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Proposition 4.2. Parallel translation preserves lengths and angles. That is, if X andY are parallel vector
fields along a curve ˛ from P toQ, then kX.P /k D kX.Q/k and the angle between X.P / and Y.P / equals
the angle between X.Q/ and Y.Q/ (assuming these are nonzero vectors).

Proof. Consider f .t/ D X.˛.t// ! Y.˛.t//. Then

f 0.t/ D .Xı˛/0.t/ ! .Yı˛/.t/C .Xı˛/.t/ ! .Yı˛/0.t/

D D˛0.t/X ! YC X !D˛0.t/Y
.1/=D r˛0.t/X !YC X ! r˛0.t/Y

.2/=D 0:

Note that equality (1) holds because X and Y are tangent to M and hence their dot product with any vector
normal to the surface is 0. Equality (2) holds because X and Y are assumed parallel along ˛. It follows that
the dot product X ! Y remains constant along ˛. Taking Y D X, we infer that kXk (and similarly kYk) is
constant. Knowing that, using the famous formula cos ! D X ! Y=kXkkYk for the angle ! between X and
Y, we infer that the angle remains constant. !

Now we change gears somewhat. We saw in Exercise 1.1.8 that the shortest path joining two points
in R3 is a line segment and in Exercise 1.3.1 that the shortest path joining two points on the unit sphere
is a great circle. One characterization of the line segment is that it never changes direction, so that its unit
tangent vector is parallel (so no distance is wasted by turning). (What about the sphere?) It seems plausible
that the mythical inhabitant of our general surface M might try to travel from one point to another in M ,
staying inM , by similarly not turning; that is, so that his unit tangent vector field is parallel along his path.
Physically, this means that if he travels at constant speed, any acceleration should be normal to the surface.
This leads us to the following

Definition. We say a parametrized curve ˛ in a surface M is a geodesic if its tangent vector is parallel
along the curve, i.e., if r˛0˛0 D 0.

Recall that since parallel translation preserves lengths, ˛ must have constant speed, although it may not
be arclength-parametrized. In general, we refer to an unparametrized curve as a geodesic if its arclength
parametrization is in fact a geodesic.

In general, given any arclength-parametrized curve ˛ lying on M , we defined its normal curvature at
the end of Section 2. Instead of using the Frenet frame, it is natural to consider the Darboux frame for ˛,
which takes into account the fact that ˛ lies on the surface M . (Both are illustrated in Figure 4.3.) We take
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the right-handed orthonormal basis fT;n " T;ng; note that the first two vectors give a basis for TPM . We
can decompose the curvature vector
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As we saw before, "n gives the normal component of the curvature vector; "g gives the tangential com-
ponent of the curvature vector and is called the geodesic curvature. This terminology arises from the fact
that ˛ is a geodesic if and only if its geodesic curvature vanishes. (When " D 0, the principal normal is
not defined, and we really should write ˛00 in the place of "N. If the acceleration vanishes at a point, then
certainly its normal and tangential components are both 0.)

Example 5. We saw in Example 1 that every great circle on a sphere is a geodesic. Are there others?
Let ˛ be a geodesic on a sphere centered at the origin. Since "g D 0, the acceleration vector ˛00.s/ must be
a multiple of ˛.s/ for every s, and so ˛00 " ˛ D 0. Therefore ˛0 " ˛ D A is a constant vector, so ˛ lies in
the plane passing through the origin with normal vector A. That is, ˛ is a great circle. O

Remark. We saw in Example 3 that a vector rotates clockwise at a constant rate as we parallel translate
along the latitude circle of the sphere. If we think about the unit tangent vector T moving counterclockwise
along this curve, its covariant derivative along the curve points up the sphere, as shown in Figure 4.4, i.e.,
“to the left.” Thus, we must compensate by steering “to the right” in order to have no net turning (i.e., to
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make the covariant derivative zero). Of course, this makes sense also because, according to Example 5, the
geodesic that passes through P in the same direction heads “downhill,” to the right.

Using the equations (|), let’s now give the equations for the curve ˛.t/ D x.u.t/; v.t// to be a geodesic.
Since X D ˛0.t/ D u0.t/xu C v0.t/xv , we have a.t/ D u0.t/ and b.t/ D v0.t/, and the resulting equations
are

u00.t/C # u
uuu

0.t/2 C 2# u
uvu

0.t/v0.t/C # u
vvv

0.t/2 D 0
(||)

v00.t/C # v
uuu

0.t/2 C 2# v
uvu

0.t/v0.t/C # v
vvv

0.t/2 D 0:

The following result is a consequence of basic results on differential equations (see Theorem 3.1 of the
Appendix).

Proposition 4.3. Given a point P 2M and V 2 TPM , V ¤ 0, there exist " > 0 and a unique geodesic
˛W .#"; "/!M with ˛.0/ D P and ˛0.0/ D V.

Example 6. We now use the equations (||) to solve for geodesics analytically in a few examples.
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(a) Let x.u; v/ D .u; v/ be the obvious parametrization of the plane. Then all the Christoffel symbols
vanish and the geodesics are the solutions of

u00.t/ D v00.t/ D 0;

so we get the lines ˛.t/ D .u.t/; v.t// D .a1t C b1; a2t C b2/, as expected. Note that ˛ does in
fact have constant speed.

(b) Using the standard spherical coordinate parametrization of the sphere, we obtain (see Example 1 or
2 of Section 3) the equations

($) u00.t/ # sinu.t/ cos u.t/v0.t/2 D 0 D v00.t/C 2 cot u.t/u0.t/v0.t/:

Well, one obvious set of solutions is to take u.t/ D t , v.t/ D v0 (and these, indeed, give the
great circles through the north pole). Integrating the second equation in ($) we obtain ln v0.t/ D
#2 ln sinu.t/C const, so

v0.t/ D
c

sin2 u.t/

for some constant c. Substituting this in the first equation in ($) we find that

u00.t/ #
c2 cosu.t/
sin3 u.t/

D 0I

multiplying both sides by u0.t/ (the “energy trick” from physics) and integrating, we get

u0.t/2 D C 2 #
c2

sin2 u.t/
; and so u0.t/ D ˙

s

C 2 #
c2

sin2 u.t/

for some constant C . Switching to Leibniz notation for obvious reasons, we obtain

dv

du
D
v0.t/

u0.t/
D ˙

c csc2 u
p
C 2 # c2 csc2 u

I thus, separating variables gives

dv D ˙
c csc2 udu

p
C 2 # c2 csc2 u

D ˙
c csc2 udu

p

.C 2 # c2/ # c2 cot2 u
:

Now we make the substitution c cotu D
p
C 2 # c2 sinw; then we have

dv D ˙
c csc2 udu

p

.C 2 # c2/ # c2 cot2 u
D %dw;

and so, at long last, we have w D ˙v C a for some constant a. Thus,

c cot u D
p
C 2 # c2 sinw D

p
C 2 # c2 sin.˙v C a/ D

p
C 2 # c2.sin a cos v ˙ cos a sin v/;

and so, finally, we have the equation

c cos uC
p
C 2 # c2 sin u.A cos v C B sin v/ D 0;

which we should recognize as the equation of a great circle! (Here’s a hint: This curve lies on the
plane

p
C 2 # c2.Ax C By/C cz D 0.) O

We can now give a beautiful geometric description of the geodesics on a surface of revolution.


