Alternatively, $\operatorname{since} \tan (\theta / 2)=e^{t}$, we have

$$
\begin{aligned}
& \sin \theta=2 \sin (\theta / 2) \cos (\theta / 2)=\frac{2 e^{t}}{1+e^{2 t}}=\frac{2}{e^{t}+e^{-t}}=\operatorname{sech} t \\
& \cos \theta=\cos ^{2}(\theta / 2)-\sin ^{2}(\theta / 2)=\frac{1-e^{2 t}}{1+e^{2 t}}=\frac{e^{-t}-e^{t}}{e^{t}+e^{-t}}=-\tanh t
\end{aligned}
$$

and so we can parametrize the tractrix instead by

$$
\boldsymbol{\beta}(t)=(t-\tanh t, \operatorname{sech} t), \quad t \geq 0 .
$$

The fundamental concept underlying the geometry of curves is the arclength of a parametrized curve.
Definition. If $\boldsymbol{\alpha}:[a, b] \rightarrow \mathbb{R}^{3}$ is a parametrized curve, then for any $a \leq t \leq b$, we define its arclength from a to t to be $s(t)=\int_{a}^{t}\left\|\boldsymbol{\alpha}^{\prime}(u)\right\| d u$. That is, the distance a particle travels - the arclength of its trajectory - is the integral of its speed.

An alternative approach is to start with the following
Definition. Let $\boldsymbol{\alpha}:[a, b] \rightarrow \mathbb{R}^{3}$ be a (continuous) parametrized curve. Given a partition $\mathcal{P}=\left\{a=t_{0}<\right.$ $\left.t_{1}<\cdots<t_{k}=b\right\}$ of the interval $[a, b]$, let

$$
\ell(\boldsymbol{\alpha}, \mathcal{P})=\sum_{i=1}^{k}\left\|\boldsymbol{\alpha}\left(t_{i}\right)-\boldsymbol{\alpha}\left(t_{i-1}\right)\right\| .
$$

That is, $\ell(\boldsymbol{\alpha}, \mathcal{P})$ is the length of the inscribed polygon with vertices at $\boldsymbol{\alpha}\left(t_{i}\right), i=0, \ldots, k$, as indicated in

Figure 1.10
Figure 1.10. We define the arclength of $\boldsymbol{\alpha}$ to be

$$
\text { length }(\boldsymbol{\alpha})=\sup \{\ell(\boldsymbol{\alpha}, \mathcal{P}): \mathcal{P} \text { a partition of }[a, b]\}
$$

provided the set of polygonal lengths is bounded above.
Now, using this definition, we can prove that the distance a particle travels is the integral of its speed. We will need to use the result of Exercise A.2.4.

Proposition 1.1. Let $\alpha:[a, b] \rightarrow \mathbb{R}^{3}$ be a piecewise- \complement^{1} parametrized curve. Then

$$
\text { length }(\boldsymbol{\alpha})=\int_{a}^{b}\left\|\boldsymbol{\alpha}^{\prime}(t)\right\| d t
$$

Proof. For any partition \mathcal{P} of $[a, b]$, we have

$$
\ell(\boldsymbol{\alpha}, \mathcal{P})=\sum_{i=1}^{k}\left\|\boldsymbol{\alpha}\left(t_{i}\right)-\boldsymbol{\alpha}\left(t_{i-1}\right)\right\|=\sum_{i=1}^{k}\left\|\int_{t_{i-1}}^{t_{i}} \boldsymbol{\alpha}^{\prime}(t) d t\right\| \leq \sum_{i=1}^{k} \int_{t_{i-1}}^{t_{i}}\left\|\boldsymbol{\alpha}^{\prime}(t)\right\| d t=\int_{a}^{b}\left\|\boldsymbol{\alpha}^{\prime}(t)\right\| d t
$$

so length $(\boldsymbol{\alpha}) \leq \int_{a}^{b}\left\|\boldsymbol{\alpha}^{\prime}(t)\right\| d t$. The corresponding inequality holds on any interval.
Now, for $a \leq t \leq b$, define $s(t)$ to be the arclength of the curve α on the interval $[a, t]$. Then for $h>0$ we have

$$
\frac{\|\boldsymbol{\alpha}(t+h)-\boldsymbol{\alpha}(t)\|}{h} \leq \frac{s(t+h)-s(t)}{h} \leq \frac{1}{h} \int_{t}^{t+h}\left\|\boldsymbol{\alpha}^{\prime}(u)\right\| d u
$$

since $s(t+h)-s(t)$ is the arclength of the curve $\boldsymbol{\alpha}$ on the interval $[t, t+h]$. (See Exercise 8 for the first inequality and the first paragraph for the second.) Now

$$
\lim _{h \rightarrow 0^{+}} \frac{\|\boldsymbol{\alpha}(t+h)-\boldsymbol{\alpha}(t)\|}{h}=\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|=\lim _{h \rightarrow 0^{+}} \frac{1}{h} \int_{t}^{t+h}\left\|\boldsymbol{\alpha}^{\prime}(u)\right\| d u
$$

Therefore, by the squeeze principle,

$$
\lim _{h \rightarrow 0^{+}} \frac{s(t+h)-s(t)}{h}=\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|
$$

A similar argument works for $h<0$, and we conclude that $s^{\prime}(t)=\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|$. Therefore,

$$
s(t)=\int_{a}^{t}\left\|\boldsymbol{\alpha}^{\prime}(u)\right\| d u, \quad a \leq t \leq b
$$

and, in particular, $s(b)=$ length $(\boldsymbol{\alpha})=\int_{a}^{b}\left\|\boldsymbol{\alpha}^{\prime}(t)\right\| d t$, as desired.

If $\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|=1$ for all $t \in[a, b]$, i.e., $\boldsymbol{\alpha}$ always has speed 1 , then $s(t)=t-a$. We say the curve $\boldsymbol{\alpha}$ is parametrized by arclength if $s(t)=t$ for all t. In this event, we usually use the parameter $s \in[0, L]$ and write $\boldsymbol{\alpha}(s)$.

Example 3. (a) Let $\boldsymbol{\alpha}(t)=\left(\frac{1}{3}(1+t)^{3 / 2}, \frac{1}{3}(1-t)^{3 / 2}, \frac{1}{\sqrt{2}} t\right), t \in(-1,1)$. Then we have $\boldsymbol{\alpha}^{\prime}(t)=$ $\left(\frac{1}{2}(1+t)^{1 / 2},-\frac{1}{2}(1-t)^{1 / 2}, \frac{1}{\sqrt{2}}\right)$, and $\left\|\alpha^{\prime}(t)\right\|=1$ for all t. Thus, α always has speed 1.
(b) The standard parametrization of the circle of radius a is $\boldsymbol{\alpha}(t)=(a \cos t, a \sin t), t \in[0,2 \pi]$, so $\boldsymbol{\alpha}^{\prime}(t)=(-a \sin t, a \cos t)$ and $\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|=a$. It is easy to see from the chain rule that if we reparametrize the curve by $\boldsymbol{\beta}(s)=(a \cos (s / a), a \sin (s / a)), s \in[0,2 \pi a]$, then $\boldsymbol{\beta}^{\prime}(s)=$ $(-\sin (s / a), \cos (s / a))$ and $\left\|\boldsymbol{\beta}^{\prime}(s)\right\|=1$ for all s. Thus, the curve $\boldsymbol{\beta}$ is parametrized by arclength. $\quad \nabla$

An important observation from a theoretical standpoint is that any regular parametrized curve can be reparametrized by arclength. For if $\boldsymbol{\alpha}$ is regular, the arclength function $s(t)=\int_{a}^{t}\left\|\boldsymbol{\alpha}^{\prime}(u)\right\| d u$ is an increasing differentiable function (since $s^{\prime}(t)=\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|>0$ for all t), and therefore has a differentiable inverse function $t=t(s)$. Then we can consider the parametrization

$$
\boldsymbol{\beta}(s)=\boldsymbol{\alpha}(t(s))
$$

Note that the chain rule tells us that

$$
\boldsymbol{\beta}^{\prime}(s)=\boldsymbol{\alpha}^{\prime}(t(s)) t^{\prime}(s)=\boldsymbol{\alpha}^{\prime}(t(s)) / s^{\prime}(t(s))=\boldsymbol{\alpha}^{\prime}(t(s)) /\left\|\boldsymbol{\alpha}^{\prime}(t(s))\right\|
$$

is everywhere a unit vector; in other words, $\boldsymbol{\beta}$ moves with speed 1.

EXERCISES 1.1

*1. Parametrize the unit circle (less the point $(-1,0)$) by the length t indicated in Figure 1.11 .

Figure 1.11
\#2. Consider the helix $\boldsymbol{\alpha}(t)=(a \cos t, a \sin t, b t)$. Calculate $\boldsymbol{\alpha}^{\prime}(t),\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|$, and reparametrize $\boldsymbol{\alpha}$ by arclength.
3. Let $\boldsymbol{\alpha}(t)=\left(\frac{1}{\sqrt{3}} \cos t+\frac{1}{\sqrt{2}} \sin t, \frac{1}{\sqrt{3}} \cos t, \frac{1}{\sqrt{3}} \cos t-\frac{1}{\sqrt{2}} \sin t\right)$. Calculate $\boldsymbol{\alpha}^{\prime}(t),\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|$, and reparametrize $\boldsymbol{\alpha}$ by arclength.
*4. Parametrize the graph $y=f(x), a \leq x \leq b$, and show that its arclength is given by the traditional formula

$$
\text { length }=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

5. a. Show that the arclength of the catenary $\boldsymbol{\alpha}(t)=(t, \cosh t)$ for $0 \leq t \leq b$ is $\sinh b$.
b. Reparametrize the catenary by arclength. (Hint: Find the inverse of sinh by using the quadratic formula.)
*6. Consider the curve $\boldsymbol{\alpha}(t)=\left(e^{t}, e^{-t}, \sqrt{2} t\right)$. Calculate $\boldsymbol{\alpha}^{\prime}(t),\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|$, and reparametrize $\boldsymbol{\alpha}$ by arclength, starting at $t=0$.
