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Proof. By Exercise 2.2.1, ` D k1E, n D k2G, and F D m D 0. By the first Codazzi equation and the
equations (!) on p. 58, we have

.k1/vE C k1Ev D `v D k1E"
u

uv ! k2G"
v

uu D
1
2Ev.k1 C k2/;

and so

.k1/v D
Ev

2E
.k2 ! k1/:

The other formula follows similarly from the second Codazzi equation. !

Let’s now apply the Codazzi equations to prove a rather striking result about the general surface with
K D 0 everywhere.

Proposition 3.4. Suppose M is a flat surface with no planar points. ThenM is a ruled surface whose
tangent plane is constant along the rulings.

Proof. SinceM has no planar points, we can choose k1 D 0 and k2 ¤ 0 everywhere. Then by Theorem
3.3 of the Appendix, there is a local parametrization ofM so that the u-curves are the first lines of curvature
and the v-curves are the second lines of curvature. This means first of all that F D m D 0. (See Exercise
2.2.1.) Now, since k1 D 0, for any P 2 M we have SP .xu/ D 0, and so nu D 0 everywhere and n is
constant along the u-curves. We also observe that ` D II.xu; xu/ D !SP .xu/ " xu D 0.

We now want to show that the u-curves are in fact lines. Since k1 D 0 everywhere, .k1/v D 0 and,
since k2 ¤ k1, we infer from Lemma 3.3 that Ev D 0. From the equations (!) it now follows that " v

uu D 0.
Thus,

xuu D " u
uuxu C " v

uuxv C `n D " u
uuxu

is just a multiple of xu. Thus, the tangent vector xu never changes direction as we move along the u-curves,
and this means that the u-curves must be lines. In conclusion, we have a ruled surface whose tangent plane
is constant along rulings. !

Remark. Flat ruled surfaces are often called developable. (See Exercise 10 and Exercise 2.1.12.) The
terminology comes from the fact that they can be rolled out—or “developed”—onto a plane.

Next we prove a striking global result about compact surfaces. (Recall that a subset of R3 is compact
if it is closed and bounded. The salient feature of compact sets is the maximum value theorem: A contin-
uous real-valued function on a compact set achieves its maximum and minimum values.) We begin with a
straightforward

Proposition 3.5. SupposeM # R3 is a compact surface. Then there is a point P 2M withK.P / > 0.

Proof. Because M is compact, the continuous function f .x/ D kxk achieves its maximum at some
point of M , and so there is a point P 2 M farthest from the origin (which may or may not be inside M ),
as indicated in Figure 3.2. Let f .P / D R. As Exercise 1.2.7 shows, the curvature of any curve ˛ # M

at P is at least 1=R. Applying this to any normal section of M at P and choosing the unit normal n
to be inward-pointing, we deduce that every normal curvature of M at P is at least 1=R. It follows that
K.P / $ 1=R2 > 0. (That is,M is at least as curved at P as the circumscribed sphere of radius R tangent
toM at P .) !
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The reader is asked in Exercise 19 to find surfaces of revolution of constant curvature. There are,
interestingly, many nonobvious examples. However, if we restrict ourselves to smooth, compact surfaces,
we have the following beautiful

Theorem 3.6 (Liebmann). IfM is a smooth, compact surface of constant Gaussian curvature K, then
K > 0 andM must be a sphere of radius 1=

p
K.

We will need the following

Lemma 3.7 (Hilbert). Suppose P is not an umbilic point and k1.P / > k2.P /. Suppose k1 has a local
maximum at P and k2 has a local minimum at P . Then K.P / % 0.

Proof. We work in a “principal” coordinate parametrization7 near P , so that the u-curves are lines of
curvature with principal curvature k1 and the v-curves are lines of curvature with principal curvature k2.
Since k1 ¤ k2 and .k1/v D .k2/u D 0 at P , it follows from Lemma 3.3 that Ev D Gu D 0 at P .

Differentiating the equations (?), and remembering that .k1/u D .k2/v D 0 at P as well, we have at P :

.k1/vv D
Evv

2E
.k2 ! k1/ % 0 (because k1 has a local maximum at P )

.k2/uu D
Guu

2G
.k1 ! k2/ $ 0 (because k2 has a local minimum at P ),

and so Evv $ 0 and Guu $ 0 at P . Using the equation (&) for the Gaussian curvature on p. 60, we see
similarly that at P

K D !
1

2EG

!

Evv C Guu

"

;

as all the remaining terms involve Ev and Gu. So we conclude that K.P / % 0, as desired. !

Proof of Theorem 3.6. By Proposition 3.5, there is a point whereM is positively curved, and since the
Gaussian curvature is constant, we must have K > 0. If every point is umbilic, then by Exercise 2.2.14, we
know thatM is a sphere. If there is some non-umbilic point, the larger principal curvature, k1, achieves its
maximum value at some point P because M is compact. Then, since K D k1k2 is constant, the function
k2 D K=k1 must achieve its minimum at P . Since P is necessarily a non-umbilic point (why?), it follows
from Lemma 3.7 that K.P / % 0, which is a contradiction. !

7Since locally there are no umbilic points, the existence of such a parametrization is an immediate consequence of Theorem
3.3 of the Appendix.
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Remark. H. Hopf proved a stronger result, which requires techniques from complex analysis: IfM is a
compact surface topologically equivalent to a sphere and having constant mean curvature, thenM must be
a sphere.

We conclude this section with the analogue of Theorem 3.1 of Chapter 1.

Theorem 3.8 (Fundamental Theorem of Surface Theory). Uniqueness: Two parametrized surfaces
x; x!WU ! R3 are congruent (i.e., differ by a rigid motion) if and only if I D I! and II D ˙II!. Ex-
istence: Moreover, given differentiable functions E, F , G, `, m, and n with E > 0 and EG ! F 2 > 0 and
satisfying the Codazzi and Gauss equations, there exists (locally) a parametrized surface x.u; v/ with the
respective I and II.

Proof. The existence statement requires some theorems from partial differential equations beyond our
reach at this stage. The uniqueness statement, however, is much like the proof of Theorem 3.1 of Chapter
1. (The main technical difference is that we no longer are lucky enough to be working with an orthonormal
basis at each point, as we were with the Frenet frame.)

First, suppose x! D ‰ıx for some rigid motion ‰WR3 ! R3 (i.e., ‰.x/ D AxC b for some b 2 R3

and some 3'3 orthogonal matrix A). Since a translation doesn’t change partial derivatives, we may assume
that b D 0. Now, since orthogonal matrices preserve length and dot product, we have E! D kx!

uk2 D
kAxuk2 D kxuk2 D E, etc., so I D I!. If detA > 0, then n! D An, whereas if detA < 0, then n! D !An.
Thus, `! D x!

uu " n! D Axuu " .˙An/ D ˙`, the positive sign holding when detA > 0 and the negative
when detA < 0. Thus, II! D II if detA > 0 and II! D !II if detA < 0.

Conversely, suppose I D I! and II D ˙II!. By composing x! with a reflection, if necessary, we may
assume that II D II!. Now we need the following

Lemma 3.9. Suppose ˛ and ˛! are smooth functions on Œ0; b#, v1v2v3 and v!
1v

!
2v

!
3 are smoothly varying

bases for R3, also defined on Œ0; b#, so that

vi .t/ " vj .t/ D v!
i .t/ " v

!
j .t/ D gij .t/; i; j D 1; 2; 3;

˛0.t/ D
3
X

iD1

pi .t/vi .t/ and ˛!0.t/ D
3
X

iD1

pi .t/v!
i .t/;

v0
j .t/ D

3
X

iD1

qij vi .t/ and v!
j

0.t/ D
3
X

iD1

qijv!
i .t/; j D 1; 2; 3:

(Note that the coefficient functions pi and qij are the same for both the starred and unstarred equations.)
If ˛.0/ D ˛!.0/ and vi .0/ D v!

i .0/, i D 1; 2; 3, then ˛.t/ D ˛!.t/ and vi .t/ D v!
i .t/ for all t 2 Œ0; b#,

i D 1; 2; 3.

Fix a point u0 2 U . By composing x! with a rigid motion, we may assume that at u0 we have x D x!,
xu D x!

u, xv D x!
v , and n D n! (why?). Choose an arbitrary u1 2 U , and join u0 to u1 by a path u.t/,

t 2 Œ0; b#, and apply the lemma with ˛ D xıu, v1 D xuıu, v2 D xvıu, v3 D nıu, pi D u0
i , and the qij

prescribed by the equations ($) and ($$). Since I D I! and II D II!, the same equations hold for ˛! D x!ıu,
and so x.u1/ D x!.u1/ as desired. That is, the two parametrized surfaces are identical. !


