CHAPTER 1. CURVES

Alternatively, since $\tan(\theta/2) = e^t$, we have

$$\sin \theta = 2\sin(\theta/2)\cos(\theta/2) = \frac{2e^t}{1+e^{2t}} = \frac{2}{e^t+e^{-t}} = \operatorname{sech} t$$
$$\cos \theta = \cos^2(\theta/2) - \sin^2(\theta/2) = \frac{1-e^{2t}}{1+e^{2t}} = \frac{e^{-t}-e^t}{e^t+e^{-t}} = -\tanh t$$

and so we can parametrize the tractrix instead by

$$\boldsymbol{\beta}(t) = (t - \tanh t, \operatorname{sech} t), \quad t \ge 0.$$
 ∇

The fundamental concept underlying the geometry of curves is the arclength of a parametrized curve.

Definition. If $\alpha: [a, b] \to \mathbb{R}^3$ is a parametrized curve, then for any $a \le t \le b$, we define its *arclength* from a to t to be $s(t) = \int_a^t \|\alpha'(u)\| du$. That is, the distance a particle travels—the arclength of its trajectory—is the integral of its speed.

An alternative approach is to start with the following

Definition. Let $\alpha: [a, b] \to \mathbb{R}^3$ be a (continuous) parametrized curve. Given a partition $\mathcal{P} = \{a = t_0 < t_1 < \cdots < t_k = b\}$ of the interval [a, b], let

$$\ell(\boldsymbol{\alpha}, \mathcal{P}) = \sum_{i=1}^{k} \|\boldsymbol{\alpha}(t_i) - \boldsymbol{\alpha}(t_{i-1})\|.$$

That is, $\ell(\alpha, \mathcal{P})$ is the length of the inscribed polygon with vertices at $\alpha(t_i)$, $i = 0, \ldots, k$, as indicated in

FIGURE 1.10

Figure 1.10. We define the *arclength* of α to be

length(α) = sup{ $\ell(\alpha, \mathcal{P}) : \mathcal{P}$ a partition of [a, b]},

provided the set of polygonal lengths is bounded above.

Now, using this definition, we can *prove* that the distance a particle travels is the integral of its speed. We will need to use the result of Exercise A.2.4. **Proposition 1.1.** Let α : $[a, b] \to \mathbb{R}^3$ be a piecewise- \mathbb{C}^1 parametrized curve. Then

length(
$$\boldsymbol{\alpha}$$
) = $\int_{a}^{b} \|\boldsymbol{\alpha}'(t)\| dt$.

Proof. For any partition \mathcal{P} of [a, b], we have

$$\ell(\boldsymbol{\alpha}, \mathcal{P}) = \sum_{i=1}^{k} \|\boldsymbol{\alpha}(t_i) - \boldsymbol{\alpha}(t_{i-1})\| = \sum_{i=1}^{k} \left\| \int_{t_{i-1}}^{t_i} \boldsymbol{\alpha}'(t) dt \right\| \le \sum_{i=1}^{k} \int_{t_{i-1}}^{t_i} \|\boldsymbol{\alpha}'(t)\| dt = \int_a^b \|\boldsymbol{\alpha}'(t)\| dt,$$

so length(α) $\leq \int_{a}^{b} \|\alpha'(t)\| dt$. The corresponding inequality holds on any interval. Now, for $a \leq t \leq b$, define s(t) to be the arclength of the curve α on the interval.

Now, for $a \leq t \leq b$, define s(t) to be the arclength of the curve α on the interval [a, t]. Then for h > 0 we have

$$\frac{\|\boldsymbol{\alpha}(t+h)-\boldsymbol{\alpha}(t)\|}{h} \leq \frac{s(t+h)-s(t)}{h} \leq \frac{1}{h} \int_{t}^{t+h} \|\boldsymbol{\alpha}'(u)\| du,$$

since s(t + h) - s(t) is the arclength of the curve α on the interval [t, t + h]. (See Exercise 8 for the first inequality and the first paragraph for the second.) Now

$$\lim_{h \to 0^+} \frac{\|\alpha(t+h) - \alpha(t)\|}{h} = \|\alpha'(t)\| = \lim_{h \to 0^+} \frac{1}{h} \int_t^{t+h} \|\alpha'(u)\| du.$$

Therefore, by the squeeze principle,

$$\lim_{h\to 0^+}\frac{s(t+h)-s(t)}{h}=\|\boldsymbol{\alpha}'(t)\|.$$

A similar argument works for h < 0, and we conclude that $s'(t) = \|\alpha'(t)\|$. Therefore,

$$s(t) = \int_a^t \|\boldsymbol{\alpha}'(u)\| du, \quad a \le t \le b,$$

and, in particular, $s(b) = \text{length}(\boldsymbol{\alpha}) = \int_{a}^{b} \|\boldsymbol{\alpha}'(t)\| dt$, as desired. \Box

If $\|\alpha'(t)\| = 1$ for all $t \in [a, b]$, i.e., α always has speed 1, then s(t) = t - a. We say the curve α is *parametrized by arclength* if s(t) = t for all t. In this event, we usually use the parameter $s \in [0, L]$ and write $\alpha(s)$.

Example 3. (a) Let $\alpha(t) = (\frac{1}{3}(1+t)^{3/2}, \frac{1}{3}(1-t)^{3/2}, \frac{1}{\sqrt{2}}t), t \in (-1, 1)$. Then we have $\alpha'(t) = (\frac{1}{2}(1+t)^{1/2}, -\frac{1}{2}(1-t)^{1/2}, \frac{1}{\sqrt{2}})$, and $\|\alpha'(t)\| = 1$ for all t. Thus, α always has speed 1.

(b) The standard parametrization of the circle of radius a is α(t) = (a cos t, a sin t), t ∈ [0, 2π], so α'(t) = (-a sin t, a cos t) and ||α'(t)|| = a. It is easy to see from the chain rule that if we reparametrize the curve by β(s) = (a cos(s/a), a sin(s/a)), s ∈ [0, 2πa], then β'(s) = (-sin(s/a), cos(s/a)) and ||β'(s)|| = 1 for all s. Thus, the curve β is parametrized by arclength. ∇

An important observation from a theoretical standpoint is that any regular parametrized curve can be *re*parametrized by arclength. For if $\boldsymbol{\alpha}$ is regular, the arclength function $s(t) = \int_{a}^{t} \|\boldsymbol{\alpha}'(u)\| du$ is an increasing differentiable function (since $s'(t) = \|\boldsymbol{\alpha}'(t)\| > 0$ for all t), and therefore has a differentiable inverse function t = t(s). Then we can consider the parametrization

$$\boldsymbol{\beta}(s) = \boldsymbol{\alpha}(t(s)).$$

Note that the chain rule tells us that

$$\boldsymbol{\beta}'(s) = \boldsymbol{\alpha}'(t(s))t'(s) = \boldsymbol{\alpha}'(t(s))/s'(t(s)) = \boldsymbol{\alpha}'(t(s))/\|\boldsymbol{\alpha}'(t(s))\|$$

is everywhere a unit vector; in other words, β moves with speed 1.

EXERCISES 1.1

*1. Parametrize the unit circle (less the point (-1, 0)) by the length t indicated in Figure 1.11.

FIGURE 1.11

- [#]2. Consider the helix $\alpha(t) = (a \cos t, a \sin t, bt)$. Calculate $\alpha'(t)$, $\|\alpha'(t)\|$, and reparametrize α by arclength.
- 3. Let $\boldsymbol{\alpha}(t) = \left(\frac{1}{\sqrt{3}}\cos t + \frac{1}{\sqrt{2}}\sin t, \frac{1}{\sqrt{3}}\cos t, \frac{1}{\sqrt{3}}\cos t \frac{1}{\sqrt{2}}\sin t\right)$. Calculate $\boldsymbol{\alpha}'(t), \|\boldsymbol{\alpha}'(t)\|$, and reparametrize $\boldsymbol{\alpha}$ by arclength.
- *4. Parametrize the graph $y = f(x), a \le x \le b$, and show that its arclength is given by the traditional formula

length =
$$\int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

- 5. a. Show that the arclength of the catenary $\alpha(t) = (t, \cosh t)$ for $0 \le t \le b$ is sinh b.
 - b. Reparametrize the catenary by arclength. (Hint: Find the inverse of sinh by using the quadratic formula.)
- *6. Consider the curve $\alpha(t) = (e^t, e^{-t}, \sqrt{2}t)$. Calculate $\alpha'(t), \|\alpha'(t)\|$, and reparametrize α by arclength, starting at t = 0.