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Remark. H. Hopf proved a stronger result, which requires techniques from complex analysis: IfM is a
compact surface topologically equivalent to a sphere and having constant mean curvature, thenM must be
a sphere.

We conclude this section with the analogue of Theorem 3.1 of Chapter 1.

Theorem 3.8 (Fundamental Theorem of Surface Theory). Uniqueness: Two parametrized surfaces
x; x!WU ! R3 are congruent (i.e., differ by a rigid motion) if and only if I D I! and II D ˙II!. Ex-
istence: Moreover, given differentiable functions E, F , G, `, m, and n with E > 0 and EG ! F 2 > 0 and
satisfying the Codazzi and Gauss equations, there exists (locally) a parametrized surface x.u; v/ with the
respective I and II.

Proof. The existence statement requires some theorems from partial differential equations beyond our
reach at this stage. The uniqueness statement, however, is much like the proof of Theorem 3.1 of Chapter
1. (The main technical difference is that we no longer are lucky enough to be working with an orthonormal
basis at each point, as we were with the Frenet frame.)

First, suppose x! D ‰ıx for some rigid motion ‰WR3 ! R3 (i.e., ‰.x/ D AxC b for some b 2 R3

and some 3"3 orthogonal matrix A). Since a translation doesn’t change partial derivatives, we may assume
that b D 0. Now, since orthogonal matrices preserve length and dot product, we have E! D kx!

uk2 D
kAxuk2 D kxuk2 D E, etc., so I D I!. If detA > 0, then n! D An, whereas if detA < 0, then n! D !An.
Thus, `! D x!

uu # n! D Axuu # .˙An/ D ˙`, the positive sign holding when detA > 0 and the negative
when detA < 0. Thus, II! D II if detA > 0 and II! D !II if detA < 0.

Conversely, suppose I D I! and II D ˙II!. By composing x! with a reflection, if necessary, we may
assume that II D II!. Now we need the following

Lemma 3.9. Suppose ˛ and ˛! are smooth functions on Œ0; b!, v1v2v3 and v!
1v

!
2v

!
3 are smoothly varying

bases for R3, also defined on Œ0; b!, so that

vi .t/ # vj .t/ D v!
i .t/ # v

!
j .t/ D gij .t/; i; j D 1; 2; 3;

˛0.t/ D
3
X

iD1

pi .t/vi .t/ and ˛!0.t/ D
3
X

iD1

pi .t/v!
i .t/;

v0
j .t/ D

3
X

iD1

qij vi .t/ and v!
j

0.t/ D
3
X

iD1

qijv!
i .t/; j D 1; 2; 3:

(Note that the coefficient functions pi and qij are the same for both the starred and unstarred equations.)
If ˛.0/ D ˛!.0/ and vi .0/ D v!

i .0/, i D 1; 2; 3, then ˛.t/ D ˛!.t/ and vi .t/ D v!
i .t/ for all t 2 Œ0; b!,

i D 1; 2; 3.

Fix a point u0 2 U . By composing x! with a rigid motion, we may assume that at u0 we have x D x!,
xu D x!

u, xv D x!
v , and n D n! (why?). Choose an arbitrary u1 2 U , and join u0 to u1 by a path u.t/,

t 2 Œ0; b!, and apply the lemma with ˛ D xıu, v1 D xuıu, v2 D xvıu, v3 D nıu, pi D u0
i , and the qij

prescribed by the equations (") and (""). Since I D I! and II D II!, the same equations hold for ˛! D x!ıu,
and so x.u1/ D x!.u1/ as desired. That is, the two parametrized surfaces are identical. !
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Proof of Lemma 3.9. Introduce the matrix function of t

M.t/ D

2

6
4

j j j
v1.t/ v2.t/ v3.t/

j j j

3

7
5 ;

and analogously forM !.t/. Then the displayed equations in the statement of the Lemma can be written as

M 0.t/ D M.t/Q.t/ and M !0.t/ DM !.t/Q.t/:

On the other hand, we have M.t/TM.t/ D G.t/. Since the vi .t/ form a basis for R3 for each t , we
know the matrix G is invertible. Now, differentiating the equation G.t/G"1.t/ D I yields .G"1/0.t/ D
!G"1.t/G0.t/G"1.t/, and differentiating the equation G.t/ DM.t/TM.t/ yields G0.t/ D M 0.t/TM.t/C
M.t/TM 0.t/ D Q.t/TG.t/CG.t/Q.t/. Now consider

.M !G"1M T/0.t/ DM !0.t/G.t/"1M.t/T CM !.t/.G"1/0.t/M.t/T CM !.t/G.t/"1M 0.t/T

DM !.t/Q.t/G.t/"1M.t/T CM !.t/
!

!G.t/"1G0.t/G.t/"1
"

M.t/T

CM !.t/G.t/"1Q.t/TM.t/T

DM !.t/Q.t/G.t/"1M.t/T !M !.t/G.t/"1Q.t/TM.t/T !M !.t/Q.t/G.t/"1M.t/T

CM !.t/G.t/"1Q.t/TM.t/T D O:

Since M.0/ D M !.0/, we have M !.0/G.0/"1M.0/T D M.0/M.0/"1M.0/T"1M.0/T D I , and so
M !.t/G.t/"1M.t/T D I for all t 2 Œ0; b!. It follows that M !.t/ D M.t/ for all t 2 Œ0; b!, and so
˛!0.t/ ! ˛0.t/ D 0 for all t as well. Since ˛!.0/ D ˛.0/, it follows that ˛!.t/ D ˛.t/ for all t 2 Œ0; b!, as
we wished to establish. !

EXERCISES 2.3

1. Calculate the Christoffel symbols for a cone, x.u; v/ D .u cos v; u sin v; u/, both directly (as in Example
1) and by using the formulas (#).

2. Calculate the Christoffel symbols for the following parametrized surfaces. Then check in each case that
the Codazzi equations and the first Gauss equation hold.
a. the plane, parametrized by polar coordinates: x.u; v/ D .u cos v; u sin v; 0/
b. a helicoid: x.u; v/ D .u cos v; u sin v; v/

]c. a cone: x.u; v/ D .u cos v; u sin v; cu/, c ¤ 0
]*d. a surface of revolution: x.u; v/ D

!

f .u/ cos v; f .u/ sin v; g.u/
"

, with f 0.u/2 C g0.u/2 D 1

3. Use the first Gauss equation to derive the formula ($) given on p. 60 for Gaussian curvature.

4. Check the Gaussian curvature of the sphere using the formula ($) on p. 60.

5. Check that for a parametrized surface with E D G D $.u; v/ and F D 0, the Gaussian curvature is

given by K D !
1

2$
r2.ln$/. (Here r2f D

@2f

@u2
C
@2f

@v2
is the Laplacian of f .)

6. Prove there is no compact minimal surfaceM % R3.


