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Alternatively, since tan.!=2/ D et , we have

sin ! D 2 sin.!=2/ cos.!=2/ D
2et

1C e2t
D

2

et C e!t
D sech t

cos ! D cos2.!=2/ ! sin2.!=2/ D
1 ! e2t

1C e2t
D
e!t ! et

et C e!t
D ! tanh t ;

and so we can parametrize the tractrix instead by

ˇ.t/ D
!

t ! tanh t; sech t/; t " 0: O

The fundamental concept underlying the geometry of curves is the arclength of a parametrized curve.

Definition. If ˛W Œa; b" ! R3 is a parametrized curve, then for any a # t # b, we define its arclength

from a to t to be s.t/ D
Z t

a
k˛0.u/kdu. That is, the distance a particle travels—the arclength of its

trajectory—is the integral of its speed.

An alternative approach is to start with the following

Definition. Let ˛W Œa; b"! R3 be a (continuous) parametrized curve. Given a partition P D fa D t0 <
t1 < $ $ $ < tk D bg of the interval Œa; b", let

`.˛;P/ D
k
X

iD1

k˛.ti / ! ˛.ti!1/k:

That is, `.˛;P/ is the length of the inscribed polygon with vertices at ˛.ti /, i D 0; : : : ; k, as indicated in

a b

FIGURE 1.10

Figure 1.10. We define the arclength of ˛ to be

length.˛/ D supf`.˛;P/ W P a partition of Œa; b"g;

provided the set of polygonal lengths is bounded above.

Now, using this definition, we can prove that the distance a particle travels is the integral of its speed.
We will need to use the result of Exercise A.2.4.
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Proposition 1.1. Let ˛W Œa; b"! R3 be a piecewise-C1 parametrized curve. Then

length.˛/ D
Z b

a
k˛0.t/kdt :

Proof. For any partition P of Œa; b", we have

`.˛;P/ D
k
X

iD1

k˛.ti / ! ˛.ti!1/k D
k
X

iD1

"
"
"
"

Z ti

ti!1

˛0.t/dt

"
"
"
"
#

k
X

iD1

Z ti

ti!1

k˛0.t/kdt D
Z b

a
k˛0.t/kdt ;

so length.˛/ #
Z b

a
k˛0.t/kdt . The corresponding inequality holds on any interval.

Now, for a # t # b, define s.t/ to be the arclength of the curve ˛ on the interval Œa; t ". Then for h > 0
we have

k˛.t C h/ ! ˛.t/k
h

#
s.t C h/ ! s.t/

h
#
1

h

Z tCh

t
k˛0.u/kdu;

since s.t C h/ ! s.t/ is the arclength of the curve ˛ on the interval Œt; t C h". (See Exercise 8 for the first
inequality and the first paragraph for the second.) Now

lim
h!0C

k˛.t C h/ ! ˛.t/k
h

D k˛0.t/k D lim
h!0C

1

h

Z tCh

t
k˛0.u/kdu:

Therefore, by the squeeze principle,

lim
h!0C

s.t C h/ ! s.t/
h

D k˛0.t/k:

A similar argument works for h < 0, and we conclude that s0.t/ D k˛0.t/k. Therefore,

s.t/ D
Z t

a
k˛0.u/kdu; a # t # b;

and, in particular, s.b/ D length.˛/ D
Z b

a
k˛0.t/kdt , as desired. !

If k˛0.t/k D 1 for all t 2 Œa; b", i.e., ˛ always has speed 1, then s.t/ D t ! a. We say the curve ˛ is
parametrized by arclength if s.t/ D t for all t . In this event, we usually use the parameter s 2 Œ0; L" and
write ˛.s/.

Example 3. (a) Let ˛.t/ D
!

1
3.1C t/

3=2; 1
3.1 ! t/

3=2; 1p
2
t
#

, t 2 .!1; 1/. Then we have ˛0.t/ D
!

1
2.1C t/

1=2;!1
2.1! t/

1=2; 1p
2

#

, and k˛0.t/k D 1 for all t . Thus, ˛ always has speed 1.
(b) The standard parametrization of the circle of radius a is ˛.t/ D .a cos t; a sin t/, t 2 Œ0; 2#",

so ˛0.t/ D .!a sin t; a cos t/ and k˛0.t/k D a. It is easy to see from the chain rule that if
we reparametrize the curve by ˇ.s/ D .a cos.s=a/; a sin.s=a//, s 2 Œ0; 2#a", then ˇ0.s/ D
.! sin.s=a/; cos.s=a// and kˇ0.s/k D 1 for all s. Thus, the curve ˇ is parametrized by arc-
length. O
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An important observation from a theoretical standpoint is that any regular parametrized curve can be

reparametrized by arclength. For if ˛ is regular, the arclength function s.t/ D
Z t

a
k˛0.u/kdu is an increas-

ing differentiable function (since s0.t/ D k˛0.t/k > 0 for all t), and therefore has a differentiable inverse
function t D t.s/. Then we can consider the parametrization

ˇ.s/ D ˛.t.s//:

Note that the chain rule tells us that

ˇ0.s/ D ˛0.t.s//t 0.s/ D ˛0.t.s//=s0.t.s// D ˛0.t.s//=k˛0.t.s//k

is everywhere a unit vector; in other words, ˇ moves with speed 1.

EXERCISES 1.1

*1. Parametrize the unit circle (less the point .!1; 0/) by the length t indicated in Figure 1.11.

t
(−1,0)

(x,y)

FIGURE 1.11

]2. Consider the helix ˛.t/ D .a cos t; a sin t; bt/. Calculate ˛0.t/, k˛0.t/k, and reparametrize ˛ by arc-
length.

3. Let ˛.t/ D
!

1p
3
cos t C 1p

2
sin t; 1p

3
cos t; 1p

3
cos t ! 1p

2
sin t

#

. Calculate ˛0.t/, k˛0.t/k, and reparam-
etrize ˛ by arclength.

*4. Parametrize the graph y D f .x/, a # x # b, and show that its arclength is given by the traditional
formula

length D
Z b

a

q

1C
!

f 0.x/
#2
dx:

5. a. Show that the arclength of the catenary ˛.t/ D .t; cosh t/ for 0 # t # b is sinh b.
b. Reparametrize the catenary by arclength. (Hint: Find the inverse of sinh by using the quadratic

formula.)

*6. Consider the curve ˛.t/ D .et ; e!t ;
p
2t/. Calculate ˛0.t/, k˛0.t/k, and reparametrize ˛ by arclength,

starting at t D 0.


