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usual, work with a parametrization where the u-curves are lines of curvature with principal curvature
k1 and the v-curves are lines of curvature with principal curvature k2. Use Lemma 3.3 to show that the
u-curves have curvature jk1j and are planar. Then define ˛ appropriately and check that it is a regular
curve.)

17. If M is a surface with both principal curvatures constant, prove that M is (a subset of) either a sphere,
a plane, or a right circular cylinder. (Hint: See Exercise 2.2.14, Proposition 3.4, and Exercise 16.)

18. Consider the parametrized surfaces

x.u; v/ D .! cosh u sin v; cosh u cos v; u/ (a catenoid)

y.u; v/ D .u cos v; u sin v; v/ (a helicoid).

a. Compute the first and second fundamental forms of both surfaces, and check that both surfaces are
minimal.

b. Find the asymptotic curves on both surfaces.
c. Show that we can locally reparametrize the helicoid in such a way as to make the first fundamental

forms of the two surfaces agree; this means that the two surfaces are locally isometric. (Hint: See
p. 39. Replace u with sinh u in the parametrization of the helicoid. Why is this legitimate?)

d. Why are they not globally isometric?
e. (for the student who’s seen a bit of complex variables) As a hint to what’s going on here, let

z D u C iv and Z D x C iy, and check that, continuing to use the substitution from part c,
Z D .sin iz; cos iz; z/. Understand now how one can obtain a one-parameter family of isometric
surfaces interpolating between the helicoid and the catenoid.

19. Find all the surfaces of revolution of constant curvature
a. K D 0
b. K D 1
c. K D !1
(Hint: There are more than you might suspect. But your answers will involve integrals you cannot
express in terms of elementary functions.)

4. Covariant Differentiation, Parallel Translation, and Geodesics

Now we turn to the “intrinsic” geometry of a surface, i.e., the geometry that can be observed by an
inhabitant (for example, a very thin ant) of the surface, who can only perceive what happens along (or, say,
tangential to) the surface. Anyone who has studied Euclidean geometry knows how important the notion of
parallelism is (and classical non-Euclidean geometry arises when one removes Euclid’s parallel postulate,
which stipulates that given any line L in the plane and any point P not lying on L, there is a unique line
through P parallel to L). It seems quite intuitive to say that, working just in R3, two vectors V (thought of
as being “tangent at P ”) andW (thought of as being “tangent at Q”) are parallel provided that we obtain W
when we move V “parallel to itself” from P to Q; in other words, ifW D V. But what would an inhabitant
of the sphere say? How should he compare a tangent vector at one point of the sphere to a tangent vector
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Are V and W parallel?

P Q

V W

FIGURE 4.1

at another and determine if they’re “parallel”? (See Figure 4.1.) Perhaps a better question is this: Given
a curve ˛ on the surface and a vector field X defined along ˛, should we say X is parallel if it has zero
derivative along ˛?

We already know how an inhabitant differentiates a scalar function f WM ! R, by considering the
directional derivative DVf for any tangent vector V 2 TPM . We now begin with a

Definition. We say a function XWM ! R3 is a vector field on M if
(1) X.P / 2 TPM for every P 2M , and
(2) for any parametrization xWU !M , the function XıxWU ! R3 is (continuously) differentiable.

Now, we can differentiate a vector field X on M in the customary fashion: If V 2 TPM , we choose a
curve ˛ with ˛.0/ D P and ˛0.0/ D V and set DVX D .Xı˛/0.0/. (As usual, the chain rule tells us this is
well-defined.) But the inhabitant of the surface can only see that portion of this vector lying in the tangent
plane. This brings us to the

Definition. Given a vector field X and V 2 TPM , we define the covariant derivative

rVX D .DVX/k D the projection of DVX onto TPM

D DVX ! .DVX " n/n:

Given a curve ˛ in M , we say the vector field X is covariant constant or parallel along ˛ if r˛0.t/X D 0
for all t . (This means that D˛0.t/X D .Xı˛/0.t/ is a multiple of the normal vector n.˛.t//.)

Example 1. Let M be a sphere and let ˛ be a great circle in M . The derivative of the unit tangent
vector of ˛ points towards the center of the circle, which is in this case the center of the sphere, and thus is
completely normal to the sphere. Therefore, the unit tangent vector field of ˛ is parallel along ˛. Observe
that the constant vector field .0; 0; 1/ is parallel along the equator z D 0 of a sphere centered at the origin.
Is this true of any other constant vector field? O

Example 2. A fundamental example requires that we revisit the Christoffel symbols. Given a parametrized
surface xWU !M , we have

rxuxu D .xuu/
k D ! u

uuxu C ! v
uuxv

rxvxu D .xuv/
k D ! u

uvxu C ! v
uvxv D rxuxv ; and
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rxvxv D .xvv/
k D ! u

vvxu C ! v
vvxv : O

The first result we prove is the following

Proposition 4.1. Let I be an interval in R with 0 2 I . Given a curve ˛W I ! M with ˛.0/ D P and
X0 2 TPM , there is a unique parallel vector field X defined along ˛ with X.P / D X0.

Proof. Assuming ˛ lies in a parametrized portion xWU ! M , set ˛.t/ D x.u.t/; v.t// and write
X.˛.t// D a.t/xu.u.t/; v.t// C b.t/xv.u.t/; v.t//. Then ˛0.t/ D u0.t/xu C v0.t/xv (where the the cum-
bersome argument .u.t/; v.t// is understood). So, by the product rule and chain rule, we have

r˛0.t/X D
!

.Xı˛/0.t/
"k D

#

d

dt

!

a.t/xu.u.t/; v.t//C b.t/xv.u.t/; v.t//
"
$k

D a0.t/xu C b0.t/xv C a.t/
#

d

dt
xu.u.t/; v.t//

$k
C b.t/

#

d

dt
xv.u.t/; v.t//

$k

D a0.t/xu C b0.t/xv C a.t/
!

u0.t/xuu C v0.t/xuv

"k C b.t/
!

u0.t/xvu C v0.t/xvv

"k

D a0.t/xu C b0.t/xv C a.t/
!

u0.t/.! u
uuxu C ! v

uuxv/C v0.t/.! u
uvxu C ! v

uvxv/
"

C b.t/
!

u0.t/.! u
vuxu C ! v

vuxv/C v0.t/.! u
vvxu C ! v

vvxv/
"

D
!

a0.t/C a.t/.! u
uuu

0.t/C ! u
uvv

0.t//C b.t/.! u
vuu

0.t/C ! u
vvv

0.t//
"

xu

C
!

b0.t/C a.t/.! v
uuu

0.t/C ! v
uvv

0.t//C b.t/.! v
vuu

0.t/C ! v
vvv

0.t//
"

xv :

Thus, to say X is parallel along the curve ˛ is to say that a.t/ and b.t/ are solutions of the linear system of
first order differential equations

a0.t/C a.t/.! u
uuu

0.t/C ! u
uvv

0.t//C b.t/.! u
vuu

0.t/C ! u
vvv

0.t// D 0
(|)

b0.t/C a.t/.! v
uuu

0.t/C ! v
uvv

0.t//C b.t/.! v
vuu

0.t/C ! v
vvv

0.t// D 0:

By Theorem 3.2 of the Appendix, this system has a unique solution on I once we specify a.0/ and b.0/,
and hence we obtain a unique parallel vector field X with X.P / D X0. !

Definition. If ˛ is a path fromP toQ, we refer toX.Q/ as the parallel translate ofX.P / D X0 2 TPM

along ˛, or the result of parallel translation along ˛.

Remark. The system of differential equations (|) that defines parallel translation shows that it is “in-
trinsic,” i.e., depends only on the first fundamental form of M , despite our original extrinsic definition. In
particular, parallel translation in locally isometric surfaces will be identical.

Example 3. Fix a latitude circle u D u0 (u0 ¤ 0;") on the unit sphere (see Example 1(d) on p. 37) and
let’s calculate the effect of parallel-translating the vector X0 D xv starting at the point P given by u D u0,
v D 0, once around the circle, counterclockwise. We parametrize the curve by u.t/ D u0, v.t/ D t ,
0 # t # 2" . Using our computation of the Christoffel symbols of the sphere in Example 1 or 2 of Section
3, we obtain from (|) the differential equations

a0.t/ D sinu0 cosu0b.t/; a.0/ D 0

b0.t/ D ! cotu0a.t/; b.0/ D 1:
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We solve this system by differentiating the second equation again and substituting the first:

b00.t/ D ! cot u0a
0.t/ D ! cos2 u0b.t/; b.0/ D 1:

Recalling that every solution of the differential equation y00.t/ C k2y.t/ D 0 is of the form y.t/ D
c1 cos.kt/C c2 sin.kt/, c1; c2 2 R, we see that the solution is

a.t/ D sinu0 sin
!

.cosu0/t
"

; b.t/ D cos
!

.cosu0/t
"

:

Note that kX.˛.t//k2 D Ea.t/2C 2Fa.t/b.t/CGb.t/2 D sin2 u0 for all t . That is, the original vector X0

rotates as we parallel translate it around the latitude circle, and its length is preserved. As we see in Figure
4.2, the vector rotates clockwise as we proceed around the latitude circle (in the upper hemisphere). But

P
X02π cos u0

u0

FIGURE 4.2

this makes sense: If we just take the covariant derivative of the vector field tangent to the circle, it points
upwards (cf. Figure 3.1), so the vector field must rotate clockwise to counteract that effect in order to remain
parallel. Since b.2"/ D cos.2" cos u0/, we see that the vector turns through an angle of !2" cos u0. O

Example 4 (Foucault pendulum). Foucault observed in 1851 that the swing plane of a pendulum located
on the latitude circle u D u0 precesses with a period of T D 24= cos u0 hours. We can use the result of
Example 3 to explain this. We imagine the earth as fixed and “transport” the swinging pendulum once around
the circle in 24 hours. If we make the pendulum very long and the swing rather short, the motion will be
“essentially” tangential to the surface of the earth. If we move slowly around the circle, the forces will be
“essentially” normal to the sphere: In particular, letting R denote the radius of the earth (approximately
3960 mi), the tangential component of the centripetal acceleration is (cf. Figure 3.1)

.R sinu0/ cos u0

#

2"

24

$2

#
2"2R

242
$ 135:7 mi/hr2 $ 0:0553 ft/sec2 $ 0:17%g:

Thus, the “swing vector field” is, for all practical purposes, parallel along the curve. Therefore, it turns

through an angle of 2" cos u0 in one trip around the circle, so it takes
2"

.2" cosu0/=24
D

24

cosu0
hours to

return to its original swing plane. O

Our experience in Example 3 suggests the following
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Proposition 4.2. Parallel translation preserves lengths and angles. That is, if X andY are parallel vector
fields along a curve ˛ from P toQ, then kX.P /k D kX.Q/k and the angle between X.P / and Y.P / equals
the angle between X.Q/ and Y.Q/ (assuming these are nonzero vectors).

Proof. Consider f .t/ D X.˛.t// " Y.˛.t//. Then

f 0.t/ D .Xı˛/0.t/ " .Yı˛/.t/C .Xı˛/.t/ " .Yı˛/0.t/

D D˛0.t/X " YC X "D˛0.t/Y
.1/=D r˛0.t/X "YC X " r˛0.t/Y

.2/=D 0:

Note that equality (1) holds because X and Y are tangent to M and hence their dot product with any vector
normal to the surface is 0. Equality (2) holds because X and Y are assumed parallel along ˛. It follows that
the dot product X " Y remains constant along ˛. Taking Y D X, we infer that kXk (and similarly kYk) is
constant. Knowing that, using the famous formula cos # D X " Y=kXkkYk for the angle # between X and
Y, we infer that the angle remains constant. !

Now we change gears somewhat. We saw in Exercise 1.1.8 that the shortest path joining two points
in R3 is a line segment and in Exercise 1.3.1 that the shortest path joining two points on the unit sphere
is a great circle. One characterization of the line segment is that it never changes direction, so that its unit
tangent vector is parallel (so no distance is wasted by turning). (What about the sphere?) It seems plausible
that the mythical inhabitant of our general surface M might try to travel from one point to another in M ,
staying inM , by similarly not turning; that is, so that his unit tangent vector field is parallel along his path.
Physically, this means that if he travels at constant speed, any acceleration should be normal to the surface.
This leads us to the following

Definition. We say a parametrized curve ˛ in a surface M is a geodesic if its tangent vector is parallel
along the curve, i.e., if r˛0˛0 D 0.

Recall that since parallel translation preserves lengths, ˛ must have constant speed, although it may not
be arclength-parametrized. In general, we refer to an unparametrized curve as a geodesic if its arclength
parametrization is in fact a geodesic.

In general, given any arclength-parametrized curve ˛ lying on M , we defined its normal curvature at
the end of Section 2. Instead of using the Frenet frame, it is natural to consider the Darboux frame for ˛,
which takes into account the fact that ˛ lies on the surface M . (Both are illustrated in Figure 4.3.) We take

T

n n×T

NN

B

The Frenet and Darboux frames

FIGURE 4.3

the right-handed orthonormal basis fT;n % T;ng; note that the first two vectors give a basis for TPM . We
can decompose the curvature vector

$N D
!

$N " .n % T/
„ ƒ‚ …

"g

"

.n % T/C
!

$N " n
„ƒ‚…

"n

"

n:
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As we saw before, $n gives the normal component of the curvature vector; $g gives the tangential com-
ponent of the curvature vector and is called the geodesic curvature. This terminology arises from the fact
that ˛ is a geodesic if and only if its geodesic curvature vanishes. (When $ D 0, the principal normal is
not defined, and we really should write ˛00 in the place of $N. If the acceleration vanishes at a point, then
certainly its normal and tangential components are both 0.)

Example 5. We saw in Example 1 that every great circle on a sphere is a geodesic. Are there others?
Let ˛ be a geodesic on a sphere centered at the origin. Since $g D 0, the acceleration vector ˛00.s/ must be
a multiple of ˛.s/ for every s, and so ˛00 % ˛ D 0. Therefore ˛0 % ˛ D A is a constant vector, so ˛ lies in
the plane passing through the origin with normal vector A. That is, ˛ is a great circle. O

Remark. We saw in Example 3 that a vector rotates clockwise at a constant rate as we parallel translate
along the latitude circle of the sphere. If we think about the unit tangent vector T moving counterclockwise
along this curve, its covariant derivative along the curve points up the sphere, as shown in Figure 4.4, i.e.,
“to the left.” Thus, we must compensate by steering “to the right” in order to have no net turning (i.e., to

FIGURE 4.4

make the covariant derivative zero). Of course, this makes sense also because, according to Example 5, the
geodesic that passes through P in the same direction heads “downhill,” to the right.

Using the equations (|), let’s now give the equations for the curve ˛.t/ D x.u.t/; v.t// to be a geodesic.
Since X D ˛0.t/ D u0.t/xu C v0.t/xv , we have a.t/ D u0.t/ and b.t/ D v0.t/, and the resulting equations
are

u00.t/C ! u
uuu

0.t/2 C 2! u
uvu

0.t/v0.t/C ! u
vvv

0.t/2 D 0
(||)

v00.t/C ! v
uuu

0.t/2 C 2! v
uvu

0.t/v0.t/C ! v
vvv

0.t/2 D 0:

The following result is a consequence of basic results on differential equations (see Theorem 3.1 of the
Appendix).

Proposition 4.3. Given a point P 2M and V 2 TPM , V ¤ 0, there exist " > 0 and a unique geodesic
˛W .!"; "/!M with ˛.0/ D P and ˛0.0/ D V.

Example 6. We now use the equations (||) to solve for geodesics analytically in a few examples.
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(a) Let x.u; v/ D .u; v/ be the obvious parametrization of the plane. Then all the Christoffel symbols
vanish and the geodesics are the solutions of

u00.t/ D v00.t/ D 0;

so we get the lines ˛.t/ D .u.t/; v.t// D .a1t C b1; a2t C b2/, as expected. Note that ˛ does in
fact have constant speed.

(b) Using the standard spherical coordinate parametrization of the sphere, we obtain (see Example 1 or
2 of Section 3) the equations

(&) u00.t/ ! sinu.t/ cos u.t/v0.t/2 D 0 D v00.t/C 2 cot u.t/u0.t/v0.t/:

Well, one obvious set of solutions is to take u.t/ D t , v.t/ D v0 (and these, indeed, give the
great circles through the north pole). Integrating the second equation in (&) we obtain ln v0.t/ D
!2 ln sinu.t/C const, so

v0.t/ D
c

sin2 u.t/

for some constant c. Substituting this in the first equation in (&) we find that

u00.t/ !
c2 cosu.t/
sin3 u.t/

D 0I

multiplying both sides by u0.t/ (the “energy trick” from physics) and integrating, we get

u0.t/2 D C 2 !
c2

sin2 u.t/
; and so u0.t/ D ˙

s

C 2 !
c2

sin2 u.t/

for some constant C . Switching to Leibniz notation for obvious reasons, we obtain

dv

du
D
v0.t/

u0.t/
D ˙

c csc2 u
p
C 2 ! c2 csc2 u

I thus, separating variables gives

dv D ˙
c csc2 udu

p
C 2 ! c2 csc2 u

D ˙
c csc2 udu

p

.C 2 ! c2/ ! c2 cot2 u
:

Now we make the substitution c cotu D
p
C 2 ! c2 sinw; then we have

dv D ˙
c csc2 udu

p

.C 2 ! c2/ ! c2 cot2 u
D 'dw;

and so, at long last, we have w D ˙v C a for some constant a. Thus,

c cot u D
p
C 2 ! c2 sinw D

p
C 2 ! c2 sin.˙v C a/ D

p
C 2 ! c2.sin a cos v ˙ cos a sin v/;

and so, finally, we have the equation

c cos uC
p
C 2 ! c2 sin u.A cos v C B sin v/ D 0;

which we should recognize as the equation of a great circle! (Here’s a hint: This curve lies on the
plane

p
C 2 ! c2.Ax C By/C cz D 0.) O

We can now give a beautiful geometric description of the geodesics on a surface of revolution.



!4. COVARIANT DIFFERENTIATION, PARALLEL TRANSLATION, AND GEODESICS 73

Proposition 4.4 (Clairaut’s relation). The geodesics on a surface of revolution satisfy the equation

(}) r cos% D const;

where r is the distance from the axis of revolution and % is the angle between the geodesic and the parallel.
Conversely, any (constant speed) curve satisfying (}) that is not a parallel is a geodesic.

Proof. For the surface of revolution parametrized as in Example 9 of Section 2, we haveE D 1, F D 0,
G D f .u/2, ! v

uv D ! v
vu D f 0.u/=f .u/, ! u

vv D !f .u/f 0.u/, and all other Christoffel symbols are 0 (see
Exercise 2.3.2d.). Then the system (||) of differential equations becomes

u00 ! ff 0.v0/2 D 0(&1)

v00 C
2f 0

f
u0v0 D 0:(&2)

Rewriting the equation (&2) and integrating, we obtain

v00.t/

v0.t/
D !

2f 0.u.t//u0.t/

f .u.t//

ln v0.t/ D !2 ln f .u.t//C const

v0.t/ D
c

f .u.t//2
;

so along a geodesic the quantity f .u/2v0 D Gv0 is constant. We recognize this as the dot product of the
tangent vector of our geodesic with the vector xv , and so we infer that kxvk cos % D r cos % is constant.
(Recall that, by Proposition 4.2, the tangent vector of the geodesic has constant length.)

To this point we have seen that the equation (&2) is equivalent to the condition r cos% D const, provided
we assume k˛0k2 D u02 CGv02 is constant as well. But if

u0.t/2 CGv0.t/2 D u0.t/2 C f .u.t//2v0.t/2 D const;

we differentiate and obtain

u0.t/u00.t/C f .u.t//2v0.t/v00.t/C f .u.t//f 0.u.t//u0.t/v0.t/2 D 0I

substituting for v00.t/ using (&2), we find

u0.t/
!

u00.t/ ! f .u.t//f 0.u.t//v0.t/2
"

D 0:

In other words, provided u0.t/ ¤ 0, a constant-speed curve satisfying (&2) satisfies (&1) as well. (See
Exercise 6 for the case of the parallels.) !

Remark. We can give a simple physical interpretation of Clairaut’s relation. Imagine a particle with
mass 1 constrained to move along a surface. If no external forces are acting, then the particle moves along
a geodesic and, moreover, angular momentum is conserved (because there are no torques). In the case
of our surface of revolution, the vertical component of the angular momentum L D ˛ % ˛0 is—surprise,
surprise!—f 2v0, which we’ve shown is constant. Perhaps some forces normal to the surface are required
to keep the particle on the surface; then the particle still moves along a geodesic (why?). Moreover, since
.˛ % n/ " .0; 0; 1/ D 0, the resulting torques still have no vertical component.
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Returning to our original motivation for geodesics, we now consider the following scenario. Choose
P 2 M arbitrary and a geodesic ! through P , and draw a curve C0 through P orthogonal to !. We now
choose a parametrization x.u; v/ so that x.0; 0/ D P , the u-curves are geodesics orthogonal to C0, and the
v-curves are the orthogonal trajectories of the u-curves, as pictured in Figure 4.5. (It follows from Theorem

C0
P

Q

FIGURE 4.5

3.3 of the Appendix that we can do this on some neighborhood of P .)
In this parametrization we have F D 0 and E D E.u/ (see Exercise 13). Now, if ˛.t/ D x.u.t/; v.t//,

a # t # b, is any path from P D x.0; 0/ to Q D x.u0; 0/, we have

length.˛/ D
Z b

a

q

E.u.t//u0.t/2 CG.u.t/; v.t//v0.t/2dt (
Z b

a

p

E.u.t//ju0.t/jdt

(
Z u0

0

p

E.u/du;

which is the length of the geodesic arc ! from P to Q. Thus, we have deduced the following.

Proposition 4.5. For any point Q on ! contained in this parametrization, any path from P to Q con-
tained in this parametrization is at least as long as the length of the geodesic segment. More colloquially,
geodesics are locally distance-minimizing.

Example 7. Why is Proposition 4.5 a local statement? Well, consider a great circle on a sphere, as
shown in Figure 4.6. If we go more than halfway around, we obviously have not taken the shortest path.
O

P

Qshortest

longer

FIGURE 4.6

Remark. It turns out that any surface can be endowed with a metric (or distance measure) by defining
the distance between any two points to be the infimum (usually, the minimum) of the lengths of all piecewise-
C

1 paths joining them. (Although the distance measure is different from the Euclidean distance as the
surface sits in R3, the topology—notion of “neighborhood”—induced by this metric structure is the induced
topology that the surface inherits as a subspace of R3.) It is a consequence of the Hopf-Rinow Theorem (see
M. doCarmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976, p. 333, or M. Spivak, A
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Comprehensive Introduction to Differential Geometry, third edition, volume 1, Publish or Perish, Inc., 1999,
p. 342) that in a surface in which every parametrized geodesic is defined for all time (a “complete” surface),
every two points are in fact joined by a geodesic of least length. The proof of this result is quite tantalizing:
To find the shortest path from P to Q, one walks around the “geodesic circle” of points a small distance
from P and finds the point R on it closest to Q; one then proves that the unique geodesic emanating from
P that passes through R must eventually pass through Q, and there can be no shorter path.

We referred earlier to two surfacesM andM ! as being globally isometric (e.g., in Example 6 in Section
1). We can now give the official definition: There should be a function f WM !M ! that establishes a one-
to-one correspondence and preserves distance—for any P;Q 2 M , the distance between P and Q in M
should be equal to the distance between f .P / and f .Q/ in M !.

EXERCISES 2.4

1. Determine the result of parallel translating the vector .0; 0; 1/ once around the circle x2 C y2 D a2,
z D 0, on the right circular cylinder x2 C y2 D a2.

2. Prove that $2 D $2
g C $2

n .

3. Suppose ˛ is a non-arclength-parametrized curve. Using the formula (&&) on p. 14, prove that the
velocity vector of ˛ is parallel along ˛ if and only if $g D 0 and ' 0 D 0.

*4. Find the geodesic curvature $g of a latitude circle u D u0 on the unit sphere (see Example 1(d) on
p. 37)
a. directly
b. by applying the result of Exercise 2

5. Consider the right circular cone with vertex angle 2% parametrized by

x.u; v/ D .u tan% cos v; u tan % sin v; u/; 0 < u # u0; 0 # v # 2" :

Find the geodesic curvature $g of the circle u D u0 by using trigonometric considerations. Check that
your answer agrees with the curvature of the circle you get by unrolling the cone to form a “pacman”
figure, as shown on the left in Figure 4.7. (For a proof that these curvatures should agree, see Exercise
2.1.10 and Exercise 3.1.7.)

6. Check that the parallel u D u0 is a geodesic on the surface of revolution parametrized as in Proposition
4.4 if and only if f 0.u0/ D 0. Give a geometric interpretation of and explanation for this result.

7. Use the equations (|), as in Example 3, to determine through what angle a vector turns when it is
parallel-translated once around the circle u D u0 on the cone x.u; v/ D .u cos v; u sin v; cu/, c ¤ 0.
(See Exercise 2.3.2c.)

8. a. Prove that if the surfaces M and M ! are tangent along the curve C , parallel translation along C is
the same in both surfaces.


