6 CHAPTER 1. CURVES

Alternatively, since tan(6/2) = e’, we have

2e! 2
sin 6 = 2sin(8/2) cos(9/2) = - :eﬂ = o= = sech
1— 2t —t _ ,t
cos 6 = cos2(0/2) —sin?(0/2) = —— = £ "¢ — _tanhy,

1 +e2t el 4et
and so we can parametrize the tractrix instead by

B() = (t —tanht,secht), t>0. \Y,
The fundamental concept underlying the geometry of curves is the arclength of a parametrized curve.

Definition. If «: [a, ] — R3 is a parametrized curve, then for any a < t < b, we define its arclength
t

from a to ¢ to be s(¢) = / llo’(u)||du. That is, the distance a particle travels—the arclength of its

a
trajectory —is the integral of its speed.

An alternative approach is to start with the following

Definition. Let a: [z, ] — R> be a (continuous) parametrized curve. Given a partition P = {a = o <
t1 < -+ <ty = b} of the interval [a, b], let

k
Lo, P) =Y flee(ti) —ati-n)|l.
i=1

That is, £(e, P) is the length of the inscribed polygon with vertices at e(¢;),i = 0, ..., k, as indicated in

the length of this polygonal

Given this partition, P, of [a, b], .
path is £(a, P).

FIGURE 1.10

Figure 1.10. We define the arclength of « to be
length(at) = sup{£(e, P) : P a partition of [a, b]},
provided the set of polygonal lengths is bounded above.

Now, using this definition, we can prove that the distance a particle travels is the integral of its speed.
We will need to use the result of Exercise A.2.4.
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Proposition 1.1. Leta: [a, b] — R3 be a piecewise-C! parametrized curve. Then

b
length(er) :/ o’ (1) dt.

a

Proof. For any partition P of [a, b], we have

t; k t; b
/ o/(t)dtH <> / le’ ()| dt = / llee’(2) 1 dt,
ti—1 i=1Y%i-1 a

k

k
. P) = lle@) —ali-)ll =)

b
so length(a) < / e’ (¢)||dt. The corresponding inequality holds on any interval.

Now, for a fat < b, define s(¢) to be the arclength of the curve o on the interval [a, ¢]. Then for 4 > 0
we have
lec + 1) —a@] _se+h)—s@) 1
h - h “hJ;
since s(¢ + h) — s(¢) is the arclength of the curve a on the interval [¢,¢ + h]. (See Exercise 8 for the first
inequality and the first paragraph for the second.) Now

h _ 1 t +h
tim 12D =@l ) = Ml—/ o' Go) .
h—0 t

llee’ )|,

h—0t h +h

Therefore, by the squeeze principle,

s(t 4+ h)—s(t) _

lim o' ().
im S o0
A similar argument works for 2 < 0, and we conclude that s’(¢) = ||e/(¢)||. Therefore,

t
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a

b
and, in particular, s(b) = length(a) = / llo ()| dt, as desired. I

a

If |le’(¢)|| = 1 for all z € [a,b],ie., o always has speed 1, then s(t) = ¢t — a. We say the curve « is
parametrized by arclength if s(t) = t for all ¢. In this event, we usually use the parameter s € [0, L] and

write a(s).

Example3.  (a) Leta(t) = (3(1+1)32, 31 —1)%2, %z),z € (=1, 1). Then we have o/(¢) =
G+ -1 -2, %), and ||e/(z)|| = 1 for all z. Thus, & always has speed 1.

(b) The standard parametrization of the circle of radius a is «(¢) = (acost,asint), t € [0,2x],
so a’(t) = (—asint,acost) and ||e’(z)|| = a. It is easy to see from the chain rule that if
we reparametrize the curve by B(s) = (acos(s/a),asin(s/a)), s € [0,2ma], then B'(s) =
(—sin(s/a),cos(s/a)) and ||B’(s)|| = 1 for all s. Thus, the curve B is parametrized by arc-

length. v
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An important observation from a theoretical standpoint is that any regular parametrized curve can be

t
reparametrized by arclength. For if « is regular, the arclength function s(¢) = / le’ (u)||du is an increas-
a

ing differentiable function (since s'(¢) = |la/(¢)|| > 0 for all ¢), and therefore has a differentiable inverse

function ¢ = ¢(s). Then we can consider the parametrization

B(s) = a(t(s)).

Note that the chain rule tells us that

B'(s) = o/ (t(5))t'(s) = &'(t(5)) /5" (t(5)) = e’ (t(5))/llee’ (2 (5)) |

is everywhere a unit vector; in other words, 8 moves with speed 1.

*1.

42,

*4,

*6.

EXERCISES 1.1

Parametrize the unit circle (less the point (—1, 0)) by the length ¢ indicated in Figure 1.11.

(x,y)

(-1.0)

FIGURE 1.11

Consider the helix a(t) = (acost,asint,bt). Calculate o’(¢), ||e/(?)]|, and reparametrize ¢ by arc-
length.

Leta(t) = (L cost + - sint, L cost, 2= cost — <= sin t). Calculate &/ (7), [|e¢/()]|, and reparam-

V3 V2©TT B V3 V2

etrize a by arclength.

Parametrize the graph y = f(x),a < x < b, and show that its arclength is given by the traditional
b / 2
length = / 1+ (f’(x)) dx.
a

a. Show that the arclength of the catenary «(¢) = (¢,cosh¢) for 0 < ¢ < b is sinh b.
b. Reparametrize the catenary by arclength. (Hint: Find the inverse of sinh by using the quadratic

formula

formula.)

Consider the curve a(f) = (e’, e, /2t). Calculate a’(¢), ||e(¢)||, and reparametrize & by arclength,
starting at f = 0.



