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'y _ 1 0 —sinu cosu _ —sinu cos u
'y 10 escu 0 N 0 '

Thus, the only nonzero Christoffel symbols are I');, = I}, = cotu and I' )i = —sinu cosu, as before.
\

By Exercise 2.2.2, the matrix of the shape operator Sp with respect to the basis {x;, Xy } is

-1
a c| |EF t m| 1 {G—mF mG-—nF
bd| |FG m n| EG—F2| AF+mE —mF +nE |’
Note that these coefficients tell us the derivatives of n with respect to u and v:

n, = Dy,n=-Sp (xy) = —(axy + bxy)

(1) n, = Dy,n = —Sp(Xy) = —(cXy + dXy).

We now differentiate the equations (1) again and use equality of mixed partial derivatives. To start, we
have
Xuuv = (Fulz)vxu + Fuuuxuv + (FuIL)vxv + Fuzxvv + {yn + {n,
= (D) vXu + Tyo (TyoXu + Ty + mn) + (T,0)vXe + Dol (TyoXu + Ty Xy + nn)
+ €yn — L(cxy + dxy)
= ((Fuz)v + Fuz Fuuv + Ful;t Fvlz) - ZC)Xu + ((Fulit)v + Fulft Ful;) + Fu1;4 Fvli) - Zd)Xv

+ (Cyym + Typyn + €y)n,
and, similarly,
Xuvu = ((Fuuv)u + Fulz) Fuz + Fuvvrulz) - ma)xu + ((Fuvv)u + Fulz) l—‘uvu + Fuvv Fuvv - mb)xv
+ (¢T,y + mL,), + my)n.
Since Xyyy = Xyyu, We compare the indicated components and obtain:

(Xy): )y +T LT  —le=T%)y +TTH —ma

uu/v UU- VU uv/u UV~ UL
) (xp): )+ 0T + 0000 —4d = (T))u + T 3T, + T 00 —mb

(n): Ly + mDy, +nl,),, =my + LT}, +ml,),.
Analogously, comparing the indicated components of X,y = Xyyy, We find:

(Xu): ) + Tl + T 0T —me = (D) + T T + T Db, —na

uv/v UV~ UL UV~ VL vv/U
(xp): ) + 0, —md = (T))u + T 1), —nb

(n): my +ml )} +nl,), =ny + LT} +mDl)).

The two equations coming from the normal component give us the

Codazzi equations

by —my = LT, + m(Fu'; — Fu’;) —nlY

uu

my —ny = L0y +m(C, —T,0t) —nl).
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n —m?
e K = M
Using 76 _F?

X, components yield the

and the formulas above for a, b, ¢, and d, the four equations involving the x,, and

Gauss equations
EK = (0), = (D), + DD + DAL ~ T, — (1))
FK = (1), = (D), + Ty Tty = T Ty
FK = (T3), = (T)y, + Tup Ty — Ty T
GK = (Iy), = (1), + DTt + T T — () = DA T

For example, to derive the first, we use the equation (<>) above:

(T2), — (Ta), + TS + TAT. —T AT — (T,2) = €d —mb

uu- uv uu- vv uv- uu

1 E(tn —m?)

In an orthogonal parametrization (F = 0), we leave it to the reader to check in Exercise 3 that

= EK.

1 E, Gy
*) K==37%c ((m)ﬁ(ﬁ)u)'

One of the crowning results of local differential geometry is the following

Theorem 3.1 (Gauss’s Theorema Egregium). The Gaussian curvature is determined by only the first
fundamental form 1. That is, K can be computed from just E, F, G, and their first and second partial
derivatives.

Proof. From any of the Gauss equations, we see that K can be computed by knowing any one of E,
F, and G, together with the Christoffel symbols and their derivatives. But the equations (I) show that the
Christoffel symbols (and hence any of their derivatives) can be calculated in terms of E, F', and G and their
partial derivatives. [

Corollary 3.2. If two surfaces are locally isometric, their Gaussian curvatures at corresponding points
are equal.

For example, the plane and cylinder are locally isometric, and hence the cylinder (as we well know)
is flat. We now conclude that since the Gaussian curvature of a sphere is nonzero, a sphere cannot be
locally isometric to a plane. Thus, there is no way to map the earth “faithfully” (preserving distance)—even
locally—on a piece of paper. In some sense, the Mercator projection (see Exercise 2.1.13) is the best we can
do, for, although it distorts distances, it does preserve angles.

The Codazzi and Gauss equations are rather opaque, to say the least. We obtained the convenient
equation () for the Gaussian curvature from the Gauss equations. To give a bit more insight into the
meaning of the Codazzi equations, we have the following

Lemma 3.3. Suppose x is a parametrization for which the u- and v-curves are lines of curvature, with
respective principal curvatures k1 and k,. Then we have

E, Gy
() (kp)y = ke —ki) and (ko) = 5~ (k1 —k2).



