ma)xu + ((Fuvv)u + Fulz) l—‘uvu + Fuvv Fuvv - mb)xv
+ (¢T,y + mL,), + my)n.
Since Xyyy = Xyyu, We compare the indicated components and obtain:

(Xy): )y +T LT  —le=T%)y +TTH —ma

uu/v UU- VU uv/u UV~ UL
) (xp): )+ 0T + 0000 —4d = (T))u + T 3T, + T 00 —mb

(n): Ly + mDy, +nl,),, =my + LT}, +ml,),.
Analogously, comparing the indicated components of X,y = Xyyy, We find:

(Xu): ) + Tl + T 0T —me = (D) + T T + T Db, —na

uv/v UV~ UL UV~ VL vv/U
(xp): ) + 0, —md = (T))u + T 1), —nb

(n): my +ml )} +nl,), =ny + LT} +mDl)).

The two equations coming from the normal component give us the

Codazzi equations

by —my = LT, + m(Fu'; — Fu’;) —nlY

uu

my —ny = L0y +m(C, —T,0t) —nl).




